A gas initially at 21.63 degrees Celsius and 0.87 atm is compressed to a pressure of 2.59 atm. To determine the resulting temperature is approximately 603.21 degrees Celsius we need to apply the ideal gas law equation
According to the ideal gas law, the relationship between pressure (P), volume (V), temperature (T), and the number of moles of gas (n) is given by the equation PV = nRT, where R is the ideal gas constant.
To find the resulting temperature, we can rearrange the ideal gas law equation as follows: T = (P₂ * T₁) / P₁, where T₁ is the initial temperature and P₁ and P₂ are the initial and final pressures, respectively.
Substituting the given values, the initial temperature T₁ is 21.63 degrees Celsius (or 294.78 Kelvin) and the initial pressure P₁ is 0.87 atm. The final pressure P₂ is 2.59 atm. By plugging these values into the equation, we can calculate the resulting temperature T₂.
Using the equation T₂ = (2.59 atm * 294.78 K) / 0.87 atm, we find the resulting temperature T₂ to be approximately 876.21 Kelvin (or 603.21 degrees Celsius).
Therefore, when the gas is compressed to a pressure of 2.59 atm, the resulting temperature is approximately 603.21 degrees Celsius.
Learn more about ideal gas law
brainly.com/question/30458409
#SPJ11
QUESTION 7 What is the pH of water? O pH12 O pH9 O pH7 O pH5 QUESTION 8 What is the pH when fish die from pollution? O pH12 O pH9 O pH7 O pH4 QUESTION 9 A solution with a pH less than 7 is basic. O True O False
7. The pH of water is pH7.
The pH scale measures the acidity or alkalinity of a substance. It ranges from 0 to 14, with pH7 considered neutral. Water has a pH of 7, indicating that it is neither acidic nor basic. It is important to note that the pH of pure water can vary slightly due to the presence of dissolved gases and minerals, but it generally remains close to pH7.
8. When fish die from pollution, the pH is typically around pH4.
Pollution can introduce harmful substances into water bodies, leading to a decrease in pH. Acidic pollutants, such as sulfur dioxide and nitrogen oxides, can cause the pH of water to drop significantly. When fish are exposed to highly acidic water, their physiological processes are disrupted, and they may die as a result. A pH of around pH4 is considered highly acidic and can be detrimental to aquatic life.
9. A solution with a pH less than 7 is acidic.
This statement is false. A solution with a pH less than 7 is actually considered acidic, not basic. The pH scale ranges from 0 to 14, with pH7 being neutral. Solutions with a pH below 7 are acidic, indicating a higher concentration of hydrogen ions (H+) in the solution. On the other hand, solutions with a pH above 7 are basic or alkaline, indicating a higher concentration of hydroxide ions (OH-) in the solution.
To know more about Pollutants visit-
brainly.com/question/29594757
#SPJ11
Select the following terms to describe the relative concentrations of the molecules listed below if TAC cycle is completely inactive: assuming there is no electron shuttle and no other metabolic ways involved. 00 [mitochondrial FADH2] [cytosolic NADH] [pyruvate] [mitochondrial ATP] Acetyl-CoA [mitochondrial ADP] 1. Normal 2. Higher than normal 3. Lower than normal 4. None
For the given relative concentrations of the molecule we have: option 1, Normal, option 2, Higher than normal, option 3, Lower than normal and option 4, None, is the correct answer.
Given terms are: [mitochondrial FADH2] [cytosolic NADH] [pyruvate] [mitochondrial ATP] Acetyl-CoA [mitochondrial ADP].
The relative concentrations of the molecules listed below if TAC cycle is completely inactive are:
None [mitochondrial FADH2][cytosolic NADH][pyruvate]Higher than normal [mitochondrial ATP]
Lower than normal Acetyl-CoA[mitochondrial ADP]
The TAC cycle is responsible for the production of high energy ATP molecules.
If the TAC cycle is inactive, then there will be no energy generated. Therefore, the concentration of mitochondrial ATP will be None, and the concentration of mitochondrial FADH2 and cytosolic NADH will be higher than normal.
However, without the TAC cycle, the concentration of Acetyl-CoA will be lower than normal and the concentration of mitochondrial ADP will also be lower than normal.
Thus, the relative concentrations of the molecules listed below if the TAC cycle is completely inactive will be: None [mitochondrial FADH2] [cytosolic NADH] [pyruvate]Higher than normal [mitochondrial ATP]
Lower than normal Acetyl-CoA[mitochondrial ADP].
Therefore, option 1, Normal, option 2, Higher than normal, option 3, Lower than normal and option 4, None, is the correct answer.
Learn more about molecule here:
https://brainly.com/question/32298217
#SPJ11
What are the dissociation products when methanoic acid is mixed
with water?
Group of answer choices:
a. Methanoate ion and hydronium (H3O+)
b. Methanoic acid and hydroxide (OH-)
c. Methanoic acid and
The dissociation products when methanoic acid (formic acid) is mixed with water are a. Methanoate ion (HCOO-) and hydronium ion (H3O+).
Methanoic acid, also known as formic acid (HCOOH), is a weak acid. When it is mixed with water, it undergoes dissociation, breaking apart into ions. The dissociation reaction can be represented as follows:
HCOOH + H2O ⇌ HCOO- + H3O+
The products of the dissociation are the methanoate ion (HCOO-) and the hydronium ion (H3O+). Here's an explanation of each dissociation product:
a. Methanoate ion (HCOO-): This is the conjugate base of methanoic acid. It is formed when the acidic hydrogen (H+) of methanoic acid is transferred to water, resulting in the formation of the methanoate ion.
b. Hydronium ion (H3O+): This is formed when the remaining portion of methanoic acid, after losing the hydrogen ion, attracts a water molecule, leading to the formation of the hydronium ion. The hydronium ion is a positively charged ion and is responsible for the acidic properties of the solution.
Therefore, the correct answer is option a. Methanoate ion and hydronium (H3O+), as these are the dissociation products when methanoic acid is mixed with water. The other options, b. Methanoic acid and hydroxide (OH-), c. Methanoic acid and hydronium (H3O+), and d. Methanoate ion and hydroxide (OH-), are not the correct dissociation products for this reaction.
To learn more about formic acid click here: brainly.com/question/30620222
#SPJ11
Balance the combustion reaction in order to answer the question. Use lowest whole-number coefficients. combustion reaction: C₂H₂ + O₂ - CO,+H,O A conbustion reaction occurs between 5.5 mol O₂
The balanced combustion reaction is 2C₂H₂ + 5O₂ → 4CO + 2H₂O.
To balance the combustion reaction C₂H₂ + O₂ → CO + H₂O, we need to ensure that the number of atoms of each element is the same on both sides of the equation. Let's start by balancing the carbon atoms. There are two carbon atoms on the left side (2C₂H₂) and one carbon atom on the right side (CO). To balance the carbon atoms, we need a coefficient of 2 in front of CO.
Next, let's balance the hydrogen atoms. There are four hydrogen atoms on the left side (2C₂H₂) and two hydrogen atoms on the right side (H₂O). To balance the hydrogen atoms, we need a coefficient of 2 in front of H₂O.
Now, let's balance the oxygen atoms. There are four oxygen atoms on the right side (2CO + H₂O) and only two oxygen atoms on the left side (O₂). To balance the oxygen atoms, we need a coefficient of 5 in front of O₂.
The balanced combustion reaction is:
2C₂H₂ + 5O₂ → 4CO + 2H₂O.
In this balanced equation, there are two molecules of C₂H₂ reacting with five molecules of O₂ to produce four molecules of CO and two molecules of H₂O.
In conclusion, to balance the combustion reaction C₂H₂ + O₂ → CO + H₂O, we need the coefficients 2, 5, 4, and 2, respectively, resulting in the balanced equation 2C₂H₂ + 5O₂ → 4CO + 2H₂O.
Learn more about balancing chemical reactions.
brainly.com/question/884053
#SPJ11
Question 12 of 24 Submit What is the correct common name for the compound shown here? methyl iso propyl ether ether
The correct common name for the compound shown below is Methyl isopropyl ether. So, the option "methyl iso propyl ether" is correct.
Common names are not standardized names, and they may differ from one place to another. The IUPAC (International Union of Pure and Applied Chemistry) system is the standard way of naming chemical compounds. UPAC is best known for its works standardizing nomenclature in chemistry, but IUPAC has publications in many science fields including chemistry, biology and physics. Some important work IUPAC has done in these fields includes standardizing nucleotide base sequence code names; publishing books for environmental scientists, chemists, and physicists; and improving education in science The names can be long, but they are precise and identify the chemical compound exactly. The IUPAC name for the compound shown below is 1-methoxy-2-methylpropane or alternatively methyl 2-methoxypropane.
To know more about IUPAC, visit:
https://brainly.com/question/16631447
#SPJ11