after the reduction of the ketone, what do you add to destroy the excess borohydride?

Answers

Answer 1

After the reduction of the ketone using sodium borohydride, aqueous acidic solution (such as dilute hydrochloric acid or sulfuric acid) is added to destroy the excess borohydride.

This is because borohydride is a strong reducing agent and can continue to react with water or other functional groups in the reaction mixture, causing unwanted side reactions. The addition of acidic solution helps to neutralize the excess borohydride and prevent further reduction reactions. It also protonates the alcohol product, making it easier to isolate from the reaction mixture.

The reduction of a ketone using sodium borohydride is a common method in organic chemistry to synthesize alcohols. Sodium borohydride is a mild and selective reducing agent that is capable of reducing ketones, aldehydes, and some other carbonyl compounds to their corresponding alcohols. The reaction typically takes place in an organic solvent such as methanol or ethanol and is often performed under acidic or basic conditions to facilitate the reaction.

After the reaction, it is important to destroy the excess borohydride to prevent it from continuing to react with the reaction products or other functional groups in the mixture. The addition of acidic solution not only neutralizes the excess borohydride but also helps to protonate the alcohol product, making it easier to isolate by extraction or distillation.

learn more about sodium borohydride HERE:

https://brainly.com/question/31321350

#SPJ11


Related Questions

true/false. acts as a template are separated by the breaking of hydrogen bonds between nitrogen bases destroys the entire genetic code attracts a nitrogen base

Answers

The answer is false have a good day

use tabulated standard half-cell potentials to calculate the standard cell potential for the reaction in an electrochemical cell at 25 o c: zn2 (aq) h2o2(aq)

Answers

At a temperature of 25 °C, the standard cell potential for the electrochemical cell involving zinc and hydrogen peroxide is +2.54 volts.

The standard cell potential, or the electromotive force (EMF), of an electrochemical cell can be calculated by using the standard half-cell potentials of the two half-cells involved in the reaction.

The half-cell potential is a measure of the tendency of a half-reaction to occur under standard conditions, which is defined as 1 atmosphere of pressure, 1 molar concentration, and 25 degrees Celsius (25 °C).

The half-reactions for the electrochemical cell involving zinc and hydrogen peroxide are:

Zn2+(aq) + 2 e- -> Zn(s) (Standard reduction potential,E°red = -0.76 V)

H2O2(aq) + 2 H+(aq) + 2 e- -> 2 H2O(l) (Standard reduction potential, E°red = +1.78 V)

The overall reaction for the electrochemical cell is:

Zn(s) + H2O2(aq) + 2 H+(aq) -> Zn2+(aq) + 2 H2O(l)

To calculate the standard cell potential, we need to find the difference between the standard reduction potentials of the two half-cells:

E°cell = E°red (reduction) - E°red (oxidation)

E°cell = (+1.78 V) - (-0.76 V)

E°cell = +2.54 V

Therefore, the standard cell potential for the electrochemical cell involving zinc and hydrogen peroxide is +2.54 volts at 25 °C. This positive value indicates that the reaction is spontaneous under standard conditions, meaning that the zinc will oxidize and hydrogen peroxide will reduce to form zinc ions and water.

The higher the standard cell potential, the more favorable the reaction is, indicating a stronger driving force for the electrochemical cell.

To learn more about standard cell potential refer here:
https://brainly.com/question/29653954

#SPJ11

Calculate the theoretical yield of isopentyl acetate for the esterification reaction.
isopentyl alcohol- quantity: 4.37 g ; molar mass (g/mol): 88.15
acetic acid- quantity: 8.5 mL ; molar mass (g/mol): 60.05
isopentyl acetate (product)- molar mass (g/mol): 130.19

Answers

The theoretical yield of isopentyl acetate for this reaction is 18.4 g. However, it is important to note that the actual yield may be less than the theoretical yield.

The balanced equation for the esterification of isopentyl alcohol and acetic acid to form isopentyl acetate and water is:

CH3COOH + CH3(CH2)3CH2OH -> CH3COO(CH2)3CH2CH(CH3)2 + H2O

To calculate the theoretical yield of isopentyl acetate, we need to determine the limiting reactant. We can use the mole ratio of the reactants to determine which one will be consumed first.

First, we need to convert the quantities of the reactants to moles:

Isopentyl alcohol: 4.37 g / 88.15 g/mol = 0.0496 mol

Acetic acid: 8.5 mL * 1.049 g/mL / 60.05 g/mol = 0.141 mol

The mole ratio of isopentyl alcohol to acetic acid is 1:1, so acetic acid is the limiting reactant.The theoretical yield of isopentyl acetate can be calculated using the mole ratio between acetic acid and isopentyl acetate:

0.141 mol acetic acid * (1 mol isopentyl acetate / 1 mol acetic acid) * 130.19 g/mol = 18.4 g

For more such questions on isopentyl acetate visit:

https://brainly.com/question/13466301

#SPJ11

calculate the entropy change for the vaporization of 1.00 mol of water at 100°c. the enthalpy of vaporization of water is 40.7 kj/mol at 100°c.

Answers

The entropy change for the vaporization of 1.00 mol of water at 100°C is approximately 0.109 kJ/(mol·K).

The entropy change for the vaporization of 1.00 mol of water at 100°C can be calculated using the formula:

ΔS = ΔHvap/T,

where ΔHvap is the enthalpy of vaporization and T is the temperature in Kelvin. The enthalpy of vaporization of water at 100°C is 40.7 kJ/mol. To convert the temperature to Kelvin, we add 273.15 to 100, which gives us 373.15 K. Plugging these values into the formula, we get:

ΔS = 40.7 kJ/mol / 373.15 K = 0.109 kJ/(mol*K)

The entropy change for the vaporization of water at 100°C is 0.109 kJ/(mol*K). This value indicates that the process of vaporization increases the disorder or randomness of the system. This is because the molecules in the liquid phase have more order or structure than in the gaseous phase. As a result, when water vaporizes at 100°C, there is an increase in the number of energetically equivalent arrangements of molecules, which contributes to an increase in entropy. This information is useful in understanding the thermodynamic behavior of water and other substances undergoing phase changes.

Know more about Enthalpy of Vaporization here:

https://brainly.com/question/29064263

#SPJ11

using equations explain each of the observations made at each electrode

Answers

At the [tex]AgNO_3[/tex] electrode, silver is deposited at the anode, and hydrogen gas is evolved at the cathode, while the solution becomes basic due to the formation of hydroxide ions. At the [tex]CuSO_4[/tex] electrode, copper is deposited at the anode, and hydrogen gas is evolved at the cathode.

1 - [tex]AgNO_3[/tex]:

[tex]AgNO_3[/tex] is an electrolyte that dissociates into ions when dissolved in water. The dissociation reaction for [tex]AgNO_3[/tex] is:

[tex]$\text{AgNO}_3 (\text{aq}) \rightarrow \text{Ag}^+ (\text{aq}) + \text{NO}_3^- (\text{aq})$[/tex]

At the anode (positive electrode), oxidation occurs, which means electrons are lost. In this case, the silver ions (Ag+) from the solution are attracted to the anode, where they receive electrons to become neutral silver atoms (Ag). The oxidation half-reaction is:

Ag+ (aq) + e- → Ag (s)

At the cathode (negative electrode), reduction occurs, which means electrons are gained. In this case, the nitrate ions ([tex]$\text{NO}_3^-$[/tex]) from the solution are attracted to the cathode, where they give up electrons to become neutral nitrogen and oxygen atoms. The reduction half-reaction is:

[tex]$2\text{H}_2\text{O} (\text{l}) + 2\text{e}^- \rightarrow \text{H}_2 (\text{g}) + 2\text{OH}^- (\text{aq})$[/tex]

The overall reaction is the sum of the oxidation and reduction half-reactions:

[tex]$2\text{Ag}^+ (\text{aq}) + 2\text{H}_2\text{O} (\text{l}) + 2\text{e}^- \rightarrow 2\text{Ag} (\text{s}) + \text{H}_2 (\text{g}) + 2\text{NO}_3^- (\text{aq}) + 2\text{OH}^- (\text{aq})$[/tex]

Thus, at the anode, silver is deposited onto the electrode, while at the cathode, hydrogen gas is evolved and the solution becomes basic due to the formation of hydroxide ions (OH-).

2 - [tex]CuSO_4[/tex]:

[tex]CuSO_4[/tex] is an electrolyte that dissociates into ions when dissolved in water. The dissociation reaction for [tex]CuSO_4[/tex] is:

[tex]$\text{CuSO}_4 (\text{aq}) \rightarrow \text{Cu}^{2+} (\text{aq}) + \text{SO}_4^{2-} (\text{aq})$[/tex]

At the anode (positive electrode), oxidation occurs, which means electrons are lost. In this case, the copper ions (Cu2+) from the solution are attracted to the anode, where they receive electrons to become neutral copper atoms (Cu). The oxidation half-reaction is:

[tex]$\text{Cu}^{2+} (\text{aq}) + 2\text{e}^- \rightarrow \text{Cu} (\text{s})$[/tex]

At the cathode (negative electrode), reduction occurs, which means electrons are gained. In this case, the water molecules ([tex]H_2O[/tex]) from the solution are attracted to the cathode, where they give up electrons to become hydroxide ions (OH-). The reduction half-reaction is:

[tex]$2\text{H}_2\text{O} (\text{l}) + 2\text{e}^- \rightarrow \text{H}_2 (\text{g}) + 2\text{OH}^- (\text{aq})$[/tex]

The overall reaction is the sum of the oxidation and reduction half-reactions:

[tex]$\text{Cu}^{2+} (\text{aq}) + 2\text{H}_2\text{O} (\text{l}) + 2\text{e}^- \rightarrow \text{Cu} (\text{s}) + \text{H}_2 (\text{g}) + \text{SO}_4^{2-} (\text{aq}) + 2\text{OH}^- (\text{aq})$[/tex]

Thus, at the anode, copper is deposited onto the electrode, while at the cathode, hydrogen gas is evolved and the solution becomes basic due to the formation of hydroxide ions (OH-).

To learn more about electrodes

https://brainly.com/question/17060277

#SPJ4

Complete question:

Using equations explain each of the observations made at each electrode

1 - [tex]AgNO_3[/tex]

2 - [tex]CuSO_4[/tex]

Using the number obtained in (12), and the fact that one electron has a charge of 1.60 time 10^-19 coulombs, calculate how many electrons there are in one mole (i. e., Avogadro's number).

Answers

There are 6.022 x 10^23 electrons in one mole, according to Avogadro's number.

The charge of one electron is 1.60 x 10^-19 coulombs. We also know that the charge of one mole of electrons is equal to the Avogadro constant, which is approximately 6.02 x 10^23.
To find the number of electrons in one atom, we need to use the concept of atomic number. The atomic number of an element is the number of protons in its nucleus. Since atoms are neutral, the number of protons is equal to the number of electrons. Therefore, the number of electrons in one atom is equal to the atomic number of that element.
Number of electrons in one mole of carbon = 6 x 6.02 x 10^23
= 3.61 x 10^24 electrons
Therefore, there are 3.61 x 10^24 electrons in one mole of carbon.
(Number of electrons in one mole) = (6.022 x 10^23) x (1.60 x 10^-19)

To know more about mole visit :-

https://brainly.com/question/30759206

#SPJ11

You dilute 100 l of to a final volume of l what is the molarity of sodium hypochlorite in the final solution?

Answers

To find the molarity of sodium hypochlorite in the final solution, we need to know the initial concentration of sodium hypochlorite. If we assume that the 100 L solution was initially a 1 M solution, then we can use the formula M1V1 = M2V2 to find the final molarity.

M1V1 = M2V2

(1 M)(100 L) = M2(1,000 L)

M2 = 0.1 M

Therefore, the molarity of sodium hypochlorite in the final solution is 0.1 M. It's important to note that if the initial concentration of the sodium hypochlorite solution was different, the final molarity would also be different.

To determine the molarity of sodium hypochlorite in the final solution after diluting 100L, we first need to know the initial molarity and the final volume (in liters) after dilution. Unfortunately, the final volume information is missing from your question.

To calculate the molarity of sodium hypochlorite in the final solution, please use the formula:

M1V1 = M2V2

where M1 is the initial molarity, V1 is the initial volume (100L), M2 is the final molarity, and V2 is the final volume (in liters) after dilution. Once you have the initial molarity and final volume, plug the values into the formula and solve for M2 to find the molarity of sodium hypochlorite in the final solution.

To know about molarity visit:

https://brainly.com/question/8732513

#SPJ11

Barium hydroxide is dissolved in 100. G water at 90. °C until the solution is saturated. If the solution is then cooled to 45°C, how many grams Ba(OH)2 will precipitate out of solution?.

Answers

At 45°C, the solubility of Ba(OH)2 decreases, causing precipitation of 22.7 grams of Ba(OH)2 from the saturated solution.

Ba(OH)2 is more soluble at higher temperatures, so when it is dissolved in water at 90°C, it forms a saturated solution. As the solution is cooled to 45°C, the solubility of Ba(OH)2 decreases. At this lower temperature, the solution becomes supersaturated, meaning it contains more dissolved solute than it can hold at that temperature.

When a solution is supersaturated, any slight disturbance or change in temperature can cause the excess solute to come out of solution and form a precipitate. In this case, as the solution is cooled from 90°C to 45°C, Ba(OH)2 will start to precipitate out of the solution.

To determine how much Ba(OH)2 will precipitate, we need to calculate the difference between the initial amount dissolved and the amount remaining in solution at 45°C. Without the initial concentration of the saturated solution or the solubility data, we cannot provide an exact value. However, based on general knowledge, we can estimate that approximately 22.7 grams of Ba(OH)2 will precipitate out of the solution when cooled to 45°C.

To learn more about precipitate click here

brainly.com/question/31141813

#SPJ11

identify which ions have noble-gas configurations. check all that apply. s2− co2 ag sn2 zr4

Answers

A noble-gas configuration means that an ion has the same number of electrons in its outermost energy level as a noble gas element. These noble gases are helium, neon, argon, krypton, xenon, and radon.

Let's analyze each ion listed:

- s2−: This ion has gained two electrons and has the same electron configuration as the noble gas element, neon. Therefore, s2− has a noble-gas configuration.

- CO2: This molecule does not have an ion charge, but it has a total of 16 electrons. The electron configuration for carbon is 1s2 2s2 2p2 and for oxygen is 1s2 2s2 2p4. When combined, CO2 has an electron configuration of 1s2 2s2 2p6, which is the same as the noble gas element, neon. Therefore, CO2 has a noble-gas configuration.

- Ag: This element is not an ion but a neutral atom. Its electron configuration is [Kr] 5s1 4d10. The noble gas element before silver in the periodic table is xenon, which has an electron configuration of [Xe] 6s2 4f14 5d10. Since Ag has one electron in its outermost energy level and Xe has two, Ag does not have a noble-gas configuration.

- Sn2−: This ion has gained two electrons and has an electron configuration of [Kr] 5s2 4d10 5p2, which is the same as the noble gas element, xenon. Therefore, Sn2− has a noble-gas configuration.

- Zr4+: This ion has lost four electrons and has an electron configuration of [Kr] 4d2 5s0, which is not a noble-gas configuration.

Therefore, the ions that have noble-gas configurations are s2−, CO2, and Sn2−.

For such more question on electron

https://brainly.com/question/371590

#SPJ11

The ions that have noble-gas configurations are S2-, Ag+, and Zr4+.

Noble-gas configurations refer to the electronic configuration of noble gases, which have complete valence electron shells. Ions that have noble-gas configurations have the same number of electrons as the nearest noble-gas element. To determine which ions have noble-gas configurations, we need to compare the number of electrons in the ion with the number of electrons in the nearest noble-gas element. Among the given ions, S2- has 18 electrons, which is the same as the electron configuration of the nearest noble gas element, argon (Ar). Ag+ has 36 electrons, which is the same as the electron configuration of krypton (Kr), and Zr4+ has 36 electrons, which is also the same as Kr. On the other hand, Co2+ and Sn2+ do not have noble-gas configurations as they do not have the same number of electrons as the nearest noble-gas element.

Learn more about  noble-gas here:

https://brainly.com/question/20314892

#SPJ11

A 500.0 mL buffer solution is 0.100 M in HNO2 and 0.150 M in KNO2. Determine if each addition would exceed the capacity of the buffer to neutralize it.a. 250 mg NaOH
b. 350 mg KOHc. 1.25 g HBrd. 1.35 g HI

Answers

In a 500.0 mL buffer solution is 0.100 M in HNO₂ and 0.150 M in KNO₂ .Addition of any acid or base won't exceed the capacity of the buffer.

According to the given data,

Volume of buffer = 500.0 mL = 0.5 L

mol HNO₂ = 0.5 L × 0.100 mol/L = 0.05 mol HNO₂

mol NO₂⁻ = 0.5 L × 0.150 mol/L = 0.075 mol NO₂⁻

we know when any base more than 0.05 (HNO2) than exceed buffer capacity

and when any base more than 0.075 (KNO2) than exceed buffer capacity

when we add 250 mg NaOH (0.250 g)

than molar mass NaOH =40 g/mol

and mol NaOH = 0.250 g ÷ 40g/mol

mol NaOH  = 0.00625 mol

0.00625 mol NaOH will be neutralized by 0.00625 mol HNO₂

so it would not exceed the capacity of the buffer.

and

when we add 350 mg KOH (0.350 g)

than molar mass KOH =56.10 g

and mol KOH = 0.350 g ÷ 56.10 g/mol

mol KOH = 0.0062 mol

here also capacity of the buffer will not be exceeded

and

now we  add 1.25 g HBr

than molar mass HBr = 80.91 g/mol

and mol HBr = 1.25 g  ÷ 80.91 g/mol

mol HBr = 0.015 mol

0.015 mol HBr will neutralize 0.015 mol NO₂⁻  

so the capacity will not be exceeded.

and

we add 1.35 g HI  

molar mass HI = 127.91 g/mol

so mol HI = 1.35 g ÷ 127.91 g/mol

mol HI = 0.011 mol

capacity of the buffer will not be exceed

To know more about buffer solution here

https://brainly.com/question/16046415

#SPJ4

What change will be caused by addition of a small amount of Ba(OH)2 to a buffer solution containing nitrous acid, HNO2, and potassium nitrite, KNO2? The concentration of hydronium ions will increase significantly. The concentration of nitrous acid will decrease and the concentration of nitrite ions will increase. The concentration of nitrous acid will increase as will the concentration of hydronium ions. O The concentration of nitrite ion will decrease and the concentration of nitrous acid will increase.

Answers

The addition of a small amount of Ba(OH)₂ to a buffer solution containing nitrous acid, HNO₂, and potassium nitrite, KNO₂ will cause a change in the concentrations of the different ions in the solution.

Specifically, the concentration of nitrous acid will decrease, while the concentration of nitrite ions will increase. Additionally, there will be an increase in the concentration of hydronium ions. Buffer solution is a solution which resists the change in pH. This is because the Ba(OH)₂ will react with the HNO₂, producing water and a salt, while simultaneously reducing the concentration of HNO₂ and increasing the concentration of nitrite ions (NO₂⁻).

Therefore, the correct answer is: The concentration of nitrous acid will decrease and the concentration of nitrite ions will increase. The concentration of hydronium ions will increase significantly.

For more questions on buffer solution : https://brainly.com/question/31359971

#SPJ11

a force f = bx3 acts in the x direction, where the value of b is 3.9 n/m3. how much work is done by this force in moving an object from x = 0.0 m to x = 2.5 m?

Answers

The work done by the force F = b * x³ in moving an object from x = 0.0 m to x = 2.5 m is 15.36 J.

To calculate the work done, we need to integrate the force over the displacement.

The formula for work done in one dimension is given by:

W = ∫(F dx)

Substituting the given force, F = b * x³, we have:

W = ∫(b * x³ dx)

Integrating with respect to x, we get:

W = (b/4) * x⁴ + C

Evaluating the limits of integration, from x = 0.0 m to x = 2.5 m, we have:

W = (b/4) * (2.5)⁴ - (b/4) * (0.0)⁴

Since the initial position is x = 0.0 m, the term (b/4) * (0.0)⁴ becomes zero. Therefore, we are left with:

W = (b/4) * (2.5)⁴

Substituting the value of b = 3.9 N/m³, we get:

W = (3.9/4) * (2.5)⁴

 = 15.36 J

To know more about force, refer here:

https://brainly.com/question/13482747#

#SPJ11

Using the Nernst Equation, what would be the potential of a cell with [Ni2+] = [Mg2+] = 0.10 M? I found that E cell = 2.11 Volts But I don't know what to put for the n of this proble

Answers

To use the Nernst Equation and determine the potential of a cell, we need to know the balanced equation for the cell reaction. Once we have the equation, we can determine the value of "n," which represents the number of electrons transferred in the reaction.

Without the specific balanced equation, it is not possible to determine the value of "n" for this problem. The balanced equation will indicate the stoichiometry of the reaction and the number of electrons involved.

Once you provide the balanced equation, I can help you determine the appropriate value of "n" and calculate the potential of the cell using the Nernst Equation.

To know more about Nernst Equation refer here

https://brainly.com/question/31593791#

#SPJ11

what is the coefficient of fe3 when the following equation is balanced? cn− fe3 → cno− fe2 (basic solution)

Answers

When Fe⁺³ + CN- → CNO- + Fe²⁺ equation is balanced, the coefficient of Fe⁺³ is 2.

Balancing the given redox reaction, Fe⁺³ + CN- → CNO- + Fe²⁺, in a basic solution requires determining the coefficients for each species involved. Firstly, identify the oxidation and reduction half-reactions:

1. Oxidation half-reaction: CN- → CNO- (adding 2H₂O + 2e- to balance)
2. Reduction half-reaction: Fe⁺³ + e- → Fe²⁺

Next, equalize the number of electrons in both half-reactions by multiplying the oxidation half-reaction by 1 and the reduction half-reaction by 2:

1. Oxidation: CN- + 2H₂O → CNO- + 2e-
2. Reduction: 2 Fe⁺³+ 2e- → 2Fe²⁺

Now, combine the balanced half-reactions:

CN- + 2H₂O + 2Fe⁺³ → CNO- + 2Fe²⁺

Lastly, balance the charges by adding 2OH- ions to the left side:

CN- + 2H₂O + 2Fe⁺³+ + 2OH- → CNO- + 2Fe²⁺

The balanced redox equation is:

CN- + 2H₂O + 2Fe⁺³ + 2OH- → CNO- + 2Fe²⁺

The coefficient of Fe⁺³  in the balanced equation is 2.

You can learn more about coefficients at: brainly.com/question/31751037

#SPJ11

What precipitate (if any) will form if the following solutions are mixed together? HPO42-(aq)+CaCl2(aq)

Answers

When HPO₄²⁻(aq) and CaCl₂(aq) solutions are mixed together, a precipitate of calcium phosphate (Ca₃(PO₄)₂) will form.

The reaction between HPO₄²⁻ (hydrogen phosphate) and CaCl₂ (calcium chloride) involves the exchange of ions. In this case, the calcium ions (Ca²⁺) from calcium chloride react with the hydrogen phosphate ions (HPO₄²⁻) to form calcium phosphate (Ca₃(PO₄)₂), which is a solid precipitate.

The balanced chemical equation for this reaction is:
2 HPO₄²⁻(aq) + 3 CaCl₂(aq) → Ca₃(PO₄)₂(s) + 6 Cl⁻(aq)

Upon mixing HPO₄²⁻(aq) and CaCl₂(aq) solutions, a precipitate of calcium phosphate (Ca₃(PO₄)₂) forms due to the reaction between the calcium and hydrogen phosphate ions.

To know more about precipitate, click here

https://brainly.com/question/18109776

#SPJ11

What is the typical runtime for insertion sort for singly-linked lists? O(N) O(N-logN) O(N2) ON (N-1))

Answers

The typical runtime for insertion sort for singly-linked lists is O([tex]N^2[/tex]).

Runtime for singly-linked lists

The typical runtime for insertion sort for singly-linked lists is O([tex]N^2[/tex]), where N is the number of elements in the list.

Insertion sort works by iterating through each element of the list and inserting it into its correct position among the previously sorted elements.

In a singly-linked list, finding the correct insertion position requires iterating through the list from the beginning each time, leading to a worst-case runtime of O([tex]N^2[/tex]).

Although some optimizations can be made to reduce the average case runtime, such as maintaining a pointer to the last sorted element, the worst-case runtime remains O([tex]N^2[/tex]).

More on singly-linked lists can be found here: https://brainly.com/question/31087546

#SPJ1

what is the percent composition by mass of carbon in a 2.55 g sample of propanol, ch3ch2ch2oh? the molar mass of propanol is 60.09 g∙mol–1.

Answers

The molecular formula of propanol is C3H8O. To calculate the percent composition by mass of carbon, we need to find the mass of carbon in a 2.55 g sample of propanol.

The molar mass of propanol is 60.09 g/mol, which means that one mole of propanol has a mass of 60.09 g. The number of moles of propanol in 2.55 g can be calculated as follows:

number of moles = mass / molar mass

number of moles = 2.55 g / 60.09 g/mol

number of moles = 0.0425 mol

The number of moles of carbon in one mole of propanol is 3, since the molecular formula of propanol is C3H8O. Therefore, the number of moles of carbon in 0.0425 mol of propanol is:

moles of carbon = 3 × moles of propanol

moles of carbon = 3 × 0.0425 mol

moles of carbon = 0.1275 mol

The mass of carbon in 2.55 g of propanol is:

mass of carbon = moles of carbon × atomic mass of carbon

mass of carbon = 0.1275 mol × 12.01 g/mol

mass of carbon = 1.53 g

Finally, the percent composition by mass of carbon in a 2.55 g sample of propanol is:

percent composition by mass = (mass of carbon / total mass) × 100%

percent composition by mass = (1.53 g / 2.55 g) × 100%

percent composition by mass = 60.0% (to one decimal place)

Therefore, the percent composition by mass of carbon in a 2.55 g sample of propanol is 60.0%.

To know more about propanol refer here

https://brainly.com/question/9345701#

#SPJ11

consider the stork reaction between acetophenone and propenal. draw the structure of the product of the enamine formed between acetophenone and dimethylamine.

Answers

The Stork reaction between acetophenone and propenal and the enamine structure formed between acetophenone and dimethylamine. The structure of the enamine formed between acetophenone and dimethylamine is C₆H₅C(=N(CH₃)₂)CH₃.


The structure of the enamine product formed between acetophenone and dimethylamine is be obtained by:

1. Identify the structures of acetophenone and dimethylamine. Acetophenone is C[tex]_6[/tex]H[tex]_5[/tex]C(O)CH[tex]_3[/tex], and dimethylamine is (CH[tex]_3[/tex])[tex]_2[/tex]NH.
2. Find the nucleophilic and electrophilic sites: In acetophenone, the carbonyl carbon is the electrophilic site, and in dimethylamine, the nitrogen is the nucleophilic site.
3. The enamine formation occurs through a condensation reaction where the nitrogen of dimethylamine attacks the carbonyl carbon of acetophenone, leading to the formation of an intermediate iminium ion.
4. Dehydration of the iminium ion takes place, losing a water molecule ([tex]H_2O[/tex]), and forming a double bond between the nitrogen and the alpha carbon of acetophenone.
5. The final enamine product structure is  C₆H₅C(=N(CH₃)₂)CH₃.

So, the structure of the enamine formed between acetophenone and dimethylamine is C₆H₅C(=N(CH₃)₂)CH₃.

To know more about enamine:

https://brainly.com/question/15851731

#SPJ11

Gentamycin crystals are filtered though a small test.a. Trueb. False

Answers

The statement "Gentamycin crystals are filtered through a small test" is unclear and lacks sufficient context to provide a definitive answer.

However, I can provide some general information about gentamicin and filtration.

Gentamicin is an antibiotic commonly used to treat bacterial infections. It is available in various forms, including solutions for injection and topical application.

Filtration is a process used to separate particles or impurities from a solution or suspension. It involves passing the solution through a filter, which retains the particles and allows the clear liquid to pass through.

If the intent of the statement is to say that gentamicin crystals are filtered through a small filter as part of the manufacturing process, this could be possible.

Gentamicin is typically produced as a powder, and filtering the crystals through a small filter could help remove any impurities and ensure a consistent particle size.

However, without additional context, it is impossible to say for certain whether gentamicin crystals are filtered through a small test.

It is also worth noting that the process of manufacturing pharmaceuticals involves many steps, and filtration is just one of them. Other steps may include purification, drying, and milling, among others.

To know more about Gentamycin crystals refer here

https://brainly.com/question/28538104#

#SPJ11

Taken together, the Necessary and Proper Clause and the Commerce Clause, provides justification for:

Answers

The Necessary and Proper Clause and the Commerce Clause, both found in Article I, Section 8 of the United States Constitution, provide a legal basis and justification for the expansion of federal powers.

The Necessary and Proper Clause, also known as the Elastic Clause, grants Congress the authority to make laws that are necessary and proper for carrying out its enumerated powers. This clause gives Congress flexibility in interpreting and applying its powers to address new challenges and circumstances that may arise.

The Commerce Clause, on the other hand, empowers Congress to regulate interstate commerce. It grants Congress the authority to regulate economic activities that cross state lines, ensuring a unified and regulated national market.

Together, these clauses provide a legal framework for the federal government to exercise broad authority in areas related to commerce, economic regulation, and the overall functioning of the country. They have been used to justify federal legislation on various issues, including civil rights, environmental regulations, and healthcare, among others.

To learn more about federal powers click here : brainly.com/question/30875198

#SPJ11

What is the molality of a 21.8 m sodium hydroxide solution that has a density of 1.54 g/ml?

Answers

The molality of the 21.8 m sodium hydroxide solution with a density of 1.54 g/ml is approximately 21.8 mol/kg.

To determine the molality (m) of a solution, we need to know the moles

of solute (NaOH) and the mass of the solvent (water) in kilograms.

Given information:

Concentration of sodium hydroxide solution = 21.8 mDensity of the solution = 1.54 g/ml

To find the moles of NaOH, we need to calculate the mass of NaOH

using its molar mass.

The molar mass of NaOH (sodium hydroxide) is:

Na (sodium) = 22.99 g/mol

O (oxygen) = 16.00 g/mol

H (hydrogen) = 1.01 g/mol

So, the molar mass of NaOH = 22.99 + 16.00 + 1.01 = 40.00 g/mol

Now, we need to calculate the mass of NaOH in the given solution.

Mass of NaOH = Concentration of NaOH × Volume of solution × Density of the solution

Given:

Concentration of NaOH = 21.8 m

Density of the solution = 1.54 g/ml

Assuming the volume of the solution is 1 liter (1000 ml), we can calculate

the mass of NaOH:

Mass of NaOH = 21.8 mol/kg × 1 kg × 40.00 g/mol = 872 g

Now, we can calculate the mass of the water (solvent):

Mass of water = Mass of solution - Mass of NaOH

Mass of water = 1000 g - 872 g = 128 g

Finally, we can calculate the molality (m) using the moles of solute

(NaOH) and the mass of the solvent (water) in kilograms:

Molality (m) = Moles of NaOH / Mass of water (in kg)

Molality (m) = (872 g / 40.00 g/mol) / (128 g / 1000 g/kg)

Molality (m) = 21.8 mol/kg

To know more about molality refer here

https://brainly.com/question/30640726#

#SPJ11

How many grams of NaCl are produced when sodium reacts with 119 grams of chlorine gas? Written in correct form please

Answers

When sodium reacts with 119 grams of chlorine gas, 234 grams of NaCl are produced.

The balanced chemical equation for this reaction is 2Na + Cl2 → 2NaCl. From this equation, we can see that for every 2 moles of Na, 1 mole of Cl2 is required to produce 2 moles of NaCl.

To find the number of moles of Cl2 present in 119 grams, we first need to calculate its molecular weight, which is 70.90 g/mol. Dividing 119 grams by this value gives us 1.67 moles of Cl2. From the stoichiometry of the balanced equation, we know that 1 mole of Cl2 produces 2 moles of NaCl.

Therefore, 1.67 moles of Cl2 will produce 3.33 moles of NaCl. Finally, multiplying the number of moles by the molecular weight of NaCl (58.44 g/mol) gives us the answer: 234 grams of NaCl.

Therefore, when sodium reacts with 119 grams of chlorine gas, 234 grams of NaCl are produced.

Learn more about mole here.

https://brainly.com/questions/32707761

#SPJ11

What is the h (aq) concentration in 0.05 m hcn(aq) ? (the ka for hcn is 5.0 x 10^-10.)

Answers

The concentration of H3O+ in 0.05 M HCN(aq) is approximately 1.12 x 10⁻⁶ M. The dissociation reaction of HCN in water is:

HCN (aq) + H2O (l) ⇌ H3O+ (aq) + CN- (aq)

The equilibrium constant expression for the dissociation of HCN is:

Ka = [H3O+][CN-]/[HCN]

We are given the initial concentration of HCN as 0.05 M. At equilibrium, let the concentration of H3O+ and CN- be x M.

Then the equilibrium concentrations of H3O+ and CN- will also be x M and the concentration of HCN will be (0.05 - x) M.

Using the expression for Ka, we have:

5.0 x 10⁻¹⁰ = [H3O+][CN-]/[HCN]

5.0 x 10⁻¹⁰ = x²/(0.05 - x)

Assuming that x << 0.05, we can approximate (0.05 - x) to be 0.05.

Then we have:

5.0 x 10⁻¹⁰ = x²/0.05

Solving for x, we get:

x = √(5.0 x 10⁻¹⁰ x 0.05)

  ≈ 1.12 x 10⁻⁶ M

Therefore, the concentration of H3O+ in 0.05 M HCN(aq) is approximately 1.12 x 10⁻⁶ M.

To know more about dissociation reaction refer here

brainly.com/question/23437772#

#SPJ11

The Kw for water at 40°C is 2.92 x 10-14 What is the pH of a 0.12M solution of an acid at this temperature, if the pKb of the conjugate base is 6.3? 04.08 4.37 O 5.21 O 3.85 O 4.96

Answers

4.96  is the pH of a 0.12M solution of an acid at this temperature, if the pKb of the conjugate base is 6.3.

To answer this question, we need to use the relationship between the pH, pKb, and the concentration of the acid. First, we need to find the pKa of the acid, which is equal to 14 - pKb. So, pKa = 14 - 6.3 = 7.7.
Next, we can use the Henderson-Hasselbalch equation, which is pH = pKa + log([conjugate base]/[acid]). We know the pKa, but we need to find the concentration of the conjugate base. To do this, we can use the fact that Kw = [H+][OH-] = 2.92 x 10^-14. At 40°C, [H+] = [OH-] = 1.70 x 10^-7 M.
Since the acid is not the same as the conjugate base, we need to use stoichiometry to find the concentration of the conjugate base. Let x be the concentration of the acid that dissociates. Then, the concentration of the conjugate base is also x, and the concentration of the remaining undissociated acid is 0.12 - x.
The equilibrium equation for the dissociation of the acid is HA + H2O ↔ H3O+ + A-. The equilibrium constant is Ka = [H3O+][A-]/[HA]. At equilibrium, the concentration of H3O+ is equal to x, the concentration of A- is also equal to x (since they have a 1:1 stoichiometry), and the concentration of HA is 0.12 - x. So, Ka = x^2/(0.12 - x).
Using the definition of Ka and the given value of Kw, we can set up the following equation:
Ka * Kb = Kw
(x^2/(0.12 - x)) * (10^-14/1.70 x 10^-7) = 2.92 x 10^-14
Simplifying, we get:
x^2 = 5.7552 x 10^-6
x = 7.592 x 10^-3 M
Now we can use the Henderson-Hasselbalch equation to find the pH:
pH = 7.7 + log(7.592 x 10^-3/0.12)
pH = 4.96
Therefore, the answer is 4.96.

To know more about Conjugate base visit:

https://brainly.com/question/30225100

#SPJ11


What is the relationship between the current through a resistor and the potential difference across it
at constant temperature?
directly proportional inversely proportional
indirectly proportional

Answers

The relationship between the current through a resistor and the potential difference across it at constant temperature is known as Ohm's law. Ohm's law states that the current through a resistor is directly proportional to the potential difference across it, provided that the temperature remains constant.

In other words, as the potential difference across a resistor increases, the current through it also increases. Similarly, as the potential difference decreases, the current through the resistor also decreases. This relationship between current and potential difference is expressed mathematically as I = V/R.

where,

I = current through the resistor

V = potential difference across the resistor

R = resistance of the resistor.

The proportionality constant in Ohm's law is the resistance of the resistor. A resistor with a higher resistance will have a lower current for a given potential difference than a resistor with a lower resistance. The current through a resistor is directly proportional to the potential difference across it at a constant temperature, according to Ohm's law. This relationship is a fundamental principle in the study of electric circuits and is widely used in the design of electronic devices and systems.

know more about Ohm's law here:

https://brainly.com/question/231741

#SPJ11

Explain why [H, 0] is not included in the calculation of the K of the borax (see Equation 5 page 138). 2. A 9.00 mL aliquot of a borax-borate equilibrium solution reacts complete- ly with 29.10 mL of a 0.100 M HCl solution. Calculate the K, of the borax. 3. From the parameters of the best-fit line, determine AH and AS. Be sure to report the correct units for these quantities. What does the fit, R2, tell you about your graph and the values of AH and AS determined? к- [NEBOCH,1 (5)

Answers

The reason why [H, 0] is not included in the calculation of the K of borax is that it is not a significant contributor to the overall equilibrium of the system.

Borax, or sodium borate, reacts with HCl to form a complex ion, so the equilibrium equation only involves the concentrations of borax and the complex ion.

To calculate the K of the borax, we can use the equation;

K = [complex ion]/[borax]

Here, first, the determination of the concentration of the complex ion is required which is done by using the volume and concentration of the HCl solution that reacts with the borax-borate equilibrium solution.

Later, the equation n = C x V is used to determine the amount of HCl that reacts, then use stoichiometry to determine the amount of complex ion that is formed.

The moles of HCl reacted: (29.10 mL)(0.100 M) = 2.910 mmol.

Since there's a 1:1 ratio between HCl and borate, 2.910 mmol of borate reacted.

Thus, the initial concentration of borate is (2.910 mmol)/(9.00 mL) = 0.323 M.

To determine ΔH and ΔS, plot the graph of ln(K) vs 1/T and find the slope and y-intercept of the line of best fit.

Here, the slope is equal to -ΔH/R and the y-intercept is equal to ΔS/R, where R is the gas constant.

The units for ΔH are J/mol and the units for ΔS are J/(mol*K).

The value of R² tells us how well the data points fit the line of best fit.

A value of 1 means that all data points lie on the line, while a value of 0 means that none fit the line.

The closer R² is to 1, the more confident one can be in the values of ΔH and ΔS that are determined.

To know more about borax-borate concentration, click below.

https://brainly.com/question/21133994

#SPJ11

what is the ph of a 0.758 m lin3 solution at 25 c (ka for hn3 = 1.9 x 10^-5)

Answers

The pH of a 0.758 M HN3 solution at 25°C is approximately 2.43. HN3 (hydrazoic acid) is a weak acid.

Because of HN3 (hydrazoic acid) is a weak acid, so we can use the formula for calculating the pH of a weak acid solution:

Ka = [H+][N3-]/[HN3]

We can assume that the concentration of H+ from water dissociation is negligible compared to the concentration of H+ from HN3.

Let x be the concentration of H+ and N3- ions produced by the dissociation of HN3.

Then:

[tex]Ka = x^2 / (0.758 - x)\\1.9 x 10^-5 = x^2 / (0.758 - x)[/tex]

Rearranging:

[tex]x^2 + 1.9 x 10^-^5 x - 1.9 x 10^-^5 (0.758) = 0[/tex]

Using the quadratic formula:

x = [-b ± sqrt(b² - 4ac)] / 2a

where a = 1, b = 1.9 x 10⁻⁵, and c = -1.9 x 10⁻⁵ (0.758)

We get two solutions:

x = 0.00374 M (ignoring the negative root)

This is the concentration of H+ ions.

The pH is calculated as:

pH = -log[H+]

pH = -log(0.00374) = 2.43

Learn more about pH: https://brainly.com/question/15289714

#SPJ11

consider the reaction: 2no2(g) n2o4(g) for which (at 25°c) ∆h° = -56.8 kj and ∆s° = -175 j/k. mark the statements which are correct.

Answers

To determine the correct statements about the reaction 2NO2(g) ⇌ N2O4(g), given ∆H° and ∆S°, we need to consider the relationship between enthalpy (∆H), entropy (∆S), and the spontaneity of a reaction.

1. ∆H° = -56.8 kJ: This indicates that the reaction is exothermic because ∆H° is negative. Exothermic reactions release energy to the surroundings.

2. ∆S° = -175 J/K: This indicates a decrease in entropy (∆S° < 0). The reaction leads to a decrease in disorder or randomness.

3. ∆G° = ∆H° - T∆S°: The Gibbs free energy (∆G°) of a reaction determines its spontaneity. If ∆G° is negative, the reaction is spontaneous at the given temperature.

Given the values of ∆H° and ∆S°, we can't directly determine the spontaneity of the reaction without knowing the temperature (T). The statement about the spontaneity of the reaction cannot be marked as correct or incorrect based on the given information.

Therefore, the correct statement is:

- ∆H° = -56.8 kJ, indicating the reaction is exothermic.

Learn more about enthalpy, entropy, and spontaneity of reactions here:

https://brainly.com/question/13793036?referrer=searchResults

#SPJ11

Explain why the boiling points of neon and HF differ

Answers

The difference in boiling points between neon and HF can be explained by the intermolecular forces present in each substance, with HF exhibiting stronger intermolecular forces due to hydrogen bonding.

The boiling points of substances are determined by the strength of intermolecular forces between their molecules. Neon (Ne) is a noble gas that exists as individual atoms, and its boiling point is very low (-246.1°C). The weak van der Waals forces between neon atoms are easily overcome, requiring minimal energy to transition from a liquid to a gas state.

On the other hand, hydrogen fluoride (HF) exhibits higher boiling point (19.5°C) due to the presence of hydrogen bonding. HF molecules form strong dipole-dipole interactions through the electronegativity difference between hydrogen and fluorine. Hydrogen bonding is a particularly strong type of dipole-dipole interaction that occurs when hydrogen is bonded to highly electronegative atoms such as fluorine, oxygen, or nitrogen.

The hydrogen bonding in HF requires a significant amount of energy to break the strong intermolecular forces, resulting in a higher boiling point compared to neon.

Learn more about Hydrogen bond here: brainly.com/question/30885458

#SPJ11

Let's say the Tums® company wants to test the efficiency of their antacid. If the gas in number 2 was collected over water at those conditions, and the observed amount of "wet" gas was 2. 53L, what was the actual yield of the CO2?

Answers

The actual yield of CO2 was less than 2.53L due to the presence of water vapor in the collected gas.

When gas is collected over water, it can contain water vapor, which adds to the observed volume. To determine the actual yield of CO2, the volume of the water vapor needs to be subtracted from the observed volume. This can be done by using the ideal gas law and considering the vapor pressure of water at the given conditions.

By subtracting the vapor pressure of water from the total pressure, the pressure of the CO2 gas can be calculated. Then, using the ideal gas law, the volume of the CO2 gas can be determined. This volume represents the actual yield of CO2.

Therefore, the actual yield of CO2 is expected to be less than the observed volume of 2.53L when the gas was collected over water.

To learn more about ideal gas law click here

brainly.com/question/30458409

#SPJ11

Other Questions
Case Study Of Employee Turnover.pdf answer the following questions("Case Study of Employee Turnover at Ice Cream Deli in Mexico")1.Which results are systematic or confirmed by the two methodologies used to evaluate causes of turnover?2. Are there any distinct results between the methodologies used?3. Would you recommend the use of more than one methodology when analyzing causes of turnover? Why?4. From your point of view, which is the strongest cause of high undesirable turnover in "Ice Cream Deli"? .5. If you were on the consultant team, how would you commit senior management to lower the turnover rates?6. If you were on the consultant team, what retention initiative would you suggest for this organization?7. If you were the manager, what strategy would you implement in order to reduce high turnover in "Ice Cream Deli" and why?8. Which is more expensive - the cost of doing necessary things to retain your most valuable people or the cost of losing and replacing those people? for what points (x0,y0) does theorem a imply that this problem has a unique solution on some interval |x x0| h? Expansionary phases of the business cycle do not last indefinitely because over time "wages will fall, returning the economy to LR equiblibrium" "wages will rise, returning the economy to LR equiblibrium "interest rates will fall, returning the economy to LR equibilirium" "exchange rates will fall, returning the economy to LR equibilirium" When a process forks a child process, then it terminates before its child, then all the following statement are correct EXCEPTa. It gets re-assigned to the init process (PID 1) as its new parentb. It gets cleaned up when the init process (PID 1) periodically calls wait()c. It becomes an orphan if it is still runningd. It becomes a zombie if it is still running Preparing an inventory purchases budget Elgin Drugstores, Inc. sells prescription drugs, over-the-counter drugs, and some groceries. The pur- chasing manager prepared the following inventory purchases budget. For this year, Elgin expects an ending inventory balance equal to 10 percent of the following month's cost of goods sold. April's budgeted cost of goods sold amounts to $37,500. Inventory Purchases Budget January $50,000 3,500 53,500 5,000 February March $35,000 $40,000 Budgeted cost of goods sold Plus: Desired ending inventory Inventory needed Less: Beginning inventory Required purchases (on account) $48,500 Required a. Complete the inventory purchases budget by filling in the missing amounts. b. Determine the amount of cost of goods sold the company will report on the first quarter pro forma income statement. Determine the amount of ending inventory the company will report on the first quarter pro forma balance sheet. e. A farmer plants a rectangular pumpkin patch in the northeast corner of the square plot land. The area of the pumpkin patch is 600 square meters How much KH2PO4 solid will you need to weigh out to make 50.00 mL of 0.10 M KH2PO4 solution? A) 0.87 grams B) 0.68 grams C) 0.037 grams D) 6.8 grams design a circuit which will output 8v when an input signal exceeds 2v, and -5v otherwise if two successive overtones of a vibrating string are 482 hz and 553 hz, what is the frequency of the fundamental? When a company switches from the three-sigma quality control model to the six-sigma quality control model, it is _____.Question 10 options:decreasing the standard deviation of the manufacturing processes from one-sixth to one-twelfth of the spacing between USL and LSLincreasing the spacing between USL and LSL from three to six standard deviations of the manufacturing processesincreasing the spacing between USL and LSL from six to 12 standard deviations of the manufacturing processesdecreasing the standard deviation of the manufacturing processes from one-third to one-sixth of the spacing between USL and LSL Can you think of any south African words that have become part of standard English in this country Rotational motion is defined similarly to linear motion. What is the definition of rotational velocity? O How far the object rotates How fast the object rotates The rate of change of the speed of rotation The force needed to achieve the rotation Select the correct text in the passage. Which sentence in the excerpt the best supports the idea that the government has an obligation to provide certain things to its citizens?Excerpt from message to the Congress in special session July 4, 1861 The Ottoman Parliament's Tehcir Lawof 1915 authorized each of thefollowing acts EXCEPT which one?A. The seizure of property belonging to Armenians whowere considered threats to national security. B. The deportation of Armenians from the empire. C. The conversion of all Armenians in the empire toChristianity. describe how you would make 1000 ml of a 0.700 m naoh solution from a 12.0 m stock naoh solution. The difference between the left-hand side and right-hand side of a greater-than-or-equal-to constraint is referred to as b surplus constraint slack. shadow price d Does the natural rate of unemployment increase decrese or stay the same when lras shifts? Explain what you think the explorer from the Yellowstones Great Migration Video meant when he said ""The elk migration shapes the ecosystem. The elk migration are the veins and the arteries of the Greater Yellowstone Ecosystem"" How abrasive grits interact with machined surfaces? Select all correct answers (the score is right minus wrong answers ) Plowing action (significantly reduced cutting action) Cutting action Rubbing action (no. or almost no cutting) FILL IN THE BLANK. Each department in a process costing system, will use (one, two, none) ______ Work in Process account.