Air temperature in a desert can reach 58.0°C (about 136°F). What is the speed of sound in air at that temperature?

Answers

Answer 1

In a desert, the air temperature can reach as high as 58.0°C (about 136°F). At this temperature, the speed at which sound travels through the air can be calculated using the formula v = 331.5 + 0.6T, where v represents the speed of sound in meters per second (m/s) and T is the temperature in Celsius.

By substituting the temperature value of 58.0°C into the formula, we can determine the speed of sound in the air.

Thus, T = 58°C, and the calculation becomes:

v = 331.5 + 0.6 × 58

= 331.5 + 34.8

≈ 431.5 m/s

Hence, the speed of sound in the air at a temperature of 58.0°C (about 136°F) is approximately 431.5 meters per second (m/s).

This signifies that sound would propagate through the hot desert air at that rate.

Read more about speed of sound in air

https://brainly.com/question/23917076

#SPJ11


Related Questions

what was the displacement in the case of a circular motion with a radius of r if the object goes back to where it started?

Answers

In circular motion with a radius 'r', the displacement of an object that goes back to where it started is zero.

Circular motion is the movement of an object along a circular path. In this case, if the object starts at a certain point on the circular path and eventually returns to the same point, it completes a full revolution or a complete circle.

The displacement of an object is defined as the change in its position from the initial point to the final point. Since the object ends up back at the same point where it started in circular motion, the change in position or displacement is zero.

To understand this, consider a clock with the object starting at the 12 o'clock position. As the object moves along the circular path, it goes through all the other positions on the clock (1 o'clock, 2 o'clock, and so on) until it completes one full revolution and returns to the 12 o'clock position. In this case, the net displacement from the initial 12 o'clock position to the final 12 o'clock position is zero.

Learn more about displacement here:

https://brainly.com/question/29769926

#SPJ11

draw a ray diagram of the lens system you set up in c6. describe what the image will look like (i.e magnification, upright, or inverted images, real or virtual)

Answers

The lens being employed is convex in nature. The resulting image is enlarged, virtual, and upright. A convex lens is referred regarded in this situation as a "magnifying glass." Using a converging lens or a concave mirror, actual images can be captured. The positioning of the object affects the size of the actual image.

Where the beams appear to diverge, an upright image known as a virtual image is produced. With the aid of a divergent lens or a convex mirror, a virtual image is created. When light beams from the same spot on an item reflect off a mirror and diverge or spread apart, virtual images are created. When light beams from the same spot on an item reflect off one another, real images are created.

To learn more about virtual images, click here.

https://brainly.com/question/33019110

#SPJ4

Method 2 (V2 =V,? + 2a(X-X.)) 1. Attach the small flag from the accessory box onto M. 2. Use x 70 cm and same M, as in Method 1. Measure M. M = mass of glider + mass of flag. 3. Measure the length of the flag on M using the Vernier calipers. 4. Set the photogates on GATE MODE and MEMORY ON. 5. Release M from rest at 20 cm away from photogate 1. 6. Measure time t, through photogate 1 and time ty through photogate 2. 7. Calculate V, and V2. These are the speeds of the glider (M) as it passes through photogate 1 and photogate 2 respectively. 8. Repeat steps (5) - (7) for a total of 5 runs. 9. Calculate aexp for each run and find aave-

Answers

The given instructions outline a method (Method 2) for conducting an experiment involving a glider and a small flag accessory. The method involves measuring the mass of the glider with the attached flag, measuring the length of the flag, and using photogates to measure the time it takes for the glider to pass through two points. The speeds of the glider at each point (V1 and V2) are calculated, and the experiment is repeated five times to calculate the average acceleration (aave).

In Method 2, the experiment starts by attaching the small flag onto the glider. The mass of the glider and the flag is measured, and the length of the flag is measured using Vernier calipers. Photogates are set up in GATE MODE and MEMORY ON. The glider is released from rest at a distance of 20 cm away from the first photogate, and the time it takes for the glider to pass through both photogates (t and ty) is measured.

The speeds of the glider at each photogate (V1 and V2) are then calculated using the measured times and distances. This allows for the determination of the glider's speed at different points during its motion. The experiment is repeated five times to obtain multiple data points, and for each run, the experimental acceleration (aexp) is calculated. Finally, the average acceleration (aave) is determined by finding the mean of the calculated accelerations from the five runs. This method provides a systematic approach to collect data and analyze the glider's motion, allowing for the investigation of acceleration and speed changes.

Learn more about acceleration:

https://brainly.com/question/2303856

#SPJ11

a woman sits in a dragster at the beginning of a race. as the light turns green, she steps on the accelerator. at the moment the dragster begins to accelerate what is her weight pushing into the seat relative to while the car was stationary?

Answers

When the dragster begins to accelerate, her weight pushing into the seat increases.

When the woman sits in the dragster at the beginning of the race, her weight is already exerted downward due to gravity. This weight is equal to her mass multiplied by the acceleration due to gravity (9.8 m/s^2). However, when the dragster starts to accelerate, an additional force comes into play—the force of acceleration. As the dragster speeds up, it experiences a forward acceleration, and according to Newton's second law of motion (F = ma), a force is required to cause this acceleration.

In this case, the force of acceleration is provided by the engine of the dragster. As the woman steps on the accelerator, the engine generates a force that propels the dragster forward. This force acts in the opposite direction to the woman's weight, and as a result, the net force pushing her into the seat increases. This increase in force translates into an increase in the normal force exerted by the seat on her body.

The normal force is the force exerted by a surface to support the weight of an object resting on it. In this case, the seat exerts a normal force on the woman equal in magnitude but opposite in direction to her weight. When the dragster accelerates, the normal force increases to counteract the increased force of acceleration, ensuring that the woman remains in contact with the seat.

Learn more about dragster

brainly.com/question/33541763

#SPJ11

A rock band playing an outdoor concert produces sound at 120 db 5. 0 m away from their single working loudspeaker. what is the sound intensity level 35 m from the speaker?

Answers

The sound intensity level 35 m away from the speaker is approximately 102 dB.

Sound intensity level is a logarithmic measure of the sound intensity relative to a reference level. It is given by the equation:

Sound Intensity Level (dB) = 10 * log10(I / I₀),

where I is the sound intensity and I₀ is the reference intensity level, which is typically set at 10^(-12) W/m².

In this case, the sound intensity level at 5 m from the speaker is given as 120 dB. We can calculate the sound intensity level at 35 m using the inverse square law for sound intensity, which states that sound intensity decreases with the square of the distance.

Using the inverse square law, we can determine the sound intensity at 35 m by dividing the sound intensity at 5 m by (35 m / 5 m)^2, which simplifies to 1/49. Therefore, the sound intensity at 35 m is 1/49 times the sound intensity at 5 m.

Substituting this value into the sound intensity level formula, we find:

Sound Intensity Level (35 m) = 10 * log10((1/49) * I / I₀) ≈ 102 dB.

Hence, the sound intensity level 35 m away from the speaker is approximately 102 dB.

Learn more about distance;

https://brainly.com/question/13034462

#SPJ11

An oscillating LC circuit consisting of a 2.4 nF capacitor and a 2.0 mH coil has a maximum voltage of 5.0 V. (a) What is the maximum charge on the capacitor? С. (b) What is the maximum current through the circuit? A (c) What is the maximum energy stored in the magnetic field of the coil?

Answers

An oscillating LC circuit consisting of a 2.4 nF capacitor and a 2.0 mH coil has a maximum voltage of 5.0 V. The maximum energy stored in the magnetic field of the coil is approximately 10.78 millijoules (mJ).

To solve the given questions, we can use the formulas related to the LC circuit: (a) The maximum charge (Q) on the capacitor can be calculated using the formula: Q = C * V where C is the capacitance and V is the maximum voltage. Given:

C = 2.4 nF = 2.4 × 10^(-9) F

V = 5.0 V

Substituting the values into the formula:

Q = (2.4 × 10^(-9)) * 5.0

≈ 1.2 × 10^(-8) C

Therefore, the maximum charge on the capacitor is approximately 1.2 × 10^(-8) C.

(b) The maximum current (I) through the circuit can be calculated using the formula:

I = (1 / √(LC)) * V

Given:

C = 2.4 nF = 2.4 × 10^(-9) F

L = 2.0 mH = 2.0 × 10^(-3) H

V = 5.0 V

Substituting the values into the formula:

I = (1 / √((2.4 × 10^(-9)) * (2.0 × 10^(-3)))) * 5.0

≈ 3.28 A

Therefore, the maximum current through the circuit is approximately 3.28 A.

(c) The maximum energy stored in the magnetic field of the coil can be calculated using the formula:

E = (1/2) * L * I^2

Given:

L = 2.0 mH = 2.0 × 10^(-3) H

I = 3.28 A

Substituting the values into the formula:

E = (1/2) * (2.0 × 10^(-3)) * (3.28^2)

≈ 10.78 mJ

Therefore, the maximum energy stored in the magnetic field of the coil is approximately 10.78 millijoules (mJ).

To learn more about, voltage, click here, https://brainly.com/question/13521443

#SPJ11

the momentum of an object is determined to be 7.2 ×× 10-3 kg⋅m/s kg⋅m/s . express this quantity as provided or use any equivalent unit. (note: 1 kg kg

Answers

The momentum of the object is 7.2 × 10-3 kg⋅m/s, this quantity in an equivalent unit, that 1 kg⋅ m/s is equal to 1 N⋅s (Newton-second).

This means that the object possesses a certain amount of inertia and its motion can be influenced by external forces.

Momentum is a fundamental concept in physics and is defined as the product of an object's mass and its velocity. It is a vector quantity and is expressed in units of kilogram-meter per second (kg⋅m/s). In this case, the momentum of the object is given as 7.2 × 10-3 kg⋅m/s.

To express this quantity in an equivalent unit, we can use the fact that 1 kg⋅m/s is equal to 1 N⋅s (Newton-second). The Newton (N) is the unit of force in the International System of Units (SI), and a Newton-second is the unit of momentum. Therefore, we can express the momentum as 7.2 × 10-3 N⋅s.

The momentum of the object is 7.2 × 10-3 kg⋅m/s, which is equivalent to 7.2 × 10-3 N⋅s. This means that the object possesses a certain amount of inertia and its motion can be influenced by external forces.

Understanding momentum is essential in analyzing the behavior of objects in motion and in various fields of physics, such as mechanics, collisions, and conservation laws.

To know more about momentum ,visit:

https://brainly.com/question/18798405

#SPJ11

Which 3 pieces of the following equipment might be used in the optic experiments carried to develop microlasers?

Answers

The three pieces of equipment that might be used in the optic experiments carried to develop microlasers are (1) laser source, (2) optical fibers, and (3) lenses.

1. Laser Source: A laser source is a crucial piece of equipment in optic experiments for developing microlasers. It provides a coherent and intense beam of light that is essential for the operation of microlasers. The laser source emits light of a specific wavelength, which can be tailored to suit the requirements of the microlaser design.

2. Optical Fibers: Optical fibers play a vital role in guiding and transmitting light in optic experiments. They are used to deliver the laser beam from the source to the microlaser setup. Optical fibers offer low loss and high transmission efficiency, ensuring that the light reaches the desired location with minimal loss and distortion.

3. Lenses: Lenses are used to focus and manipulate light in optic experiments. They can be used to shape the laser beam, control its divergence, or focus it onto specific regions within the microlaser setup. Lenses enable precise control over the light path and help optimize the performance of microlasers.

These three pieces of equipment, namely the laser source, optical fibers, and lenses, form the foundation for conducting optic experiments aimed at developing microlasers. Each component plays a unique role in generating, guiding, and manipulating light, ultimately contributing to the successful development and characterization of microlasers.

Learn more about optics experiment

#SPJ11.

brainly.com/question/29546921

A plane lands on a runway with a speed of 105 m/s, moving east, and it slows to a stop in 15.0 s. What is the magnitude (in m/s2) and direction of the plane's average acceleration during this time interval

Answers

The magnitude of the plane's average acceleration during this time interval is 7 m/s², and its direction is west.

To determine the magnitude of average acceleration, we can use the formula:

Average Acceleration = (Change in Velocity) / (Time Interval)

The change in velocity can be calculated by subtracting the final velocity from the initial velocity:

Change in Velocity = Final Velocity - Initial Velocity

Change in Velocity = 0 m/s - 105 m/s = -105 m/s

Since the plane is slowing down, the change in velocity is negative. Therefore, the magnitude of the average acceleration is given by:

Magnitude of Average Acceleration = |-105 m/s| / 15.0 s = 7 m/s²

The negative sign indicates that the plane's velocity is decreasing, and its direction of motion is opposite to its initial direction. Since the plane was initially moving east, the direction of the average acceleration is west.

Thus, the magnitude of the plane's average acceleration during this time interval is 7 m/s², and its direction is west.

Learn more about Magnitude

brainly.com/question/31022175?

#SPJ11

A uniform electric field of magnitude 640 N/C exists between two parallel plates that are 4.00 cm apart. A proton is released from rest at the positive plate at the same instant an electron is released from rest at the negative plate. (b) What If? Repeat part (a) for a sodium ion (Na⁺) and a chloride ion Cl⁻) .

Answers

The distance from the positive plate at which the proton and electron pass each other is 0.02 meters. This result is obtained by considering their motions in the uniform electric field. Both the proton and electron experience forces due to the electric field, but in opposite directions because of their opposite charges. The forces on the proton and electron have equal magnitudes, which implies that their accelerations are also equal.

Since the particles are released from rest at the same instant, their initial velocities are zero. With equal accelerations, they will reach the midpoint between the plates simultaneously. Thus, the distance from the positive plate where they pass each other is half the distance between the plates.

In this case, the distance between the plates is given as 4.00 cm or 0.04 meters. Therefore, the distance from the positive plate where the proton and electron pass each other is calculated as (1/2) * 0.04 meters, resulting in a value of 0.02 meters.

Hence, the proton and electron will meet at a distance of 0.02 meters from the positive plate.

To learn more about, Electric Field, click here:

brainly.com/question/26446532

#SPJ4

vector has a magnitude of 17.0 units, vector has a magnitude of 13.0 units, and ab has a value of 14.0. what is the angle between the directions of a and b?

Answers

The angle between the directions of a and b is 43.95° (to two decimal places).To determine the angle between the directions of a and b, the dot product of the two vectors a and b must be found.

The formula for the dot product of two vectors a and b is given as follows;

a·b = |a| |b| cosθ Where,|a| is the magnitude of vector a|b| is the magnitude of vector bθ is the angle between vectors a and b Using the given values in the question, we can find the angle between the directions of a and b;

a·b = |a| |b| cosθcosθ

= (a·b) / (|a| |b|)cosθ

= (14.0) / (17.0)(13.0)cosθ

= 0.72θ

= cos⁻¹(0.72)θ = 43.95°

Therefore, the angle between the directions of a and b is 43.95° (to two decimal places).

To know more about directions visit:

https://brainly.com/question/32262214

#SPJ11

The angle between the directions of vectors a and b is approximately 86.8 degrees.

To find the angle between the directions of vectors a and b, we can use the dot product formula:

a · b = |a| |b| cos(θ),

where a · b is the dot product of vectors a and b, |a| and |b| are the magnitudes of vectors a and b, and θ is the angle between the two vectors.

Given:

|a| = 17.0 units,

|b| = 13.0 units,

a · b = 14.0.

Rearranging the formula, we have:

cos(θ) = (a · b) / (|a| |b|).

Substituting the given values:

cos(θ) = 14.0 / (17.0 * 13.0).

Calculating the value:

cos(θ) ≈ 0.06243.

To find the angle θ, we can take the inverse cosine (arccos) of the calculated value:

θ ≈ arccos(0.06243).

Using a calculator or trigonometric tables, we find:

θ ≈ 86.8 degrees (rounded to one decimal place).

Therefore, the angle between the directions of vectors a and b is approximately 86.8 degrees.

To know more about vectors, visit:

https://brainly.com/question/24256726

#SPJ11

what is the displacement current density jd in the air space between the plates? express your answer with the appropriate units.

Answers

The displacement current density (jd) in the air space between the plates is given by:jd = ε₀ (dV/dt), where ε₀ is the permittivity of free space, V is the voltage across the plates, and t is time.

So, if the voltage across the plates is changing with time, then there will be a displacement current between the plates. Hence, the displacement current density is directly proportional to the rate of change of voltage or electric field in a capacitor.The units of displacement current density can be derived from the expression for electric flux density, which is D = εE, where D is the electric flux density, ε is the permittivity of the medium, and E is the electric field strength. The unit of electric flux density is coulombs per square meter (C/m²), the unit of permittivity is farads per meter (F/m), and the unit of electric field strength is volts per meter (V/m).Therefore, the unit of displacement current density jd = ε₀ (dV/dt) will be coulombs per square meter per second (C/m²/s).

Learn more about plates brainly.com/question/2279466

#SPJ11

two satellites at an altitude of 1200 km are separated by 27 km . part a if they broadcast 3.3 cm microwaves, what minimum receiving dish diameter is needed to resolve (by rayleigh's criterion) the two transmissions?

Answers

The minimum receiving dish diameter needed to resolve the two transmissions by Rayleigh's criterion is approximately 1.804 meters.

Rayleigh's criterion states that in order to resolve two point sources, the angular separation between them should be such that the first minimum of one diffraction pattern coincides with the central maximum of the other diffraction pattern.

The angular resolution (θ) can be determined using the formula:

θ = 1.22 * λ / D

where θ is the angular resolution, λ is the wavelength of the microwaves, and D is the diameter of the receiving dish.

In this case, the separation between the satellites is not directly relevant to the calculation of the angular resolution.

Given that the microwaves have a wavelength of 3.3 cm (or 0.033 m), we can substitute this value into the formula:

θ = 1.22 * (0.033 m) / D

To resolve the two transmissions, we want the angular resolution to be smaller than the angular separation between the satellites. Let's assume the angular separation is α.

Therefore, we can set up the following inequality:

θ < α

1.22 * (0.033 m) / D < α

Solving for D:

D > 1.22 * (0.033 m) / α

Since we want the minimum receiving dish diameter, we can use the approximation:

D ≈ 1.22 * (0.033 m) / α

Substituting the given values of the wavelength and the satellite separation, we have:

D ≈ 1.22 * (0.033 m) / (27 km / 1200 km)

D ≈ 1.22 * (0.033 m) / (0.0225)

D ≈ 1.804 m

Learn more about Rayleigh's criterion here :-

https://brainly.com/question/20113743

#SPJ11

Review. A 1.00-g cork ball with charge 2.00σC is suspended vertically on a 0.500 -m-long light string in the presence of a uniform, downward-directed electric field of magnitude E = 1.00 × 10⁵ N/C. If the ball is displaced slightly from the vertical, it oscillates like a simple pendulum. (a) Determine the period of this oscillation.

Answers

Without the value of σ, we cannot determine the period of oscillation of the cork ball. To determine the period of the oscillation of the cork ball, we can use the formula for the period of a simple pendulum, which is given by:

T = 2π√(L/g)

where T is the period, L is the length of the string, and g is the acceleration due to gravity.

In this case, we are given the length of the string (L = 0.500 m). However, we need to find the value of g in order to calculate the period.

Since the cork ball is suspended vertically in the presence of a downward-directed electric field, the gravitational force on the ball is balanced by the electrical force. We can equate these two forces to find the value of g:

mg = qE

where m is the mass of the cork ball, g is the acceleration due to gravity, q is the charge of the ball, and E is the magnitude of the electric field.

In this case, we are given the mass of the cork ball (m = 1.00 g = 0.001 kg), the charge of the ball (q = 2.00σC), and the magnitude of the electric field (E = 1.00 × 10⁵ N/C).

Substituting these values into the equation, we have:

0.001 kg * g = 2.00σC * (1.00 × 10⁵ N/C)

Simplifying, we have:

g = (2.00σC * (1.00 × 10⁵ N/C)) / 0.001 kg

To determine the value of g, we need to know the value of σ. Unfortunately, the value of σ is not provided in the question, so we cannot proceed with the calculation.

Therefore, without the value of σ, we cannot determine the period of oscillation of the cork ball.

For more information on oscillation visit:

brainly.com/question/30111348

#SPJ11

a battery can provide a current of 4 a at 1.60 v for 4 hours how much energy in kg is produced

Answers

The energy produced by the battery is 92160 J. To calculate the energy produced by the battery, we need to use the formula.

Energy (E) = Power (P) × Time (t)

The power (P) can be calculated using the formula:

Power (P) = Voltage (V) × Current (I)

Given that the battery can provide a current of 4 A at 1.60 V, we can calculate the power:

Power (P) = 1.60 V × 4 A = 6.40 W

Next, we need to calculate the time (t). It is given that the battery can provide this current for 4 hours, so:

Time (t) = 4 hours = 4 × 60 minutes = 240 minutes

Now, we can calculate the energy (E):

Energy (E) = Power (P) × Time (t) = 6.40 W × 240 minutes

Since energy is typically measured in joules (J), we need to convert minutes to seconds:

Energy (E) = 6.40 W × 240 minutes × 60 seconds/minute = 92160 J

To convert joules to kilograms (kg), we need to use the conversion factor:

1 J = 1 kg·m²/s²

Therefore, the energy produced by the battery is:

Energy (E) = 92160 J = 92160 kg·m²/s²

Learn more about current here:

https://brainly.com/question/29766827

#SPJ11

calculate the total potential energy, in btu, of an object that is 45 ft below a datum level at a location where g = 31.7 ft/s2, and which has a mass of 100 lbm.

Answers

An object that is 45 ft below a datum level at a location where g = 31.7 ft/s2, and which has a mass of 100 lbm.The total potential energy of the object is approximately 138.072 BTU.

To calculate the total potential energy of an object, you can use the formula:

Potential Energy = mass ×gravity × height

Given:

Height (h) = 45 ft

Gravity (g) = 31.7 ft/s^2

Mass (m) = 100 lbm

Let's calculate the potential energy:

Potential Energy = mass × gravity × height

Potential Energy = (100 lbm) × (31.7 ft/s^2) × (45 ft)

To ensure consistent units, we can convert pounds mass (lbm) to slugs (lbm/s^2) since 1 slug is equal to 1 lbm:

1 slug = 1 lbm × (1 ft/s^2) / (1 ft/s^2) = 1 lbm / 32.17 ft/s^2

Potential Energy = (100 lbm / 32.17 ft/s^2) × (31.7 ft/s^2) × (45 ft)

Potential Energy = (100 lbm / 32.17) × (31.7) × (45) ft^2/s^2

To convert the potential energy to BTU (British Thermal Units), we can use the conversion factor:

1 BTU = 778.169262 ft⋅lb_f

Potential Energy (in BTU) = (100 lbm / 32.17) × (31.7) × (45) ft^2/s^2 ×(1 BTU / 778.169262 ft⋅lb_f)

Calculating the result:

Potential Energy (in BTU) ≈ 138.072 BTU

Therefore, the total potential energy of the object is approximately 138.072 BTU.

To learn more about gravity visit: https://brainly.com/question/557206

#SPJ11

the plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. both the plug and the sleeve are 50 mm long. the plug is made from a material for which e

Answers

The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both are 50 mm long. The axial pressure p that must be applied to the top of the plug to cause it to contact the sides of the sleeve is -106 MPa * mm².

The plug must be compressed downward by -1.5 mm.

To determine the axial pressure and compression of the plug, we can use the theory of elasticity and the equations related to stress and strain.

First, let's calculate the radial strain ε[tex]_r[/tex] of the plug using the formula:

ε[tex]_r[/tex] = Δd / d

where Δd is the change in diameter and d is the original diameter.

Δd = (32 mm - 30 mm) = 2 mm

d = 30 mm

ε[tex]_r[/tex] = 2 mm / 30 mm = 0.0667

Next, we can calculate the axial strain ε[tex]_a[/tex] using Poisson's ratio (ν) and the radial strain:

ε[tex]_a[/tex] = -ν * ε_r

ν = 0.45

ε[tex]_a[/tex] = -0.45 * 0.0667 = -0.03

Now, let's calculate the axial stress σ[tex]_a[/tex] using Hooke's Law:

σ[tex]_a[/tex] = E * ε[tex]_a[/tex]

E = 5 MPa

σ[tex]_a[/tex] = 5 MPa * (-0.03) = -0.15 MPa

The negative sign indicates that the stress is compressive.

To find the axial pressure (p) required to cause the plug to contact the sides of the sleeve, we can use the equation:

p = σ[tex]_a[/tex] * A

where A is the cross-sectional area of the plug.

A = π * (d/2)²

A = π * (30 mm / 2)²

A = 706.86 mm²

p = -0.15 MPa * 706.86 mm²

p = -106 MPa * mm²

Lastly, let's calculate the compression distance (ΔL) using the equation:

ΔL = -ε[tex]_a[/tex]* L

L = 50 mm

ΔL = -0.03 * 50 mm

ΔL = -1.5 mm

The negative sign indicates that the plug is compressed downward.

Therefore, the axial pressure required to cause the plug to contact the sides of the sleeve is approximately -106 MPa * mm² , and the plug must be compressed downward by approximately -1.5 mm.

To know more about axial pressure here

https://brainly.com/question/29379801

#SPJ4

The complete question is:

The plug has a diameter of 30 mm and fits within a rigid sleeve having an inner diameter of 32 mm. Both are 50 mm long. Determine the axial pressure p that must be applied to the top of the plug to cause it to contact the sides of the sleeve. Also, how far must the plug be compressed downward in order to do this? The plug is made from a material for which E=5 MPa and v=0.45.

tensile tesing is not appropriate for hard brittel materials such as ceramics. what is the test commonly used to determine the strength properties of such materials?

Answers

The flexural strength test, also known as the three-point bending test, is commonly used to determine the strength properties of hard brittle materials such as ceramics.

Tensile testing is not suitable for hard brittle materials like ceramics due to their inherent brittleness and low tensile strength. Instead, the flexural strength test is commonly employed. This test involves subjecting a ceramic specimen to a bending load, typically using a three-point bending setup.

The specimen is supported on two points while a load is applied at the center, causing it to bend. By measuring the applied load and the resulting deformation, the flexural strength, modulus of rupture, and fracture behavior of the ceramic material can be determined.

This test better simulates the real-world conditions and failure modes experienced by brittle materials, providing more relevant strength properties.

To know more about brittleness visit-

brainly.com/question/28990522

#SPJ11

a 3.50 gram bullet is fired from a rifle at a horizontal speed of 200 m/s. if the rifle has a weight of 25.0 n and is initially motionless, determine the recoil speed of the rifle.

Answers

Recoil speed of the rifle = 0.282 m/s in the opposite direction of the bullet's velocity.

The momentum of an object is the product of its mass and its velocity. When a rifle fires a bullet, the bullet receives momentum in one direction, and the rifle receives an equal amount of momentum in the opposite direction. The momentum of the bullet is equal to the momentum of the rifle but in the opposite direction. To determine the recoil speed of the rifle, we can use the law of conservation of momentum, which states that the total momentum of a system remains constant if there is no external force acting on it. So, the momentum of the rifle and bullet system before the bullet is fired is zero, since the rifle is initially motionless.

After the bullet is fired, the momentum of the bullet is given by: the momentum of bullet = mass of bullet x velocity of bullet = 3.50 g x 200 m/s = 700 g m/s = 0.7 kg m/sThe momentum of the rifle is equal in magnitude but opposite in direction, so: the momentum of rifle = -0.7 kg m/sNow, we can use the mass of the rifle to calculate its velocity: the momentum of rifle = mass of rifle x velocity of rifle = momentum of rifle/mass of rifle= (-0.7 kg m/s) / (25.0 N / 9.81 m/s²) = -0.282 m/sThe negative sign indicates that the rifle moves in the opposite direction of the bullet. So, the recoil speed of the rifle is 0.282 m/s in the opposite direction of the bullet's velocity.

Learn more about Speed:

https://brainly.com/question/13943409

#SPJ11

Ref [1] Q1. What is the power factor for resistive load and why? Q2. Draw the symbol of the wattmeter showing the coils present in the wattmeter. Ref [1] Ref [2] Q3. Name the two types of coils inside the wattmeter. Q4. The dynamometer wattmeter can be used to measure Power Ref [3]

Answers

Q1. The power factor for a resistive load is 1 (unity). The reason for this is that resistive loads, such as incandescent lamps or electric heaters, have a purely resistive impedance, which means the current and voltage waveforms are in phase with each other. In other words, the voltage across the load and the current flowing through the load rise and fall together, reaching their peak values at the same time. As a result, the power factor is 1 because the real power (watts) and the apparent power (volt-amperes) are equal in a resistive load.

Q2. The symbol of a wattmeter typically consists of a circle with two coils present inside it. One coil represents the current coil (also known as the current transformer) and is denoted by a solid line. The other coil represents the potential coil (also known as the voltage transformer) and is denoted by a dashed line. The coils are positioned such that the magnetic fields generated by the current and voltage passing through them interact, allowing the wattmeter to measure power accurately.

Q3. The two types of coils inside a wattmeter are the current coil (current transformer) and the potential coil (voltage transformer). The current coil is responsible for measuring the current flowing through the load, while the potential coil measures the voltage across the load. These coils play a crucial role in the operation of the wattmeter by creating the necessary magnetic fields for power measurement.

Q4. The dynamometer wattmeter can indeed be used to measure power. It is a type of wattmeter that utilizes both current and voltage coils. The current coil is connected in series with the load, while the potential coil is connected in parallel across the load. By measuring the magnetic field interaction between these coils, the dynamometer wattmeter can accurately determine the power consumed by the load. Its design allows it to measure both AC and DC power, making it a versatile instrument for power measurement in various applications.

Learn more about Electric heater:

https://brainly.com/question/15629252

#SPJ11

what are the possible angles between two unit vectors u and v if ku × vk = 1 2 ?

Answers

The possible angles between the two unit vectors u and v are 30 degrees.

To find the possible angles between two unit vectors u and v when the magnitude of their cross product ||u × v|| is equal to 1/2, we can use the property that the magnitude of the cross product is given by ||u × v|| = ||u|| ||v|| sin(θ), where θ is the angle between the two vectors.

Given that ||u × v|| = 1/2, we have 1/2 = ||u|| ||v|| sin(θ).

Since u and v are unit vectors, ||u|| = ||v|| = 1, and the equation simplifies to 1/2 = sin(θ).

To find the possible angles, we need to solve for θ. Taking the inverse sine (sin^(-1)) of both sides of the equation, we have:

θ = sin^(-1)(1/2)

we find that sin^(-1)(1/2) = 30 degrees.

Therefore, the possible angles between the two unit vectors u and v are 30 degrees.

To learn more about cross product visit: https://brainly.com/question/14542172

#SPJ11

The nucleus of an atom is on the order of 10⁻¹⁴ m in diameter. For an electron to be confined to a nucleus, its de Broglie wavelength would have to be on this order of magnitude or smaller. (c) Would you expect to find an electron in a nucleus? Explain.

Answers

No, we would not expect to find an electron in a nucleus. According to the Heisenberg uncertainty principle, it is not possible to precisely determine both the position and momentum of a particle simultaneously.

The de Broglie wavelength is inversely proportional to the momentum of a particle. Therefore, for an electron to have a de Broglie wavelength on the order of magnitude of the nucleus, its momentum would have to be extremely large. However, the energy required for an electron to be confined within the nucleus would be much larger than the energy available, so the electron cannot be confined to the nucleus.

More on de Broglie wavelength: https://brainly.com/question/32413015

#SPJ11

Q|C S A simple harmonic oscillator of amplitude A has a total energy E. Determine(b) the potential energy when the position is one-third the amplitude.

Answers

The potential energy when the position is one-third the amplitude of a simple harmonic oscillator of amplitude A is (7/18)E.

The potential energy of a simple harmonic oscillator can be determined using the equation:

E = KE + PE

Where E is the total energy, KE is the kinetic energy, and PE is the potential energy.

In a simple harmonic oscillator, the total energy remains constant throughout the motion. At any given position, the total energy is equal to the sum of the kinetic energy and potential energy.

Given that the amplitude of the oscillator is A, and the position is one-third the amplitude, the position is x = (1/3)A.

To find the potential energy at this position, we need to calculate the kinetic energy at this position and subtract it from the total energy.

First, let's determine the kinetic energy. The kinetic energy of a simple harmonic oscillator is given by the equation:

KE = (1/2) m ω^2 A^2

Where m is the mass of the oscillator, and ω is the angular frequency.

Now, let's calculate the potential energy. Since the total energy is constant, we can subtract the kinetic energy from the total energy to obtain the potential energy:

PE = E - KE

Finally, we can summarize the answer as follows:

The potential energy when the position is one-third the amplitude of a simple harmonic oscillator of amplitude A is (7/18)E.

Let x = (1/3)A be the position of the oscillator.

Total energy, E = KE + PE

The kinetic energy is given by:

KE = (1/2) m ω^2 A^2

Substituting the given position into the equation for the kinetic energy, we get:

KE = (1/2) m ω^2 [(1/3)A]^2

= (1/18) m ω^2 A^2

Now, we can calculate the potential energy:

PE = E - KE

= E - (1/18) m ω^2 A^2

Simplifying further, we find:

PE = (17/18)E - (1/18) m ω^2 A^2

The potential energy when the position is one-third the amplitude of a simple harmonic oscillator of amplitude A is given by (17/18)E - (1/18) m ω^2 A^2.

To know more about energy ,visit:

https://brainly.com/question/13881533

#SPJ11

Consider an infinitely long hollow conducting cylinder of radius a and charge lambda per unit length surrounded by an outer hollow conducting cylinder of radius b with charge negative lambda per unit length. Find V(r) and B(r), where r is the radial distance from the axis.

Answers

The electric potential, V(r), is given by V(r) = 0 for r ≤ a and V(r) = -λ/ε₀ * ln(r/a) for a ≤ r ≤ b, where ε₀ is the vacuum permittivity.

The magnetic field, B(r), is zero inside the conducting cylinder and outside the outer cylinder. Within the region between the two cylinders, the magnetic field is given by B(r) = μ₀ * λ / (2πr), where μ₀ is the vacuum permeability.

To determine the electric potential, V(r), we consider the two regions: inside the inner cylinder (r ≤ a) and between the two cylinders (a ≤ r ≤ b).Inside the inner cylinder (r ≤ a), the electric field is zero, and hence the electric potential is constant at V(r) = 0.Between the two cylinders (a ≤ r ≤ b), the electric field is non-zero and can be found using Gauss's law. It is given by E(r) = λ / (2πε₀r), where ε₀ is the vacuum permittivity. Integrating this electric field with respect to r yields the electric potential V(r) = -λ/ε₀ * ln(r/a).For the magnetic field, B(r), it is zero inside the conducting cylinder and outside the outer cylinder since there are no currents present. Within the region between the two cylinders (a ≤ r ≤ b), the magnetic field is given by Ampere's law as B(r) = μ₀ * λ / (2πr), where μ₀ is the vacuum permeability.Therefore, the electric potential, V(r), is V(r) = 0 for r ≤ a and V(r) = -λ/ε₀ * ln(r/a) for a ≤ r ≤ b. The magnetic field, B(r), is zero inside and outside the cylinders, and B(r) = μ₀ * λ / (2πr) for a ≤ r ≤ b.

For more such questions on electric potential, click on:

https://brainly.com/question/14306881

#SPJ8

In which of the following states does water exist? O all of the mentioned saturated liquid state Osaturated vapor state O saturated solid state

Answers

Water exists in all of the mentioned states, i.e., saturated liquid state, saturated vapor state, and saturated solid state.

What is water?

Water is a colorless, tasteless, and odorless chemical compound. It is a chemical compound of oxygen and hydrogen with the chemical formula H₂O. Water has three states of matter: solid, liquid, and gas. The state of water can be altered by changing the temperature or pressure. The change in pressure or temperature affects the intermolecular bonds and kinetic energy of water molecules.

What is the saturated liquid state?

Saturated liquid state is the state in which the water is completely liquid, but it is in a condition where the addition of any energy, such as heat, will result in the water changing into a vapor state. The pressure and temperature of a saturated liquid state are such that the addition of any energy, such as heat, will result in the water changing into a vapor state.

What is the saturated vapor state?

Saturated vapor state is the state in which water exists when it is completed in a gaseous form. In this state, water is in equilibrium with its liquid form. At this state, the vapor pressure of the liquid is equal to the pressure of the environment. Any change in the temperature or pressure will cause water to change into another state.

What is the saturated solid state?

Saturated solid state is the state in which water exists as ice. In this state, water molecules have the lowest kinetic energy compared to the other two states. At this stage, the pressure and temperature are such that water molecules are bound together by hydrogen bonds forming a rigid structure. Any change in temperature or pressure will cause water to change its state, for example, it will turn into a liquid.

Therefore the correct option is a saturated liquid state, saturated vapor state, and saturated solid state

Learn more about states of water :https://brainly.com/question/17616735

#SPJ11

use the formula to calculate the relativistic length of a 100 m long spaceship travelling at 3000 m s-1.

Answers

The relativistic length of a 100 m long spaceship traveling at 3000 m/s is approximately 99.9995 m.

The relativistic length contraction formula is given by: L=L0√(1-v^2/c^2)Where L is the contracted length.L0 is the original length. v is the velocity of the object. c is the speed of light. The formula to calculate the relativistic length of a 100 m long spaceship traveling at 3000 m/s is: L=L0√(1-v^2/c^2)Given, L0 = 100 mV = 3000 m/sc = 3 × 10^8 m/sSubstituting the values in the formula:L = 100 × √(1-(3000)^2/(3 × 10^8)^2)L = 100 × √(1 - 0.00001)L = 100 × √0.99999L = 100 × 0.999995L ≈ 99.9995 m.

Learn more about length:

https://brainly.com/question/30582409

#SPJ11

A circular probe with a diameter of 15 mm and 3 MHz compression wave is used in ultrasonic testing of the 35 mm thick steel plate. What is the amplitude of the back wall echo as a fraction of the transmitted pulse? Assume that the attenuation coefficient for steel is 0.04 nepers/mm and that the velocity is 5.96 mm/μs

Answers

The amplitude of the back wall echo as a fraction of the transmitted pulse is approximately 0.2143 * exp(-5.6).

To calculate the amplitude of the back wall echo as a fraction of the transmitted pulse, we can use the following formula:

Amplitude of back wall echo = (Transmitted pulse amplitude) * exp(-2 * attenuation coefficient * distance)

Given:

Diameter of the circular probe = 15 mm

Frequency of the compression wave = 3 MHz

Thickness of the steel plate = 35 mm

Attenuation coefficient for steel = 0.04 nepers/mm

Velocity of the wave in steel = 5.96 mm/μs

First, we need to calculate the distance traveled by the ultrasound wave through the steel plate. Since the wave travels twice the thickness of the plate (to the back wall and back), the distance is:

Distance = 2 * Thickness = 2 * 35 mm = 70 mm

Next, we can calculate the transmitted pulse amplitude as follows:

Transmitted pulse amplitude = (Diameter of the probe) / (Distance)

Transmitted pulse amplitude = 15 mm / 70 mm = 0.2143

Amplitude of back wall echo = (Transmitted pulse amplitude) * exp(-2 * attenuation coefficient * distance)

Amplitude of back wall echo = 0.2143 * exp(-2 * 0.04 nepers/mm * 70 mm)

Amplitude of back wall echo ≈ 0.2143 * exp(-5.6)

To learn more about amplitude: https://brainly.com/question/9525052

#SPJ11

write an expression relating the average acceleration, δp , and δt for an object of constant inertia m . express your answer in terms of the variables δp , δt , and m .

Answers

The expression relating the average acceleration, δp, and δt for an object of constant inertia, m, can be expressed as follows:

δp/δt = m*a

The above equation is derived from the equation of motion that relates an object's position, velocity, and acceleration.

According to the equation of motion, the average acceleration of an object is given as the ratio of the change in momentum of the object (δp) to the time taken for the change to occur (δt).

This average acceleration is directly proportional to the force applied to the object and inversely proportional to its mass, according to Newton's Second Law of Motion.

The above equation can be rearranged to obtain the expression for acceleration as follows:

a = δp/(m*δt)

Therefore, the expression relating the average acceleration, δp, and δt for an object of constant inertia, m, can be written as:

a = δp/(m*δt)

To know more about average acceleration, visit:

https://brainly.com/question/30459933

#SPJ11

For both the permittivity and electric susceptibility the electric susceptibility has dimension but the permittivity is dimensionless O both the permittivity and electric susceptibility are dimensionless ( O the permittivity has dimension but the electric susceptibility is dimensionless both the permittivity and electric susceptibility are with dimensions

Answers

The statement that both the permittivity and electric susceptibility have dimensions is correct.

The permittivity and electric susceptibility are two fundamental concepts in electromagnetism that describe the response of a material to an electric field. Here's a step-by-step explanation:

1. Permittivity (ε):

  The permittivity of a material represents its ability to store electrical energy in an electric field. It is denoted by the symbol ε. Permittivity has dimensions and is typically measured in units of farads per meter (F/m) or farads per centimeter (F/cm). The SI unit of permittivity is the farad per meter (F/m).

2. Electric Susceptibility (χe):

  The electric susceptibility measures the degree to which a material can become polarized in response to an applied electric field. It is denoted by the symbol χe. Electric susceptibility is dimensionless and does not have any physical units.

Therefore, the statement that both the permittivity and electric susceptibility have dimensions is correct. The permittivity has dimensions and is measured in units of farads per meter, while the electric susceptibility is dimensionless.

To know more about permittivity click here:

https://brainly.com/question/17025955

#SPJ11

In a gravitationally bound system of two unequal masses the center of mass is located ?closer to the higher, mass at the center of one of the masses ,exactly in between the two mass,closer to the lower mass

Answers

In a gravitationally bound system of two unequal masses, the center of mass is located closer to the higher mass.

The center of mass of a system is the point at which the system's mass can be considered to be concentrated. In a two-body system with unequal masses, the center of mass is closer to the more massive object.

The center of mass is determined by considering the masses and their distances from a reference point. In this case, since the masses are unequal, the more massive object has a greater influence on the center of mass.

The center of mass can be calculated using the formula:

Xcm = (m1x1 + m2x2) / (m1 + m2)

Where m1 and m2 are the masses of the objects, and x1 and x2 are their respective positions.

Since the mass of the more massive object is greater, its contribution to the center of mass calculation is larger. As a result, the center of mass is closer to the higher mass.

Therefore, in a gravitationally bound system of two unequal masses, the center of mass is located closer to the higher mass.

Learn more about mass here:

https://brainly.com/question/15578432

#SPJ11

Other Questions
ammonia is produced using the haber process. calculate the mass of ammonia produced when 35.0g of nitrogen reacts with 12.5 g of hydrogen willow creek company purchased and installed carpet in its new general offices on march 30 for a total cost of $7,920. the carpet is estimated to have a 10-year useful life and no residual value. question content area a. prepare the journal entry necessary for recording the purchase of the new carpet. Place the steps of action potential formation \& propagation in the correct sequence, starting with the first step that occurs in the initial segment immediately after postsynaptic potentials occur on the receptive segment of a neuron. voltage-gated Na +channels open & depolarization occurs. excess loss of K +causes hyperpolarization. voltage-gated Na +channels close, voltage-gated K +channels open \& repolarization occurs. voltage-gated K +channels close \& the Na +/K +pump restores the resting membrane potential. postsynaptic potentials spread to the axon hillock \& summate to achieve a threshold voltage. A cylindrical water tank has a fixed surface area of A0.. Find an expression for the maximum volume that such a water tank can take. How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply. a). the digit 2 increases in value from 2 ones to 2 hundreds. b). each place is multiplied by 1,000 c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place. a function f : z zz is defined as f (n) = (2n,n 3). verify whether this function is injective and whether it is surjective bantam industries has budgeted the following information for march: cash receipts $ 331,000 beginning cash balance 20,000 cash payments 370,000 desired ending cash balance 40,000 if there is a cash shortage, the company borrows money from the bank. all cash is borrowed at the beginning of the month in $1,000 increments, and interest is paid monthly at 1% on the first day of the following month. the company had no debt before march 1. how much cash will the company need to borrow in march? (20) (8,5)(2,5) equation for line symmetry? Problem 21.3 Evaluate the following integral: ja-x-4 -2 - 4x + 2x5)dxSingle application of Simpson's 3/8 rule Write down the size of Angle ABC .Give a reason for your answer. Find the general solution of the differential equation. \[ y^{\prime}(t)=4+e^{-7 t} \] \[ y(t)= \] 2 Use a five-variable Karnaugh map to find the minimized SOP expression for the following logic function: F(A,B,C,D,E) = m(4,5,6,7,9,11,13,15,16,18,27,28,31) Given function g(x)=x sq. root of (x+1) . Note: In case you have to estimate your numbers, use one decimal place for your answers. a) The domain of function g is the interval The domain of function g is the interval b) The critical number(s) for this function is/are c) The local minimum value of function g is at recall the formula for figuring days' sales in inventory. multiple choice question. (ending inventory/cost of goods sold) x 365 (ending inventory/average inventory) x 365 (ending inventory/gross profit) x 365 which of the following did a poll find to be the most important variable in employee productivity? group of answer choices pay level quality of the employee- direct supervisor relationship quality of the workplace environment the benefits that employees enjoyed Score on last try: 0 of 1 pts. See Details for more. You can retry this que The function f(x)= 3x+92x9is increasing on the interval and is decreasing on the interval The function is concave down on the interval and is concave up on the interval The function has a local minimum at and a local maximum at The function has inflection points at Calculate all timits necessary, then graph the function using all this informatic Enter intervals using interval notation. No more than four (4) decimal places a written oo. Negative infinity is written -oo. If there is more than one soution maxima) enter them as a comma separated list. If there are no solutions enter Question Help: Message instructor what is the mean and standard deviation (in dollars) of the amount she spends on breakfast weekly (7 days)? (round your standard deviation to the nearest cent.) why were there so many earthquakes before the great 1906 earthquake and so few after? Under GAAP, how would the sale of company- owned land be accounted for on the statement of cash flows? O As a decrease in cash flow from financing O As an increase in cash flow from investment O As a decrease in cash flow from operations O As an increase in cash flow from operations _______ is an element of the marketing communications mix that involves online activities and programs designed to engage customers or prospects and directly or indirectly raise awareness, improve image, or elicit sales of products and services.