Amount of Change: 18 red apples. Original Amount: 45 red apples. Choose the correct percent of change equation that represents the situation.

Answers

Answer 1

The correct percent of change equation that represents the situation of 18 red apples decreasing from an original amount of 45 red apples is: Percent Decrease = 40%

To represent the situation described, where the amount of change is 18 red apples and the original amount is 45 red apples, we can use the percent of change equation. The percent of change is calculated by finding the ratio of the amount of change to the original amount, multiplied by 100%.

There are two variations of the percent of change equation depending on whether the change is an increase or a decrease:

1. Percent Increase:

  Percent Increase = (Amount of Increase / Original Amount) * 100%

2. Percent Decrease:

  Percent Decrease = (Amount of Decrease / Original Amount) * 100%

In this case, the amount of change is a decrease of 18 red apples from an original amount of 45 red apples. Therefore, we will use the percent decrease equation.

Substituting the given values into the equation, we have:

Percent Decrease = (18 / 45) * 100%

Simplifying the expression, we get:

Percent Decrease = (2/5) * 100%

To calculate the percentage, we multiply the fraction by 100:

Percent Decrease = 40%

This means that the amount of red apples decreased by 40% from the original amount.

Learn more about equation at: brainly.com/question/29657983

#SPJ11


Related Questions

Show L={w∣w is in {0,1,2} ∗
with n 0

(w)>n 1

(w) and n 0

(w)≥n 2

(w), where n 0

(w) is the number of 0 s in w,n 1

(w) is the number of 1 s in w, and n 2

(w) is the number of 2s in w} is not context free.

Answers

The language L = {w|w is in {0,1,2}* with n0(w) > n1(w) and n0(w) ≥ n2(w)} is not context-free, as proven using the pumping lemma for context-free languages, which shows that L cannot satisfy the conditions of the pumping lemma.

To show that L = {w|w is in {0,1,2} ∗ with n0(w) > n1(w) and n0(w) ≥ n2(w), where n0(w) is the number of 0s in w, n1(w) is the number of 1s in w, and n2(w) is the number of 2s in w} is not context-free, we use the pumping lemma for context-free languages.

Pumping Lemma for Context-Free Languages:

A context-free language L is said to satisfy the pumping lemma if there exists a positive integer p such that any string w in L, with |w| ≥ p, can be written as w = uvxyz, where u, v, x, y, and z are strings (not necessarily in L) satisfying the following conditions:

|vx| ≥ 1;

|vxy| ≤ p; and

uvⁿxyⁿz ∈ L for all n ≥ 0.

To prove that L is not context-free, we use a proof by contradiction. We assume that L is context-free, and then we show that it cannot satisfy the pumping lemma.

Choose a pumping length p

Suppose that L is context-free and let p be the pumping length guaranteed by the pumping lemma for L.

Choose a string w

Let w = 0p1p2p where p1 > 1 and p2 ≥ 1.

Divide w into five parts

w = uvxyz

where |vxy| ≤ p, |vx| ≥ 1

Show that the pumped string is not in LW = uv0xy0z

There are three cases to consider when pumping the string W:

Case 1: vx contains 1 only

In this case, the pumped string W will have more 1s than 0s and 2s, which means that it is not in L.

Case 2: vx contains 0 only

In this case, the pumped string W will have more 0s than 1s and 2s, which means that it is not in L.

Case 3: vx contains 2 only

In this case, the pumped string W will have more 2s than 0s and 1s, which means that it is not in L.

Thus, we have arrived at a contradiction since the pumped string W is not in L, which contradicts the assumption that L is context-free.

Therefore, L is not context-free.

To know more about proof by contradiction, refer to the link below:

https://brainly.com/question/30779785#

#SPJ11








If a seed is planted, it has a 80 % chance of growing into a healthy plant. If 10 seeds are planted, what is the probability that exactly 3 don't grow?

Answers

The probability that exactly 3 seeds don't grow out of the 10 planted seeds is 0.2013 or about 20.13%.

This problem can be modeled as a binomial distribution where the number of trials (n) is 10 and the probability of success (p) is 0.80.

We are interested in the probability that exactly 3 seeds don't grow, which means that 7 seeds do grow. This can be calculated using the binomial probability formula:

P(X = 7) = (10 choose 7) * (0.80)^7 * (1 - 0.80)^(10-7)

= 120 * 0.80^7 * 0.20^3

= 0.201326592

Therefore, the probability that exactly 3 seeds don't grow out of the 10 planted seeds is 0.2013 or about 20.13%.

Learn more about  probability   from

https://brainly.com/question/30390037

#SPJ11

Suppose A={b,c,d} and B={a,b}. Find: (i) PP(A)×P(B)

Answers

There are 8 sets in PP(A) and 4 sets in P(B), so there are 8 * 4 = 32 possible ordered pairs in PP(A) × P(B).

The notation PP(A) refers to the power set of A, which is the set of all possible subsets of A, including the empty set and the set A itself. Similarly, P(B) is the power set of B.

So, we have A = {b, c, d} and B = {a, b}, which gives us:

PP(A) = {{}, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}}

P(B) = {{}, {a}, {b}, {a, b}}

To find PP(A) × P(B), we need to take every possible combination of a set from PP(A) and a set from P(B). We can use the Cartesian product for this, which is essentially taking all possible ordered pairs of elements from both sets.

So, we have:

PP(A) × P(B) = {({},{}), ({},{a}), ({},{b}), ... , ({b,c,d}, {b}), ({b,c,d}, {a,b})}

In other words, PP(A) × P(B) is the set of all possible ordered pairs where the first element comes from PP(A) and the second element comes from P(B). In this case, there are 8 sets in PP(A) and 4 sets in P(B), so there are 8 * 4 = 32 possible ordered pairs in PP(A) × P(B).

Learn more about  sets from

https://brainly.com/question/13458417

#SPJ11

Find each function value and limit. Use - oo or [infinity]o where appropriate.
f(x)= 9x²-18x^2/8x^5 +4 (A) (-6)
(B) f(-12)

Answers

The value at function when x is (-6) is approximately 0.070 and function when x is (-12) is approximately 0.000066 for the function f(x)= 9x²-18x^2/8x^5 +4 .

(a) To find the value of f(x) at x = -6, we substitute -6 into the function:

f(-6) = 9(-6)² - 18(-6)² / (8(-6)⁵ + 4).

Simplifying the numerator and denominator:

f(-6) = 9(36) - 18(36) / (8(-6)⁵ + 4)

     = 324 - 648 / (-4,608 + 4)

     = -324 / -4,604

     = 0.070.

Therefore, f(-6) = 0.070.

(b) To find the value of f(-12), we substitute -12 into the function:

f(-12) = 9(-12)² - 18(-12)² / (8(-12)⁵ + 4).

Simplifying the numerator and denominator:

f(-12) = 9(144) - 18(144) / (8(-12)⁵ + 4)

      = 1,296 - 2,592 / (-19,660,928 + 4)

      = -1,296 / -19,660,924

      = 0.000066.

Therefore, f(-12) = 0.000066.

Learn more about function here : brainly.com/question/31549816

#SPJ11

Find the indicated probability.
A machine has
10
identical components which function independently. The probability that a component will fail is
0.16
. The machine will stop working if more than three components fail. Find the probability that the machine will be working.
0.987
0.939
0.061
0.041

Answers

In this problem, we are given that a machine has 10 identical components that function independently. The probability that a component will fail is 0.16. The machine will stop working if more than three components fail.

We need to find the probability that the machine will be working.Let the random variable X represent the number of components that fail. Since there are 10 components, X can take any integer value from 0 to 10. Since each component can either fail or not fail, X follows a binomial distribution with parameters n = 10 and p = 0.16.We can use the binomial probability formula to find the probability of the machine working: P(X ≤ 3) = ∑P(X = x) for x = 0, 1, 2, 3where P(X = x) = (nCx)px(1 – p)n – xWe can calculate this using the binomial probability table or a scientific calculator. Alternatively, we can use the complement of this probability to find the probability that the machine will be working. This is: P(X > 3) = 1 – P(X ≤ 3)

The probability that a component fails is given as 0.16. The probability that a component does not fail is 1 - 0.16 = 0.84. Therefore, the probability that x components fail and (10 - x) components work is given by:P(X = x) = (10Cx) (0.16)x (0.84)10 - xThe machine will stop working if more than three components fail. So, we need to find P(X ≤ 3) to find the probability that the machine will be working. This is:

P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)P(X = 0) = (10C0) (0.16)0 (0.84)10 = 0.0844P(X = 1) = (10C1) (0.16)1 (0.84)9 = 0.2794P(X = 2) = (10C2) (0.16)2 (0.84)8 = 0.3604P(X = 3) = (10C3) (0.16)3 (0.84)7 = 0.2313

Therefore,

P(X ≤ 3) = 0.0844 + 0.2794 + 0.3604 + 0.2313 = 0.9555

The probability that the machine will be working is:

P(X > 3) = 1 – P(X ≤ 3) = 1 – 0.9555 = 0.0445

Therefore, the probability that the machine will be working is 0.0445 or 0.041 (approx).

The probability that the machine will be working is 0.0445 or 0.041 (approx). Therefore, the correct option is option D.

To learn more about binomial probability table visit:

brainly.com/question/30673644

#SPJ11

Harold Hill borrowed $16,700 to pay for his child's education at Riverside Community College. Harold must repay the loan at the end of 6 months in one payment with 321​% interest. a. How much interest must Harold pay? Note: Do not round intermediate calculation. Round your answer to the nearest cent. b. What is the moturity value? Note: Do not round intermediate calculation. Round your answer to the nearest cent.

Answers

a. To calculate the interest Harold must pay, we can use the formula for simple interest:[tex]\[ I = P \cdot r \cdot t \[/tex]] b. The maturity value is the total amount that Harold must repay, including the principal amount and the interest. To calculate the maturity value, we add the principal amount and the interest: \[ M = P + I \].

a. In this case, we have:

- P = $16,700

- r = 321% = 3.21 (expressed as a decimal)

- t = 6 months = 6/12 = 0.5 years

Substituting the given values into the formula, we have:

\[ I = 16,700 \cdot 3.21 \cdot 0.5 \]

Calculating this expression, we find:

\[ I = 26,897.85 \]

Rounding to the nearest cent, Harold must pay $26,897.85 in interest.

b. In this case, we have:

- P = $16,700

- I = $26,897.85 (rounded to the nearest cent)

Substituting the values into the formula, we have:

\[ M = 16,700 + 26,897.85 \]

Calculating this expression, we find:

\[ M = 43,597.85 \]

Rounding to the nearest cent, the maturity value is $43,597.85.

Learn more about maturity value here:

https://brainly.com/question/2132909

#SPJ11

Let f(x)=(x−6)(x^2-5)Find all the values of x for which f ′(x)=0. Present your answer as a comma-separated list:

Answers

The values of x for which f'(x) = 0 are (6 + √51) / 3 and (6 - √51) / 3.

To find the values of x for which f'(x) = 0, we first need to find the derivative of f(x).

[tex]f(x) = (x - 6)(x^2 - 5)[/tex]

Using the product rule, we can find the derivative:

[tex]f'(x) = (x^2 - 5)(1) + (x - 6)(2x)[/tex]

Simplifying this expression, we get:

[tex]f'(x) = x^2 - 5 + 2x(x - 6)\\f'(x) = x^2 - 5 + 2x^2 - 12x\\f'(x) = 3x^2 - 12x - 5\\[/tex]

Now we set f'(x) equal to 0 and solve for x:

[tex]3x^2 - 12x - 5 = 0[/tex]

Unfortunately, this equation does not factor easily. We can use the quadratic formula to find the solutions:

x = (-(-12) ± √((-12)² - 4(3)(-5))) / (2(3))

x = (12 ± √(144 + 60)) / 6

x = (12 ± √204) / 6

x = (12 ± 2√51) / 6

x = (6 ± √51) / 3

So, the values of x for which f'(x) = 0 are x = (6 + √51) / 3 and x = (6 - √51) / 3.

To know more about values,

https://brainly.com/question/30064539

#SPJ11

One die is rolled, List the outcomes comprising the following events: (make sure you use the correct notation with the set brices \{). put a comma between each outcome, and do not put a space between them:: (a) event the die comes up odd answer: (b) event the die comes up 4 or more answer. (c) event the die comes up even answer,

Answers

(a) The event that the die comes up odd can be represented as {1, 3, 5}.

In a standard die, there are six possible outcomes: 1, 2, 3, 4, 5, and 6. Out of these, the odd numbers are 1, 3, and 5. Thus, the outcomes comprising the event that the die comes up odd are {1, 3, 5}.

(b) The event that the die comes up 4 or more can be represented as {4, 5, 6}.

In a standard die, there are six possible outcomes: 1, 2, 3, 4, 5, and 6. Out of these, the numbers 4, 5, and 6 are considered to be 4 or more. Thus, the outcomes comprising the event that the die comes up 4 or more are {4, 5, 6}.

(c) The event that the die comes up even can be represented as {2, 4, 6}.

In a standard die, there are six possible outcomes: 1, 2, 3, 4, 5, and 6. Out of these, the even numbers are 2, 4, and 6. Thus, the outcomes comprising the event that the die comes up even are {2, 4, 6}.

The outcomes for the events mentioned are: (a) odd: {1, 3, 5}, (b) 4 or more: {4, 5, 6}, (c) even: {2, 4, 6}.

To know more about   event  visit

https://brainly.com/question/30169088

#SPJ11

Given (10,4) and (x,-2), find x such that the distance between through two points is 10.

Answers

Therefore, the two possible values for x such that the distance between the points (10,4) and (x,-2) is 10 are x = 18 and x = 2.

To find the value of x such that the distance between the points (10,4) and (x,-2) is 10, we can use the distance formula. The distance formula is given by:

d = √((x2 - x1)² + (y2 - y1)²)

In this case, we are given (10,4) as one point, and we want to find x such that the distance between (10,4) and (x,-2) is 10.

Using the distance formula, we can plug in the given values:

10 = √((x - 10)² + (-2 - 4)²)

Simplifying the equation, we get:

100 = (x - 10)^² + (-6)²

Expanding the equation further:

100 = (x² - 20x + 100) + 36

Combining like terms:

100 = x² - 20x + 136

Rearranging the equation:

x² - 20x + 36 = 0

Now we can solve this quadratic equation to find the values of x. However, this quadratic equation doesn't factor nicely, so we can use the quadratic formula:

x = (-b ± √(b² - 4ac)) / (2a)

In this case, a = 1, b = -20, and c = 36. Plugging in these values, we get:

x = (-(-20) ± √((-20)² - 4(1)(36))) / (2(1))

Simplifying further:

x = (20 ± √(400 - 144)) / 2

x = (20 ± √256) / 2

x = (20 ± 16) / 2

This gives us two possible values for x:

x1 = (20 + 16) / 2 = 36 / 2 = 18
x2 = (20 - 16) / 2 = 4 / 2 = 2

Therefore, the two possible values for x such that the distance between the points (10,4) and (x,-2) is 10 are x = 18 and x = 2.

To know more about distance visit:

https://brainly.com/question/33716087

#SPJ11

At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584. Assume that the population is grr g exponentially, answer the following.
A) Estimate the population at the beginning of the year 2019. The population at the beginning of 2019 will be about
B) How long (from the beginning of 1995) will it take for the population to reach 9000? The population will reach 9000 about years after the beginning of 1995.
C) In what year will/did the population reach 9000?
The population will (or did) hit 9000 in the year.

Answers

A = 4762 (approx) . Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.

Given: At the beginning of the year 1995, the population of Townsville was 3754. By the beginning of the year 2015, the population had reached 4584.A) Estimate the population at the beginning of the year 2019.As the population is growing exponentially, we can use the formula:  

A = P(1 + r/n)ntWhere,

A = final amount

P = initial amount

r = annual interest rate

t = number of years

n = number of times interest is compounded per year

To find the population at the beginning of 2019,P = 4584 (given)

Let's find the annual growth rate first.

r = (4584/3754)^(1/20) - 1

r = 0.00724A

= 4584(1 + 0.00724/1)^(1*4)

A = 4762 (approx)

Therefore, the population at the beginning of 2019 will be about 4762.

B) How long (from the beginning of 1995) will it take for the population to reach 9000?We need to find the time taken to reach the population of 9000.

A = P(1 + r/n)nt9000

= 3754(1 + 0.00724/1)^t(20)

ln 9000/3754

= t ln (1.00724/1)(20)

ln 2.397 = 20t.

t = 0.12 years (approx)

Therefore, the population will reach 9000 about 0.12*12 = 1.44 years after the beginning of 1995.

C) In what year will/did the population reach 9000?

In the previous step, we have found that it takes approximately 1.44 years to reach a population of 9000 from the beginning of 1995.

So, the population will reach 9000 in 1995 + 1.44 = 1996.44 or around September 1996.

To know more about population visit;

brainly.com/question/15889243

#SPJ11

Which of the following statements are true and which are false? Justify your answers!
(a) Let the joint density function of two random variables X and Y be given by
fx.r (x, y), x≥ 0, y ≥ x.
Then X and Y are independent if fx,y can be factorised as fxr(x, y) = g(x)h (y)
where g is a function of x only and h is a function of y only.
(b) Assume that X and Y are two continuous random variables. If fxy (xy) = 0 for all values of x and y then X and Y are independent.
(c) Assume that X and Y are two continuous random variables. If fxr (xy) = fx (y) for all values of y then X and Y are independent.

Answers

The statement is true: fx.r(x, y) be the joint density function of X and Y.

For independent random variables X and Y, the following condition is satisfied:fx,y (x, y) = fx(x)fy(y)As fx.r(x, y) is given, let it be represented as a product of two independent functions of X and Y as follows:fx.r(x, y) = g(x)h(y)Therefore, X and Y are independent if fx.y(x, y) can be factored as fx(x)fy(y). (b) True or FalseAssume that X and Y are two continuous random variables. If fxy(xy) = 0 for all values of x and y then X and Y are independent.

FalseExplanation:
The statement is false. If fxy(xy) = 0 for all values of x and y, X and Y are not independent. Rather, this implies that the joint distribution of X and Y is null when X and Y are considered together, but X and Y can be correlated even if fxy(xy) = 0 for all values of x and y. (c) True or FalseAssume that X and Y are two continuous random variables. If fxr(xy) = fx(y) for all values of y then X and Y are independent. FalseExplanation:
The statement is false. If fxr(xy) = fx(y) for all values of y, then X and Y are not independent, but they may have a relation known as conditional independence. Therefore, X and Y are not independent in this case.

Learn more about density

https://brainly.com/question/15078630

#SPJ11

You and your friend each drive 58km. You travel at 87k(m)/(h). Your friend travels at 103 k(m)/(h). How long will your friend be waiting for you at the end of the trip? (Your answer will be in seconds

Answers

Your friend will be waiting for you at the end of the trip for approximately 11 minutes and 18 seconds. it takes for both of you to complete the 58 km distance.

To find out how long your friend will be waiting for you at the end of the trip, we need to calculate the time it takes for both of you to complete the 58 km distance.

Your speed is 87 km/h, so the time it takes for you to travel 58 km can be calculated as:

Time = Distance / Speed = 58 km / 87 km/h = 0.6667 hours.

Similarly, your friend's speed is 103 km/h, so the time it takes for your friend to travel 58 km can be calculated as:

Time = Distance / Speed = 58 km / 103 km/h = 0.5631 hours.

To find out the waiting time, we subtract the time it takes for you to complete the trip from the time it takes for your friend to complete the trip:

Waiting time = Friend's time - Your time = 0.5631 hours - 0.6667 hours = -0.1036 hours.

To convert the waiting time to seconds, we multiply it by 3600 (the number of seconds in an hour):

Waiting time in seconds = -0.1036 hours * 3600 seconds/hour ≈ -373 seconds.

Since negative waiting time doesn't make sense in this context, we can take the absolute value of the waiting time:

Waiting time ≈ 373 seconds.

Your friend will be waiting for you at the end of the trip for approximately 11 minutes and 18 seconds (373 seconds).

To know more about distance follow the link:

https://brainly.com/question/28786224

#SPJ11

The C₂ quadrature rule for the interval [1, 1] uses the points at which T-1(t) = ±1 as its nodes (here T-1 is the Chebyshev polynomial of degree n 1). The C3 rule is just Simpson's rule because T2(t) = 2t2 -1.
(a) (i) Find the nodes and weights for the Cs quadrature rule.
(ii) Determine the first nonzero coefficient S; for the C5 rule.
(iii) If the C5 rule and the five-point Newton-Cotes rule are applied on the same number of subintervals, what approximate relationship do you expect the two errors to satisfy?
(iv) Suppose that the C's rule has been applied on N subintervals, and that all of the function evaluations have been stored. How many new function evaluations are required to apply the C rule on the same set of subintervals? Justify your answer.

Answers

(i) The nodes for the Cₙ quadrature rule are the roots of the Chebyshev polynomial Tₙ(x), and the weights can be determined from the formula for Gaussian quadrature.

(ii) The first nonzero coefficient S₁ for the C₅ rule is π/5.

(iii) The C₅ rule is expected to have a smaller error than the five-point Newton-Cotes rule when applied on the same number of subintervals.

(iv) No new function evaluations are required to apply the Cₙ rule on the same set of subintervals; the stored nodes and weights can be reused.

(a) (i) To find the nodes and weights for the Cₙ quadrature rule, we need to determine the roots of the Chebyshev polynomial of degree n, denoted as Tₙ(x). The nodes are the values of x at which

Tₙ(x) = ±1. We solve

Tₙ(x) = ±1 to find the nodes.

(ii) The first nonzero coefficient S₁ for the C₅ rule can be determined by evaluating the weight corresponding to the central node (t = 0). Since T₂(t) = 2t² - 1, we can calculate the weight as

S₁ = π/5.

(iii) If the C₅ rule and the five-point Newton-Cotes rule are applied on the same number of subintervals, we can expect the approximate relationship between the two errors to be that the error of the C₅ rule is smaller than the error of the five-point Newton-Cotes rule. This is because the C₅ rule utilizes the roots of the Chebyshev polynomial, which are optimized for approximating integrals over the interval [-1, 1].

(iv) When applying the Cₙ rule on N subintervals, the nodes and weights are precomputed and stored. To apply the same rule on the same set of subintervals, no new function evaluations are required. The stored nodes and weights can be reused for the calculations, resulting in computational efficiency.

To know more about Numerical Analysis , visit:

https://brainly.com/question/33177541

#SPJ11

Use the following sample of numbers for the next 4 questions: a. What is the range? (1 point) b. What is the inter-quartile range? (2 points) c. What is the variance for the sample? (3 points) Show Your Work! d. What is the standard deviation for the sample? (1 point)
x
3
5
5
6
10

Answers

Range = 7, Interquartile range = 4, Variance = 6.9, and Standard deviation = approximately 2.63.

What is the range? The range is the difference between the largest and smallest value in a data set. The largest value in this sample is 10, while the smallest value is 3. The range is therefore 10 - 3 = 7. The range is 7.b. What is the inter-quartile range? The interquartile range is the range of the middle 50% of the data. It is calculated by subtracting the first quartile from the third quartile. To find the quartiles, we first need to order the data set: 3, 5, 5, 6, 10. Then, we find the median, which is 5. Then, we divide the remaining data set into two halves. The lower half is 3 and 5, while the upper half is 6 and 10. The median of the lower half is 4, and the median of the upper half is 8. The first quartile (Q1) is 4, and the third quartile (Q3) is 8. Therefore, the interquartile range is 8 - 4 = 4.

The interquartile range is 4.c. What is the variance for the sample? To find the variance for the sample, we first need to find the mean. The mean is calculated by adding up all of the numbers in the sample and then dividing by the number of values in the sample: (3 + 5 + 5 + 6 + 10)/5 = 29/5 = 5.8. Then, we find the difference between each value and the mean: -2.8, -0.8, -0.8, 0.2, 4.2.

We square each of these values: 7.84, 0.64, 0.64, 0.04, 17.64. We add up these squared values: 27.6. We divide this sum by the number of values in the sample minus one: 27.6/4 = 6.9. The variance for the sample is 6.9.d. What is the standard deviation for the sample? To find the standard deviation for the sample, we take the square root of the variance: sqrt (6.9) ≈ 2.63. The standard deviation for the sample is approximately 2.63.

Range = 7, Interquartile range = 4, Variance = 6.9, and Standard deviation = approximately 2.63.

To know more about Variance visit:

brainly.com/question/14116780

#SPJ11

Find the standard equation of the rcle that has a radius whose ndpoints are the points A(-2,-5) and (5,-5) with center of (5,-5)

Answers

The standard form of the circle equation is 4x² + 4y² - 40x + 40y + 51 = 0.

A circle is a geometric shape that has an infinite number of points on a two-dimensional plane. In geometry, a circle's standard form or equation is derived by completing the square of the general form of the equation of a circle.

Given the center of the circle is (5, -5) and the radius is the distance from the center to one of the endpoints:

(5, -5) to (5, -5) = 0, and (5, -5) to (-2, -5) = 7

(subtract -2 from 5),

since the radius is half the distance between the center and one of the endpoints.The radius is determined to be

r = 7/2.

To derive the standard form of the circle equation: (x - h)² + (y - k)² = r², where (h, k) is the center of the circle and r is the radius.

Substituting the values from the circle data into the standard equation yields:

(x - 5)² + (y + 5)²

= (7/2)²x² - 10x + 25 + y² + 10y + 25

= 49/4

Multiplying each term by 4 yields:

4x² - 40x + 100 + 4y² + 40y + 100 = 49

Thus, the standard form of the circle equation is 4x² + 4y² - 40x + 40y + 51 = 0.

To know more about standard form visit:

https://brainly.com/question/29000730

#SPJ11

A company is planning to manufacture mountain bikes. The fixed monthly cost will be $300,000 and it will cost $300
to produce each bicycle.
A) Find the linear cost function.
B) Find the average cost function.

Answers

A) The linear cost function for manufacturing mountain bikes is given by Cost = $300,000 + ($300 × Number of Bicycles), where the fixed monthly cost is $300,000 and it costs $300 to produce each bicycle.

B) The average cost function represents the cost per bicycle produced and is calculated as Average Cost = ($300,000 + ($300 × Number of Bicycles)) / Number of Bicycles.

A) To find the linear cost function, we need to determine the relationship between the total cost and the number of bicycles produced. The fixed monthly cost of $300,000 remains constant regardless of the number of bicycles produced. Additionally, it costs $300 to produce each bicycle. Therefore, the linear cost function can be expressed as:

Cost = Fixed Cost + (Variable Cost per Bicycle × Number of Bicycles)

Cost = $300,000 + ($300 × Number of Bicycles)

B) The average cost function represents the cost per bicycle produced. To find the average cost function, we divide the total cost by the number of bicycles produced. The total cost is given by the linear cost function derived in part A.

Average Cost = Total Cost / Number of Bicycles

Average Cost = ($300,000 + ($300 × Number of Bicycles)) / Number of Bicycles

It's important to note that the average cost function may change depending on the specific context or assumptions made.

To learn more about linear cost function visit : https://brainly.com/question/15602982

#SPJ11

You exert a force (push ) of 223 lb. against an 8 inch thick brick wall. How much work (in-lb) is being done? Answer:

Answers

The work being done while exerting a force of 223 lb against an 8-inch thick brick wall is 1,784 in-lb.

Work is defined as the product of force and displacement in the direction of the force. In this case, the force is 223 lb, and the displacement is the thickness of the brick wall, which is 8 inches.

Work = Force × Displacement

Displacement = 8 inches / 12 inches/foot = 2/3 feet

Substituting the values into the formula, we get:

Work = 223 lb × (2/3) feet

To convert the work to in-lb, we need to multiply by 12 since there are 12 inches in a foot:

Work = 223 lb × (2/3) feet × 12 inches/foot

Work = 223 lb × 8 inches

Work = 1,784 in-lb

The work being done while exerting a force of 223 lb against an 8-inch thick brick wall is 1,784 in-lb.

To know more about work, visit;
https://brainly.com/question/28356414
#SPJ11

Find a vector function that represents the curve of intersection of the paraboloid z=x^2+y^2and the cylinder x^2+y^2=9

Answers

The vector function that represents the curve of intersection is:

r(θ) = (3cos(θ), 3sin(θ), 9)

How to find the vector?

To find a vector function that represents the curve of intersection between the paraboloid z = x² + y² and the cylinder x² + y² = 9, we can use cylindrical coordinates. Let's denote the cylindrical coordinates as (ρ, θ, z), where ρ represents the radial distance from the z-axis, θ represents the angle in the xy-plane, and z represents the height along the z-axis.

For the cylinder x² + y² = 9, we can express it in cylindrical coordinates as ρ² = 9. Therefore, ρ = 3.

For the paraboloid z = x² + y², we can express it in cylindrical coordinates as z = ρ².

Now, we can parameterize the curve of intersection by setting ρ = 3 and z = ρ². This gives us:

ρ = 3

θ = θ (we leave it as a parameter)

z = ρ² = 9

Thus, the vector function that represents the curve of intersection is:

r(θ) = (3cos(θ), 3sin(θ), 9)

Learn more about vector functions at:

https://brainly.com/question/27854247

#SPJ4

f ∫110f(X)Dx=4 And ∫103f(X)Dx=7, Then ∫13f(X)Dx= (A) −3 (B) 0 (C) 3 (D) 10 (E) 11

Answers

The answer is (C) 3.

Given that ∫110f(X)dx = 4 and ∫103f(X)dx = 7, we need to find ∫13f(X)dx.

We can use the linearity property of integrals to solve this problem. According to this property, the integral of a sum of functions is equal to the sum of the integrals of the individual functions.

Let's break down the integral ∫13f(X)dx into two parts: ∫10f(X)dx + ∫03f(X)dx.

Since we know that ∫110f(X)dx = 4, we can rewrite ∫10f(X)dx as ∫110f(X)dx - ∫03f(X)dx.

Substituting the given values, we have ∫10f(X)dx = 4 - ∫103f(X)dx.

Now, we can calculate ∫13f(X)dx by adding the two integrals together:

∫13f(X)dx = (∫110f(X)dx - ∫03f(X)dx) + ∫03f(X)dx.

By simplifying the expression, we get ∫13f(X)dx = 4 - 7 + ∫03f(X)dx.

Simplifying further, ∫13f(X)dx = -3 + ∫03f(X)dx.

Since the value of ∫03f(X)dx is not given, we can't determine its exact value. However, we know that it contributes to the overall result with a value of -3. Therefore, the answer is (C) 3.

Learn more about functions here: brainly.com/question/30660139

#SPJ11

A construction company employs three sales engineers. Engineers 1,2 , and 3 estimate the costs of 30%,20%, and 50%, respectively, of all jobs bid by the company. For i=1,2,3, define E l

to be the event that a job is estimated by engineer i. The following probabilities describe the rates at which the engineers make serious errors in estimating costs: P( error E 1

)=01, P( crror E 2

)=.03. and P(error(E 3

)=,02 a. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 1 ? b. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 2 ? c. If a particular bid results in a serious error in estimating job cost, what is the probability that the error was made by engineer 3 ? d. Based on the probabilities, parts a-c, which engineer is most likely responsible for making the serious crror?

Answers

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 1 is 0.042. If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 2 is 0.059.

Let F denote the event of making a serious error. By the Bayes’ theorem, we know that the probability of event F, given that event E1 has occurred, is equal to the product of P (E1 | F) and P (F), divided by the sum of the products of the conditional probabilities and the marginal probabilities of all events which lead to the occurrence of F.

We know that P(F) + P (E1 | F') P(F')].

From the problem,

we have P (F | E1) = 0.1 and P (E1 | F') = 1 – P (E1|F) = 0.9.

Also (0.1) (0.3) + (0.03) (0.2) + (0.02) (0.5) = 0.032.

Hence P (F | E1) = (0.1) (0.3) / [(0.1) (0.3) + (0.9) (0.7) (0.02)] = 0.042.

(0.1) (0.3) + (0.03) (0.2) + (0.02) (0.5) = 0.032.

Hence P (F | E2) = (0.03) (0.2) / [(0.9) (0.7) (0.02) + (0.03) (0.2)] = 0.059.

Hence P (F | E3) = (0.02) (0.5) / [(0.9) (0.7) (0.02) + (0.03) (0.2) + (0.02) (0.5)] = 0.139.

Since P(F|E3) > P(F|E1) > P(F|E2), it follows that Engineer 3 is most likely responsible for making the serious error.

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 1 is 0.042.

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 2 is 0.059.

If a particular bid results in a serious error in estimating job cost, the probability that the error was made by engineer 3 is 0.139.

Based on the probabilities, parts a-c, Engineer 3 is most likely responsible for making the serious error.

To know more about probability visit:

brainly.com/question/31828911

#SPJ11

A bacteria culture contains 200 cells initially and grows at a rate proportional to its size. After half an hour the population has increased to 360 cells. (Show that you understand the solution process; you may leave your answer in terms of In(7), for example. A calculator is not required.) (a) Find the number of bacteria after t hours.
(b) When will the population reach 10,000?

Answers

(a) Substituting the value of k into N(t) = 200 * e^(kt), we can express the number of bacteria after t hours.

(b) To find when the population reaches 10,000, we set N(t) = 10,000 in the equation N(t) = 200 * e^(kt) and solve for t using the value of k obtained earlier.

The problem presents a bacteria culture with an initial population of 200 cells, growing at a rate proportional to its size. After half an hour, the population reaches 360 cells. The goal is to determine the number of bacteria after a given time (t) and find when the population will reach 10,000.

Let N(t) represent the number of bacteria at time t. Given that the growth is proportional to the current size, we can write the differential equation dN/dt = kN, where k is the proportionality constant. Solving this equation yields N(t) = N0 * e^(kt), where N0 is the initial population. Plugging in the given values, we have 360 = 200 * e^(0.5k), which simplifies to e^(0.5k) = 1.8. Taking the natural logarithm of both sides, we find 0.5k = ln(1.8). Thus, k = 2 * ln(1.8).

(a) Substituting the value of k into N(t) = 200 * e^(kt), we can express the number of bacteria after t hours.

(b) To find when the population reaches 10,000, we set N(t) = 10,000 in the equation N(t) = 200 * e^(kt) and solve for t using the value of k obtained earlier.

For more information on bacteria culture visit: brainly.com/question/32307330

#SPJ11

Write the equation of the line which passes through the points (−5,6) and (−5,−4), in standard form, All coefficients and constants must be integers.

Answers

The equation of the line in standard form with all coefficients and constants as integers is: x + 5 = 0

To find the equation of the line passing through the points (-5, 6) and (-5, -4), we can see that both points have the same x-coordinate (-5), which means the line is vertical and parallel to the y-axis.

Since the line is vertical, the equation will have the form x = constant.

In this case, x = -5 because the line passes through the point (-5, 6) and (-5, -4).

Therefore, the equation of the line in standard form with all coefficients and constants as integers is: x + 5 = 0

Learn more about equation from

https://brainly.com/question/29174899

#SPJ11

A population has a mean of 63.3 and a standard deviation of 16.0. A sample of 35 will be taken. Find the probability that the sample mean will be between 66.6 and 68.4 a) Calculate the z scores. Give the smaller number first. (Round your answers to 2 decimals with the following format: −0.00 and -0.00) and b) Find the probability that the sample mean will be between 66.6 and 68.4.

Answers

So, the z-scores are approximately 1.34 and 2.08.

Therefore, the probability that the sample mean will be between 66.6 and 68.4 is approximately 0.4115, or 41.15% (rounded to two decimal places).

To calculate the probability that the sample mean falls between 66.6 and 68.4, we need to find the z-scores corresponding to these values and then use the z-table or a statistical calculator.

a) Calculate the z-scores:

The formula for calculating the z-score is:

z = (x - μ) / (σ / √n)

For the lower value, x = 66.6, μ = 63.3, σ = 16.0, and n = 35:

z1 = (66.6 - 63.3) / (16.0 / √35) ≈ 1.34

For the upper value, x = 68.4, μ = 63.3, σ = 16.0, and n = 35:

z2 = (68.4 - 63.3) / (16.0 / √35) ≈ 2.08

b) Find the probability:

To find the probability between these two z-scores, we need to find the area under the standard normal distribution curve.

Using a z-table or a statistical calculator, we can find the probabilities corresponding to these z-scores:

P(1.34 ≤ z ≤ 2.08) ≈ 0.4115

Learn more about probability  here

https://brainly.com/question/32117953

#SPJ11

2. Find the partial differential equation by eliminating arbitrary functions from \[ u(x, y)=f(x+2 y)+g(x-2 y)-x y \]

Answers

The partial differential equation obtained by eliminating arbitrary functions from the expression u(x, y) = f(x + 2y) + g(x - 2y) - xy is:

\[ u_{xx} - 4u_{yy} = 0 \]

To eliminate the arbitrary functions f(x + 2y) and g(x - 2y) from the expression u(x, y), we need to differentiate u with respect to x and y multiple times and substitute the resulting expressions into the original equation.

Given:

u(x, y) = f(x + 2y) + g(x - 2y) - xy

Differentiating u with respect to x:

u_x = f'(x + 2y) + g'(x - 2y) - y

Taking the second partial derivative with respect to x:

u_{xx} = f''(x + 2y) + g''(x - 2y)

Differentiating u with respect to y:

u_y = 2f'(x + 2y) - 2g'(x - 2y) - x

Taking the second partial derivative with respect to y:

u_{yy} = 4f''(x + 2y) + 4g''(x - 2y)

Substituting these expressions into the original equation u(x, y) = f(x + 2y) + g(x - 2y) - xy, we get:

f''(x + 2y) + g''(x - 2y) - 4f''(x + 2y) - 4g''(x - 2y) = 0

Simplifying the equation:

-3f''(x + 2y) - 3g''(x - 2y) = 0

Dividing through by -3:

f''(x + 2y) + g''(x - 2y) = 0

This is the obtained partial differential equation by eliminating the arbitrary functions from the expression u(x, y) = f(x + 2y) + g(x - 2y) - xy.

The partial differential equation obtained by eliminating arbitrary functions from u(x, y) = f(x + 2y) + g(x - 2y) - xy is u_{xx} - 4u_{yy} = 0.

To know more about differential equation follow the link:

https://brainly.com/question/1164377

#SPJ11

Write the equation of the line, with the given properties, in slope -intercept form. Slope =-5, through (-7,4)
Expert Answer

Answers

Answer:

4 = -5(-7) + b

4 = 35 + b

b = -31

y = -5x - 31

DUE TOMORROW!!! PLEASE HELP! THANKS!
mand Window ror in TaylorSeries (line 14) \( P E=a b s((s i n-b) / \sin ) * 100 \)

Answers

Answer:

Step-by-step explanation:

Help?

(5) 3x+5=0 will have Solutions: Two three no solution

Answers

For the given equation, The solution is -5/3 , Since it is a single solution to the equation ,so answer is one.

The given equation is 3x + 5 = 0, solve for x. The given equation is 3x + 5 = 0To solve the given equation, we need to isolate x to one side of the equation. Here, we need to isolate x, so we will subtract 5 from both sides.3x + 5 - 5 = 0 - 5. Simplify the above equation.3x = -5. Divide both sides by 3 to isolate x.3x/3 = -5/3.

Therefore, the solution of the given equation 3x + 5 = 0 is x = -5/3.This equation has only one solution, x = -5/3.Therefore, the correct option is 'one.'

Let's learn more about equation:

https://brainly.com/question/29174899

#SPJ11

During a sale a store offered 70% discount on a particular camera that was originally price at $450 what was the price of the camera after the discount

Answers

Answer:

$135

Step-by-step explanation:

Assuming that the 70% discount was applied on the original price of $450,

you multiply 0.7 (70%) to 450 and subtract that value from the original price. Basically, you are left with 30% of the original price.

Imagine taking the full price of the camera and subtracting 70% off that original price.

450 - (0.7)(450) = $135

The price of the camera after the 70% off discount is $135.

researchers are studying the movement of two different particles. the position in feet of particle a at any given time t is described by the function and the position of particle b at any given time t is described by the function . how much faster is particle a traveling than particle b at second? (round to the nearest tenth).

Answers

The time at which the speeds of the two particles are equal is t = 0.41 seconds.

The speed of Particle A is given by the absolute value of the derivative of its position function f(t):

[tex]\(v_A(t) = |f'(t)|\)[/tex]

The speed of Particle B is given by the absolute value of the derivative of its position function g(t):

[tex]\(v_B(t) = |g'(t)|\)[/tex]

Setting [tex]\(v_A(t) = v_B(t)\)[/tex], we can solve for t:

[tex]\(v_A(t) = v_B(t)\)[/tex]

[tex]\(|f'(t)| = |g'(t)|\)[/tex]

To simplify the calculations, let's find the derivatives of the position functions:

[tex]\(f'(t) = \frac{d}{dt}(\arctan(t - 1))\)[/tex]

[tex]\(g'(t) = \frac{d}{dt}(-\text{arccot}(2t))\)[/tex]

Taking the derivatives, we get:

[tex]\(f'(t) = \frac{1}{1 + (t - 1)^2}\)[/tex]

[tex]\(g'(t) = \frac{-2}{1 + 4t^2}\)[/tex]

Now we can set the absolute values of the derivatives equal to each other:

[tex]\(\frac{1}{1 + (t - 1)^2} = \frac{2}{1 + 4t^2}\)[/tex]

To solve this equation, we can cross-multiply and simplify:

[tex]\(2(1 + (t - 1)^2) = 1 + 4t^2\)[/tex]

[tex]\(2 + 2(t - 1)^2 = 1 + 4t^2\)[/tex]

[tex]\(2(t - 1)^2 = 4t^2 - 1\)[/tex]

[tex]\(2t^2 - 4t + 1 = 4t^2 - 1\)[/tex]

[tex]\(2t^2 - 4t + 1 - 4t^2 + 1 = 0\)[/tex]

[tex]\(-2t^2 - 4t + 2 = 0\)[/tex]

Dividing both sides by -2:

t² + 2t-1 = 0

Now we can solve this quadratic equation using the quadratic formula:

[tex]\(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]

In this case, a = 1, b = 2, and c = -1. Plugging in these values, we get:

[tex]\(t = \frac{-2 \pm \sqrt{2^2 - 4(1)(-1)}}{2(1)}\)[/tex]

[tex]\(t = \frac{-2 \pm \sqrt{8}}{2}\)[/tex]

[tex]\(t = \frac{-2 \pm 2\sqrt{2}}{2}\)[/tex]

[tex]\(t = -1 \pm \sqrt{2}\)[/tex]

Since we are looking for a positive value for t, we discard the negative solution:

[tex]\(t = -1 + \sqrt{2}\)[/tex]

t= 0.41

Therefore, the time at which the speeds of the two particles are equal is t = 0.41 seconds.

Learn more about Derivative here:

https://brainly.com/question/29020856

#SPJ4

evaluate ∫(9/25x^2−20x+68)dx.
Perform the substitution u= Use formula number ∫(9/25x^2−20x+68)dx= +c

Answers

The substitution rule of integration is used to evaluate the given integral.

The given integral is ∫(9/25x^2−20x+68)dx.

It can be solved as follows:

First, factor out the constant value 9/25.∫[9/25(x^2−(25/9)x)+68]dx

Use the substitution, u = x − (25/18).

Thus, the given integral can be rewritten as∫(9/25)(u^2−(25/18)u+(625/324)+68)du

= ∫(9/25)(u^2−(25/18)u+(625/324)+233/3)du

= (9/25)[(u^3/3)−(25/36)u^2+(625/324)u+(233/3)u] + C

= (9/25)[(x−25/18)^3/3−(25/36)(x−25/18)^2+(625/324)(x−25/18)+(233/3)x] + C

Therefore, ∫(9/25x^2−20x+68)dx

= (9/25)[(x−25/18)^3/3−(25/36)(x−25/18)^2+

(625/324)(x−25/18)+(233/3)x] + C

To know more about integral visit:

https://brainly.com/question/31433890

#SPJ11

Other Questions
What does the behavioral model of parent training rely on? to ensure symmetry in your final ventrodorsal radiograph of the abdomen . a right turn may be made on a solid red light after you have yielded to all traffic and pedestrians and if a no turn on red sign is not posted. Subliminal advertisement has been found to be an effective way of embedding images and messages into an advertisement that influences the unconscious minds of peopleFalse Auto workers went on strike in a town heavily reliant on the auto industry. While negotiations between the union and management were ongoing, a person intercepted and recorded a phone call between the union's president and management's chief negotiator. A state statute makes it illegal to record a phone call without the consent of the parties being recorded. The statute also make is illegal to play an illegally recorded conversation on television or radio.The person who recorded the call anonymously sent the recording to a local TV station. The TV station news anchor played the recording on air.Can the anchor who played the recording be prosecuted under the statute? etermine the total solution using: a. Classical Method b. Laplace Transform Method D ^2 y(t)+8Dy(t)+16y(t)=2t ^3 y(0)=0;Dy(0)=1 Measure the amount of offset of the 50-Ma granite body. How many kilometers has the granite body offset?1050 km rnal control for your organization, you would focus your scarce resources on setting up controls over:Multiple ChoiceCashExpense transactionsRevenue transactionsInventoryCapital assets comparison between DES and AES and what is the length of the block and give Round about one of them what do you call the hillside slums where samba was born in rio de janeiro? directions summary and reflections report your supervisor has asked that you submit a follow-up summary and reflections report to explain how you analyzed various approaches to software testing based on requirements and applied appropriate testing strategies to meet requirements while developing the mobile application for the customer. this report should be based on your experience completing project one. you must complete the following: summary describe your unit testing approach for each of the three features. to what extent was your approach aligned to the software requirements? support your claims with specific evidence. defend the overall quality of your junit tests. in other words, how do you know your junit tests were effective based on the coverage percentage? describe your experience writing the junit tests. how did you ensure that your code was technically sound? cite specific lines of code from your tests to illustrate. how did you ensure that your code was efficient? cite specific lines of code from your tests to illustrate. reflection testing techniques what were the software testing techniques that you employed in this project? describe their characteristics using specific details. what are the other software testing techniques that you did not use for this project? describe their characteristics using specific details. for each of the techniques you discussed, explain the practical uses and implications for different software development projects and situations. mindset assess the mindset that you adopted working on this project. in acting as a software tester, to what extent did you employ caution? why was it important to appreciate the complexity and interrelationships of the code you were testing? provide specific examples to illustrate your claims. assess the ways you tried to limit bias in your review of the code. on the software developer side, can you imagine that bias would be a concern if you were responsible for testing your own code? provide specific examples to illustrate your claims. finally, evaluate the importance of being disciplined in your commitment to quality as a software engineering professional. why is it important not to cut corners when it comes to writing or testing code? how do you plan to avoid technical debt as a practitioner in the field? provide specific examples to illustrate your claims. Read the excerpt below.[11] The shower starts with less than a gallon of water and circulates it at a rate of three to four gallons per minute, more flow than most conventional showers provide. The system checks water quality 20 times per second, and the most highly polluted water, such as shampoo rinse, is jettisoned and replaced.What is the definition of jettisoned in paragraph 11? A. distributed B. transferred C. discarded D. invalidated Adiabatic processes are typically described by: rising air expands and warms subsiding air expands and cools subsiding air compresses and cools subsiding air that warms, Which of the following is not a desirable attribute of financial statementsMultiple ChoicecompletenessrelevanceNone of the other alternatives are correctreliabilitysubjectivity the human field of vision is 180 degrees. the field of attention is 50-60 degrees. under stress, this field narrows to ________. Suppose we have a cylindrical tank half full of water. Your friend says 'I think it takes twice as much work to empty this tank, as it would to lift half of the water out'. Assuming that you get water out by lifting to the top of the cylinder, is she right or is she wrong? Support your conclusion with math. Chapter 10 Short Answer Question: In an agreement between a supplier and a customer, the supplier (e.g. Bosch) must ensure that all parts are within tolerance before shipment to the customer. What would be the effect on the cost of quality to the customer (e.g. Ford)? Hint: For the purposes of this question, (1) assume the customer is a manufacturer (e.g. Ford, Boeing, Apple, etc.) and the supplier provides a critical component to their product (e.g. Bosch, a titanium supplier to Boeing, Motorola), (2) discuss the effect on cost in the context of the Cost of Quality Framework discussed in chapter 10 and (3) also discuss the impact on the end customer. what is the ultimate goal of a distributed computing system and how does this fit into the ea methodology. the financial justification of ea or any ea or it related project is important to the cio and other it managers. it investment analysis is a crucial and mandatory aspect of ea. Which of the following is incorrect?A. Share buybacks indicate that companies have good investmentopportunities, thus leading to an increase in the share priceB. Companies can buy back a maximum of when a jump instruction is executed, what happens to the inputs and outputs of the rungs that are skipped? group of answer choices the inputs are not examined the inputs are not examined