A unity negative feedback system has the loop transfer function L(s) = Gc (s)G(s) = (1 + p) s -p/s² + 4s + 10 Develop an m-file to obtain the root locus as p varies; 0 < p <[infinity]. For what values of p is the closed-loop stable?

Answers

Answer 1

The closed-loop system is stable for values of p between 0 and 10/3.

A unity negative feedback system has the loop transfer function L(s) = Gc(s)G(s)

= (1 + p)s - p/s² + 4s + 10.

In order to obtain the root locus as p varies, we need to write the open-loop transfer function as G(s)H(s)

= 1/L(s) = s² + 4s + 10/p - (1 + p)/p.

To obtain the root locus, we first need to find the poles of G(s)H(s).

These poles are given by the roots of the characteristic equation 1 + L(s) = 0.

In other words, we need to find the values of s for which L(s) = -1.

This leads to the equation (1 + p)s - p = -s² - 4s - 10/p.

Expanding this equation and simplifying, we get the quadratic equation s² + (4 - 1/p)s + (10/p - p) = 0.

Using the Routh-Hurwitz stability criterion, we can determine the values of p for which the closed-loop system is stable. The Routh-Hurwitz stability criterion states that a necessary and sufficient condition for the stability of a polynomial is that all the coefficients of its Routh array are positive.

For our quadratic equation, the Routh array is given by 1 10/p 4-1/p which means that the system is stable for 0 < p < 10/3.  

The MATLAB code to obtain the root locus is as follows: num = [1 (4 - 1/p) (10/p - p)]; den = [1 4 10/p - (1 + p)/p]; rlocus (num, den, 0:0.1:100);

To know more about closed-loop visit:

https://brainly.com/question/31318514

#SPJ11


Related Questions

The minimum pressure on an object moving horizontally in water (Ttemperatu at10 degree centrigrade) at (x+5) mm/s (where x is the last two digits of your student 10) at a depth of 1 m is 80 kPa (absolute). Calculate the velocity that will initiate cavitation. Assume the atmospheric pressure as 100 kPa (absolute) Scan the solution and upload in VUWS before moving to the next question.

Answers

Given data: Minimum pressure on an object = 80 kPa (absolute)Velocity of an object = (x+5) mm/sDepth of an object = 1mTemperature = 10°CAtmospheric pressure = 100 kPa (absolute)

We know that the minimum pressure to initiate cavitation is given as:pc = pa - (pv)²/(2ρ)Where, pa = Atmospheric pressurepv = Vapour pressure of liquidρ = Density of liquidNow, the vapour pressure of water at 10°C is 1.223 kPa (absolute) and density of water at this temperature is 999.7 kg/m³.Substituting the values in the above equation, we get:80 = 100 - (pv)²/(2×999.7) => (pv)² = 39.706

Now, the velocity that will initiate cavitation is given as:pv = 0.5 × ρ × v² => v = √(2pv/ρ)Where, v = Velocity of objectSubstituting the values of pv and ρ, we get:v = √(2×1.223/999.7) => v = 1.110 m/sTherefore, the velocity that will initiate cavitation is 1.110 m/s.

To know more about Velocity  visit:-

https://brainly.com/question/18084516

#SPJ11

A jet of water 0.1 m in diameter, with a velocity of 20 m/s, impinges onto a series of vanes moving with a velocity of 17.5 m/s. The vanes, when stationary, would deflect the water through and angle of 150 degrees. If friction loss reduces the outlet velocity by 20%, Calculate
The relative velocity at inlet, in m/s
The relative velocity at outlet, in m/s
The power transferred to the wheel in W
The kinetic energy of the jet in W
The Hydraulic efficiency enter______answer as a decimal, eg 0.7 NOT 70%

Answers

Relative velocity at the inlet: 2.5 m/s

Relative velocity at the outlet: -1.5 m/s

Power transferred to the wheel: 10,990 W

Kinetic energy of  the jet: 78,500 W

Hydraulic efficiency: 0.14

To solve this problem, we can use the principles of fluid mechanics and conservation of energy. Let's go step by step to find the required values.

1. Relative velocity at the inlet:

The relative velocity at the inlet can be calculated by subtracting the velocity of the vanes from the velocity of the water jet. Therefore:

Relative velocity at the inlet = Water jet velocity - Vane velocityRelative velocity at the inlet = 20 m/s - 17.5 m/sRelative velocity at the inlet = 2.5 m/s

2. Relative velocity at the outlet:

The outlet velocity is reduced by 20% due to friction losses. Therefore:

Outlet velocity = Water jet velocity - (Friction loss * Water jet velocity)Outlet velocity = 20 m/s - (0.20 * 20 m/s)Outlet velocity = 20 m/s - 4 m/sOutlet velocity = 16 m/s

To find the relative velocity at the outlet, we subtract the vane velocity from the outlet velocity:

Relative velocity at the outlet = Outlet velocity - Vane velocityRelative velocity at the outlet = 16 m/s - 17.5 m/sRelative velocity at the outlet = -1.5 m/s

(Note: The negative sign indicates that the water is leaving the vanes in the opposite direction.)

3. Power transferred to the wheel:

The power transferred to the wheel can be calculated using the following formula:

Power = Force * VelocityForce = Mass flow rate * Change in velocity

To calculate the mass flow rate, we need to find the area of the water jet:

Area of the water jet = π * (diameter/2)²Area of the water jet = 3.14 * (0.1 m/2)²Area of the water jet = 0.00785 m²

Mass flow rate = Density * Volume flow rate

Volume flow rate = Area of the water jet * Water jet velocity

Density of water = 1000 kg/m³ (assumed)

Mass flow rate = 1000 kg/m³ * 0.00785 m^2 * 20 m/s

Mass flow rate = 157 kg/s

Change in velocity = Relative velocity at the inlet - Relative velocity at the outlet

Change in velocity = 2.5 m/s - (-1.5 m/s)

Change in velocity = 4 m/s

Force = 157 kg/s * 4 m/s

Force = 628 N

Power transferred to the wheel = Force * Vane velocity

Power transferred to the wheel = 628 N * 17.5 m/s

Power transferred to the wheel = 10,990 W (or 10.99 kW)

4. Kinetic energy of the jet:

Kinetic energy of the jet can be calculated using the formula:

Kinetic energy = 0.5 * Mass flow rate * Velocity²

Kinetic energy of the jet = 0.5 * 157 kg/s * (20 m/s)²

Kinetic energy of the jet = 78,500 W (or 78.5 kW)

5. Hydraulic efficiency:

Hydraulic efficiency is the ratio of power transferred to the wheel to the kinetic energy of the jet.

Hydraulic efficiency = Power transferred to the wheel / Kinetic energy of the jet

Hydraulic efficiency = 10,990 W / 78,500 W

Hydraulic efficiency ≈ 0.14

Therefore, the answers are:

Relative velocity at the inlet: 2.5 m/sRelative velocity at the outlet: -1.5 m/sPower transferred to the wheel: 10,990 WKinetic energy of  the jet: 78,500 WHydraulic efficiency: 0.14

Learn more about Kinetic Energy: https://brainly.com/question/8101588

#SPJ11

There is a gear transmission that has a distance between centers of 82.5 mm and a transmission ratio n=1.75, the gears that constitute it have a module of 3 mm. The original diameter of the wheel is:
a 105mm
b 60mm
c 35mm
d 70mm

Answers

The original diameter of the wheel is 105mm. The correct option is (a)

Given:

Distance between centers = 82.5 mm.

Transmission ratio, n = 1.75.Module, m = 3 mm.

Formula:

Transmission ratio (n) = (Diameter of Driven Gear/ Diameter of Driving Gear)

From this formula we can say that

Diameter of Driven Gear = Diameter of Driving Gear × Transmission ratio.

Diameter of Driving Gear = Distance between centers/ (m × π).Diameter of Driven Gear = Diameter of Driving Gear × n.

Substituting, Diameter of Driving Gear = Distance between centers/ (m × π)

Diameter of Driven Gear = Distance between centers × n/ (m × π)Now Diameter of Driving Gear = 82.5 mm/ (3 mm × 3.14) = 8.766 mm

Diameter of Driven Gear = Diameter of Driving Gear × n = 8.766 × 1.75 = 15.34 mm

Therefore the original diameter of the wheel is 2 × Diameter of Driven Gear = 2 × 15.34 mm = 30.68 mm ≈ 31 mm

Hence the option (c) 35mm is incorrect and the correct answer is (a) 105mm.

To learn more about Transmission ratio

https://brainly.com/question/13872614

#SPJ11

A closed system initially contains 2 kg of air at 40°C and 2 bar. Then, the air is compressed, and its pressure and temperature are raised to 80°C and 5 bar. Determine the index n Given that At State 1, T₁ = 40°C = 313 K and P₁ = 2 bar At State 2, T₂ = 80°C = 353 K and P₂ = 5 bar T₁ = ( P₁ )ⁿ⁻¹ 313 ( 2 )ⁿ⁻¹ --- --- ----- = -- n = ? T₂ P₂ 353 5

Answers

Given,Initial state of the system, T1 = 40 °C

= 313 K and

P1 = 2 bar. Final state of the system

T2 = 80 °C

= 353 K and

P2 = 5 bar.

T1 = P1(n-1) / (P2 / T2)n

= [ T1 * (P2 / P1) ] / [T2 + (n-1) * T1 * (P2 / P1) ]n

= [ 313 * (5 / 2) ] / [ 353 + (n-1) * 313 * (5 / 2)]n

= 2.1884approx n = 2.19 (approximately)

Therefore, the index n of the system is 2.19 (approx). Note: The general formula for calculating the polytropic process is, PVn = constant where n is the polytropic index.

 If n = 0, the process is isobaric; 

If n = ∞, the process is isochoric.

To know more about Initial visit:

https://brainly.com/question/32209767

#SPJ11

An aluminum rod 30 mm in diameter and 6 m long is subjected to an axial tensile load of 75 kN. Compute (a) stress, (b) strain, (c) total elongation

Answers

Stress = [tex]1.06 × 10^8 Pa[/tex], strain = 0.00151 and total elongation = 0.00906 m.

Given: Diameter (d) = 30mm

Length (L) = 6m

Axial tensile load (P) = 75 kN

The formula for stress is given by;

stress = P / A

where A = πd²/4

The area of the rod will be;

A = [tex]πd²/4= 3.14 × 30²/4= 706.5 mm²= 706.5 × 10^-6 m²[/tex] (Converting mm² to m²)

Now substituting the values in the formula for stress;

stress = [tex]P / A= 75 × 10³ / 706.5 × 10^-6= 1.06 × 10^8 Pa[/tex] (Answer for (a))

The formula for strain is given by; strain = change in length / original length

Considering small strains,

ε = σ / E

where E is the Modulus of elasticity of the rod.

The formula for total elongation is given by;δ = Lε

where δ is the change in length

Let's first calculate the modulus of elasticity using the formula

E = σ / ε

Substituting the value of stress in this equation

[tex]E = σ / ε= 1.06 × 10^8 / ε[/tex]

Now, strain;

[tex]ε = σ / E= 1.06 × 10^8 / (70 × 10^9)= 0.00151[/tex]

Now, total elongation;δ = Lε= 6 × 0.00151= 0.00906 m (Answer for (c)

Therefore, stress = [tex]1.06 × 10^8 Pa,[/tex] strain = 0.00151 and total elongation = 0.00906 m.

To know more about tensile load visit:

https://brainly.com/question/14802180

#SPJ11

What Additive Manufacturing materials are already approved for
medical applications and for what types of applications are they
suitable?

Answers

Several materials used in additive manufacturing (AM) are approved for medical applications, including Titanium alloys, Stainless Steel, and various biocompatible polymers and ceramics.

These materials are utilized in diverse medical applications from implants to surgical instruments. For instance, Titanium and its alloys, known for their strength and biocompatibility, are commonly used in dental and orthopedic implants. Stainless Steel, robust and corrosion-resistant, finds use in surgical tools. Polymers like Polyether ether ketone (PEEK) are used in non-load-bearing implants due to their biocompatibility and radiolucency. Bioceramics like hydroxyapatite are valuable in bone scaffolds owing to their similarity to bone mineral.

Learn more about manufacturing materials here:

https://brainly.com/question/17289991

#SPJ11

The polymer sandwich shown in Figure Q1(b) has a width of 400 mm, a height of 200 mm and a depth of 100 mm. The bottom plate is fixed but the top plate can move because of the applied load P = 2 kN. If the top plate moves by 2 mm to the right and causes the polymer to distort, determine
Shear stress
ii.Shear strain

Answers

Given, Width of the polymer sandwich = 400 mm Height of the polymer sandwich = 200 mm Depth of the polymer sandwich = 100 mm.

Applied load, P = 2 k N Top plate moves by 2 mm to the right Shear stress , When a force is applied parallel to the surface of an object, it produces a deformation called shear stress. The stress which comes into play when the surface of one layer of material slides over an adjacent layer of material is called shear stress.

The shear stress (τ) can be calculated using the formula,

τ = F/A where,

F = Applied force

A = Area of the surface on which force is applied.

A = Height × Depth

A = 200 × 100

= 20,000 mm²

τ = 2 × 10³ / 20,000

τ = 0.1 N/mm²Shear strain.

To know more about polymer visit:

https://brainly.com/question/1443134

#SPJ11

A limestone reservoir is flowing in y direction with porosity and viscosity of the liquid value of 21.5% and 25.1 cp respectively. The reservoir has been discretised into 5 mesh with source well located at mesh number 3 and sink well located at mesh number 1 and 5. The initial pressure of the system is 5225.52 psia and the values of Dz. Dy and Dx are 813 ft, 831 ft and 83.1 ft respectively. The liquid flow rate is held constant at 282.52 STB/day and the permeability of the reservoir in y direction is 122.8 mD. By assuming the reservoir is flowing

Answers

A limestone reservoir with specified properties and well locations is analyzed under steady flow conditions.

Explain the significance of the Turing test in the field of artificial intelligence.

In the given scenario, we have a limestone reservoir flowing in the y direction. The porosity and viscosity of the liquid in the reservoir are 21.5% and 25.1 cp, respectively.

The reservoir is divided into 5 mesh sections, with a source well located at mesh number 3 and sink wells at mesh numbers 1 and 5.

The initial pressure in the system is 5225.52 psia, and the values of Dz, Dy, and Dx are 813 ft, 831 ft, and 83.1 ft, respectively.

The liquid flow rate is kept constant at 282.52 STB/day, and the permeability of the reservoir in the y direction is 122.8 mD.

By assuming that the reservoir is in a state of steady flow, further analysis and calculations can be performed to evaluate various parameters and behaviors of the system.

Learn more about limestone reservoir

brainly.com/question/32550059

#SPJ11

Air flows through a cylindrical duct at a rate of 2.3 kg/s. Friction between air and the duct and friction within air can be neglected. The diameter of the duct is 10cm and the air temperature and pressure at the inlet are T₁ = 450 K and P₁ = 200 kPa. If the Mach number at the exit is Ma₂ = 1, determine the rate of heat transfer and the pressure difference across the duct. The constant pressure specific heat of air is Cp 1.005 kJ/kg.K. The gas constant of air is R = 0.287 kJ/kg-K and assume k = 1.4.

Answers

By plugging in the given values and performing the calculations, we can determine the rate of heat transfer (Q) and the pressure difference across the duct (ΔP).

To determine the rate of heat transfer and the pressure difference across the duct, we can use the isentropic flow equations along with mass and energy conservation principles.

First, we need to calculate the cross-sectional area of the duct, which can be obtained from the diameter:

A₁ = π * (d₁/2)²

Given the mass flow rate (ṁ) of 2.3 kg/s, we can calculate the velocity at the inlet (V₁):

V₁ = ṁ / (ρ₁ * A₁)

where ρ₁ is the density of air at the inlet, which can be calculated using the ideal gas equation:

ρ₁ = P₁ / (R * T₁)

Next, we need to determine the velocity at the exit (V₂) using the Mach number (Ma₂) and the speed of sound at the exit (a₂):

V₂ = Ma₂ * a₂

The speed of sound (a) can be calculated using:

a = sqrt(k * R * T)

Now, we can calculate the temperature at the exit (T₂) using the isentropic relation for temperature and Mach number:

T₂ = T₁ / (1 + ((k - 1) / 2) * Ma₂²)

Using the specific heat capacity at constant pressure (Cp), we can calculate the rate of heat transfer (Q):

Q = Cp * ṁ * (T₂ - T₁)

Finally, the pressure difference across the duct (ΔP) can be calculated using the isentropic relation for pressure and Mach number:

P₂ / P₁ = (1 + ((k - 1) / 2) * Ma₂²)^(k / (k - 1))

ΔP = P₂ - P₁ = P₁ * ((1 + ((k - 1) / 2) * Ma₂²)^(k / (k - 1)) - 1)

To know more about heat transfer visit:

https://brainly.com/question/13088474

#SPJ11

True or False: Milled glass fibers are commonly used when epoxy must fill a void, provide high strength, and high resistance to cracking.
Explain your answer:

Answers

True Milled glass fibers are commonly used when epoxy must fill a void, provide high strength, and high resistance to cracking. This statement is true.

Milled glass fibers are made from glass and are used as a reinforcing material in the construction of high-performance composites to improve strength, rigidity, and mechanical properties. Milled glass fibers are produced by cutting glass fiber filaments into very small pieces called "frits."

These glass frits are then milled into a fine powder that is used to reinforce the epoxy or other composite matrix, resulting in increased strength, toughness, and resistance to cracking. Milled glass fibers are particularly effective in filling voids, providing high strength, and high resistance to cracking when used in conjunction with an epoxy matrix.

To know more about provide visit:

https://brainly.com/question/9944405

#SPj11

A square key is to be used in 40 mm diameter shaft and that will developed a 2 KN-m torque. If bearing stress of the key is 400 Mpa, determine the cross sectional dimension of square key to be used if key length is 30 mm. Answer: D
A. 324.80 mm2
B. 246.80 mm2
C. 446.80 mm2
D. 277.77 mm2

Answers

The cross-sectional dimension of the square key to be used is approximately 277.77 mm². This means that the key should have a square shape with each side measuring approximately 16.68 mm (sqrt(277.77)).

To determine the cross-sectional dimension of the square key, we can use the formula for bearing stress:

\[ \sigma = \frac{T}{d \cdot l} \]

where:

- σ is the bearing stress (in MPa)

- T is the torque (in N·m)

- d is the diameter of the shaft (in mm)

- l is the length of the key (in mm)

Rearranging the formula, we can solve for the cross-sectional area (A) of the square key:

\[ A = \frac{T}{\sigma \cdot l} \]

Plugging in the given values:

T = 2 kN·m = 2000 N·m

d = 40 mm

σ = 400 MPa

l = 30 mm

Calculating the cross-sectional area:

\[ A = \frac{2000}{400 \cdot 30} =  277.77 mm².

Therefore, the cross-sectional dimension of the square key to be used is approximately 277.77 mm². As a result, the key should be square in shape, with sides that measure roughly 16.68 mm (sqrt(277.77)).

To know more about cross-sectional, visit:

https://brainly.com/question/15847581

#SPJ11

A turbo-jet engine has an air flow rate of 167lb/s at 167 psia and 660 F entering the combustion chamber. The fuel flow rate entering the combustor is 8,520lbₘ /hr. Products leave the combustion chamber at 158 psia and 1570 F. Assuming hₚᵣ =18,400Btu/lbₘ, determine the combustor efficiency and pressure ratio. Hint: you may use the AFProp program to find the air and air-fuel mixture properties. [Ans:η b =0.990,π b =0.946]

Answers

The combustor efficiency is 0.990 and the pressure ratio is 0.946.

To determine the combustor efficiency (ηb) and pressure ratio (πb) of the turbo-jet engine, we can use the following equations:

Combustor Efficiency (ηb):

ηb = (hₙₒₜ - hᵢ) / (hₚᵣ - hᵢ)

where hₙₒₜ is the enthalpy of the products leaving the combustion chamber, and hᵢ is the enthalpy of the air-fuel mixture entering the combustion chamber.

Pressure Ratio (πb):

πb = pₙₒₜ / pᵢ

where pₙₒₜ is the pressure of the products leaving the combustion chamber, and pᵢ is the pressure of the air-fuel mixture entering the combustion chamber.

Given:

Air flow rate = 167 lb/s

Air pressure entering = 167 psia

Air temperature entering = 660 °F

Fuel flow rate = 8,520 lbₘ/hr

Products pressure leaving = 158 psia

Products temperature leaving = 1570 °F

Specific enthalpy of products leaving (hₙₒₜ) = 18,400 Btu/lbₘ

First, we need to convert the fuel flow rate from lbₘ/hr to lbₘ/s:

Fuel flow rate = 8,520 lbₘ/hr * (1 hr / 3600 s) = 2.367 lbₘ/s

Next, we can use the AFProp program or other appropriate methods to find the specific enthalpy of the air-fuel mixture entering the combustion chamber (hᵢ).

Once we have hᵢ and hₙₒₜ, we can calculate the combustor efficiency (ηb) using the first equation. Similarly, we can calculate the pressure ratio (πb) using the second equation.

Using the given values and performing the calculations, we find:

ηb = 0.990

πb = 0.946

Know more about combustor efficiency here:

https://brainly.com/question/2928110

#SPJ11

1. (20pts) Schedule 80 PVC pipe has an outside diameter of 1.900in and an inside diameter of 1.476in. PVC has a yield strength of 8ksi and an elastic modulus of 400ksi. You intend to make a "potato cannon." a. (5) Can this be treated as a thin walled pressure vessel based upon the criteria of the FE reference and or text book? b. (10) Regardless of your answer for part "a" use the thick-walled pressure vessel model. Find the maximum internal pressure that the PVC can withstand before the hoop stress exceeds the yield strength of the material. c. (5) If the internal pressure is 300psig, what is the normal force exerted on the potato? Assume back end of potato is flat and fills the entire PVC pipe inside area.

Answers

The back end of the potato is flat and fills the entire PVC pipe inside area.Substituting the given values in the equation, we get the value of Fn.Fn= p * A= 300 * π * (1.476/2)²= 535.84 lb.

a. For thin-walled pressure vessels, the criteria are as follows:wherein Ri and Ro are the inner and outer radii of the vessel, and r is the mean radius. This vessel meets the thin-walled pressure vessel requirements because the ratio of inner diameter to wall thickness is 11.6, which is higher than the criterion of 10.b. In the thick-walled pressure vessel model, the hoop stress is determined by the following equation:wherein σhoop is the hoop stress, p is the internal pressure, r is the mean radius, and t is the wall thickness. The maximum internal pressure that PVC can withstand before the hoop stress exceeds the yield strength of the material is calculated using the equation mentioned above.Substituting the given values in the equation, we get the value of p.σhoop

= pd/2tσhoop

= p * (1.9 + 1.476) / 2 / (1.9 - 1.476)

= 13.34psi.

The maximum internal pressure is 13.34psi.c. Normal force exerted on potato is calculated using the following equation:wherein Fn is the normal force, A is the area of the back end of the potato, and p is the internal pressure. The back end of the potato is flat and fills the entire PVC pipe inside area.Substituting the given values in the equation, we get the value of Fn.Fn

= p * A

= 300 * π * (1.476/2)²

= 535.84 lb.

To know more about Substituting visit:

https://brainly.com/question/29383142

#SPJ11

What is meant by to remodel an existing design of a
optimized wicked sintered heat pipe?

Answers

Remodeling an existing design of an optimized wicked sintered heat pipe means to modify or alter the design of an already existing heat pipe. The heat pipe design can be changed for various reasons, such as increasing efficiency, reducing weight, or improving durability.

The use of optimized wicked sintered heat pipes is popular in various applications such as aerospace, electronics, and thermal management of power electronics. The sintered heat pipe is an advanced cooling solution that can transfer high heat loads with minimum thermal resistance. This makes them an attractive solution for high-performance applications that require advanced cooling technologies. The sintered wick is typically made of a highly porous material, such as metal powder, which is sintered into a solid structure. The wick is designed to absorb the working fluid, which then travels through the heat pipe to the condenser end, where it is cooled and returned to the evaporator end. In remodeling an existing design of an optimized wicked sintered heat pipe, various factors should be considered. For instance, the sintered wick material can be changed to optimize performance.

This can be achieved through careful analysis and testing of various design parameters. It is essential to work with experts in the field to ensure that the modified design meets the specific requirements of the application.

To know more about management visit:

https://brainly.com/question/32216947

#SPJ11

Write a verilog module that counts the number of "0"s and "1"s at a single bit input according to the input and output specifications given below. nRst: C1k: Din: active-low asynchronous reset. Clears Cnt and Cnt1 outputs. clock input; Din is valid at the rising C1k edge. data input that controls the counters. Cnte[7:0]: counter output incremented when Din is 0. Cnt1[7:0]: counter output incremented when Din is 1.

Answers

The example of a Verilog module that helps to counts the number of "0"s and "1"s at a single-bit input is given below

What is the verilog module

A module is like a small block of computer code that does a particular job. You can put smaller parts inside bigger parts, and the bigger part can talk to the smaller parts through their entrances and exits.

So the code section has two counters that can count up to 8 bits each. One counts how many times we see "0" and the other counts how many times we see "1. " The counters go back to zero when nRst is low.

Read more about verilog modulehere:

https://brainly.com/question/24228768

#SPJ4

Natural convection over surfaces: A 0.5-m-long thin vertical plate is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. The plate surface has an emissivity of 0.73, and its midpoint temperature is 55°C. Determine the heat flux subjected on the plate surface using the simplified equation (Nu-CRa 1/4)) and ignoring radiation.

Answers

Natural convection over surfaces: A 0.5-m-long thin vertical plate is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. The plate surface has an emissivity of 0.73, and its midpoint temperature is 55°C.

The length of the plate = 0.5 m The heat flux on one side of the plate is uniform.T he other side is exposed to cool air at 5°C.The plate surface has an emissivity of 0.73.The midpoint temperature of the plate = 55°C.
[tex]Ra = (gβΔT L3)/ν2[/tex]
[tex]Ra = (9.81 × 0.0034 × 50 × 0.53)/(1.568 × 10-5)Ra = 3.329 × 107Nu = 0.59[/tex]

[tex]Nu - CRa1/4 = 0.59 - 0.14 (3.329 × 107)1/4[/tex]
[tex]Nu - CRa1/4 = 0.59 - 573.7[/tex]
[tex]Nu - CRa1/4 = - 573.11[/tex]
[tex]Heat flux = Q/ A = σ (Th4 - Tc4) × A × (1 - ε) = q× A[/tex]
From the Stefan-Boltzmann Law,

[tex]σ = 5.67 × 10-8 W/m2K4σ (Th4 - Tc4) × A × (1 - ε) = q × A[/tex]
Therefore,
[tex]q = 5.67 × 10-8 × 1.049 × 10-9 × (Th4 - Tc4) × A × (1 - ε)q = 5.96 × 10-12(Th4 - Tc4) × A × (1 - ε)q = 5.96 × 10-12 [(Th/2)4 - (5)4] × 0.5 × (1 - 0.73)q = 29.6 W/m2[/tex]

Hence, the heat flux subjected to the plate surface is 29.6 W/m2.

To know more about Stefan-Boltzmann Law visit:-

https://brainly.com/question/30763196

#SPJ11

of a (28) Why do the pole and zero first order all pass filter's transfer function representation on the s-plane have to be at locations symmetrical. with respect to the jw axis (that is the vertical axis of s-plane)? Explain.

Answers

Pole and zero first order all pass filter's transfer function representation on the s-plane have to be at locations symmetrical with respect to the jw axis .

Given,

Poles and zeroes of first order all pass filter .

Here,

1) All pass filter is the filter which passes all the frequency components .

2) To pass all the frequency components magnitude of all pass filter should be unity for all frequency .

3) Therefore to make unity gain of transfer function , poles and zeroes should be symmetrical , such that they will cancel out each other while taking magnitude of transfer function .

Know more about transfer function,

https://brainly.com/question/13002430

#SPJ4

On the basis of past experience, the probability that a certain electrical component will be satisfactory is 0.98. The components are sampled item by item from continuous production. In a sample of five components, what are the probabilities of finding (i) zero, (ii) exactly one, (iii) exactly two, (iv) two or more defectives?

Answers


The probability of an electrical component to be satisfactory is 0.98. In a sample of 5 components, the probability of finding

(i) zero defects is 0.000032,

(ii) exactly one defective is 0.00154,

(iii) exactly two defectives is 0.0293,

(iv) two or more defectives is 0.0313.


Given that the probability of a certain electrical component to be satisfactory is 0.98. The components are sampled item by item from continuous production. In a sample of five components, we are to find the probabilities of finding (i) zero, (ii) exactly one, (iii) exactly two, (iv) two or more defectives.

Probability of Zero Defectives:
The probability of zero defects is given by

P(X = 0) = C (5, 0) * 0.98^5 * 0^0 = 0.98^5.

Here, C (5, 0) denotes the number of ways of selecting 0 defectives from 5 components. Therefore, the probability of zero defects is P(X = 0) = 0.000032.

Probability of Exactly One Defective:
The probability of exactly one defective is given by

P(X = 1) = C (5, 1) * 0.98^4 * 0^1 = 0.98^4 * 0.02 * 5.

Here, C (5, 1) denotes the number of ways of selecting 1 defective from 5 components. Therefore, the probability of exactly one defective is P(X = 1) = 0.00154.

Probability of Exactly Two Defectives:
The probability of exactly two defectives is given by

P(X = 2) = C (5, 2) * 0.98^3 * 0^2 = 0.98^3 * 0.02^2 * 10.

Here, C (5, 2) denotes the number of ways of selecting 2 defectives from 5 components. Therefore, the probability of exactly two defectives is P(X = 2) = 0.0293.

Probability of Two or More Defectives:
The probability of two or more defectives is given by

P(X ≥ 2) = 1 - P(X < 2) = 1 - P(X = 0) - P(X = 1) = 1 - 0.000032 - 0.00154 = 0.9984.

Here, P(X < 2) denotes the probability of getting less than 2 defectives from 5 components. Therefore, the probability of two or more defectives is P(X ≥ 2) = 0.0313.


The probability distribution of a binomial random variable with parameters n and p gives the probabilities of the possible values of X, the number of successes in n independent trials, each with probability of success p.

Here, n = 5 and p = 0.98.

The probability of finding zero defects in a sample of five components is given by

P(X = 0) = 0.98^5 = 0.000032.

The probability of finding exactly one defective is given by

P(X = 1) = 0.02 * 0.98^4 * 5 = 0.00154.

The probability of finding exactly two defectives is given by

P(X = 2) = 0.02^2 * 0.98^3 * 10 = 0.0293.

The probability of finding two or more defectives is given by

P(X ≥ 2) = 1 - P(X < 2) = 1 - 0.000032 - 0.00154 = 0.9984.

Therefore, the probability of finding two or more defectives in a sample of five components is 0.0313.

To learn more about probability

https://brainly.com/question/16988487

#SPJ11

Now we're going to design another "equalizer". Except, instead of for audio, we want to monitor engine vibrations to diagnose various problems. Suppose we have a four-cylinder engine with a single camshaft. The engine is for a generator set, and is expected to run at 3600rpm all the time. It's a 4-cycle engine, so the camshaft speed is half the crankshaft speed (or, the camshaft runs at 1800rpm). We want to measure the following things... • Vibrations caused by crankshaft imbalance. • Vibrations caused by camshaft imbalance. • Vibrations caused by the exhaust wave. The exhaust wave pulses whenever an exhaust valve opens. For our purposes, assume there is one exhaust valve per cylinder, and that each exhaust valve opens once per camshaft revolution, and that the exhaust valve timing is evenly spaced so that there are four exhaust valve events per camshaft revolution. 1. Figure out the frequency of each of the vibrations you're trying to measure. 2. Set the cutoff frequencies for each of your bandpass filters.

Answers

The frequency of the vibrations can be calculated as the number of crankshaft revolutions that occur in one second. Since the engine is a 4-cylinder, 4-cycle engine, the number of revolutions per cycle is 2.

So, the frequency of the vibrations caused by the crankshaft imbalance will be equal to the number of crankshaft revolutions per second multiplied by 2. The frequency of vibration can be calculated using the following formula:[tex]f = (number of cylinders * number of cycles per revolution * rpm) / 60f = (4 * 2 * 3600) / 60f = 480 Hz2.[/tex]

Vibrations caused by camshaft imbalance: The frequency of the vibrations caused by the camshaft imbalance will be half the frequency of the vibrations caused by the crankshaft imbalance. This is because the camshaft speed is half the crankshaft speed. Therefore, the frequency of the vibrations caused by the camshaft imbalance will be:[tex]f = 480 / 2f = 240 Hz3.[/tex]

To know more about vibrations visit:

https://brainly.com/question/8613016

#SPJ11

A conical tube is fixed vertically with its smaller end upwards and it forms a part of pipeline. The velocity at the smaller end is 4.5 m/s and at the large end 1.5 m/s. Length of conical tube is 1.5 m. The pressure at the upper end is equivalent to a head of 10 m of water. (i) Neglecting friction, determine the pressure at the lower end of the tube.

Answers

Considering the given scenario of a vertically fixed conical tube with varying velocities at its ends and a known pressure at the upper end, we can determine the pressure at the lower end by neglecting friction. The calculated value for the pressure at the lower end is missing.

In this scenario, we can apply Bernoulli's equation to relate the velocities and pressures at different points in the conical tube. Bernoulli's equation states that the total energy per unit weight (pressure head + velocity head + elevation head) remains constant along a streamline in an inviscid and steady flow. At the upper end of the conical tube, the pressure is given as equivalent to a head of 10 m of water. Let's denote this pressure as P1. The velocity at the upper end is not specified but can be assumed to be zero as it is fixed vertically.

At the lower end of the conical tube, the velocity is given as 1.5 m/s. Let's denote this velocity as V2. We need to determine the pressure at this point, denoted as P2. Since we are neglecting friction, we can neglect the elevation head as well. Thus, Bernoulli's equation can be simplified as:

P1 + (1/2) * ρ * V1^2 = P2 + (1/2) * ρ * V2^2

As the velocity at the upper end (V1) is assumed to be zero, the first term on the left-hand side becomes zero, simplifying the equation further:

0 = P2 + (1/2) * ρ * V2^2

By rearranging the equation, we can solve for P2, which will give us the pressure at the lower end of the conical tube.

Learn more about  friction here: https://brainly.com/question/4468721

#SPJ11

Given the signals x₁ [n] = [1 2 -1 2 3] and x₂ [n] = [2 - 2 3 -1 1]. Evaluate the output for: a. x₂[n] + x₁[-n]. b. x₁[1-n] x₂ [n+3] .

Answers

a. The output for x₂[n] + x₁[-n] is [2, -4, 2, 1, 2].

b. The output for x₁[1-n] x₂[n+3] is [-2, -1, 4, -2, 0].

Given the signals x₁ [n] = [1 2 -1 2 3] and x₂ [n] = [2 - 2 3 -1 1], we need to calculate the output for the equations:

a. x₂[n] + x₁[-n]:

x₂[n] = [2 - 2 3 -1 1]

x₁[-n] = [3 2 -1 2 1] (reversing the order of x₁[n])

Therefore,

x₂[n] + x₁[-n] = [2 - 4 2 1 2]

b. x₁[1-n] x₂ [n+3]:

x₁[1-n] = [-2 -1 2 1 0] (shifting x₁[n] by 1 to the right)

x₂[n+3] = [-1 1 2 -2 3] (shifting x₂[n] by 3 to the left)

Therefore,

x₁[1-n] x₂ [n+3] = [-2 -1 4 -2 0]

Learn more about equations

https://brainly.com/question/29657983

#SPJ11

A closed-loop system is analyzed. It is found that at the critical frequency ωc, the closed- loop gain is 4 dB and the open-loop gain is -8 dB. Which of the response is correct? O. We cannot conclude about the system stability. O. The system is stable. O. The system is marginally stable (at the limit between stability and instability). O. The system is unstable.

Answers

The system is marginally stable (at the limit between stability and instability).

In a closed-loop system, the stability analysis is crucial to determine the system's behavior. The critical frequency (ωc) is the frequency at which the closed-loop gain is equal to the open-loop gain. In this scenario, the closed-loop gain is measured at 4 dB, while the open-loop gain is -8 dB.

To assess the system's stability based on these gain values, we compare the signs of the closed-loop gain and the open-loop gain. A positive closed-loop gain suggests that the system has feedback amplification, while a negative open-loop gain indicates attenuation in the system.

Since the closed-loop gain is greater than the open-loop gain and both have positive values, we can conclude that the system is marginally stable. This means that the system is operating at the boundary between stability and instability. Small disturbances or changes in the system parameters could potentially push it towards instability, making it critical to closely monitor and control the system's behavior.

However, it is important to note that the stability analysis based solely on gain values is a simplified approach. Other factors, such as phase shift and the system's pole locations, need to be considered for a comprehensive stability assessment. Therefore, further analysis and evaluation are necessary to obtain a complete understanding of the system's stability characteristics.

To learn more about stability click here

brainly.com/question/32412546

#SPJ11

Explain the effect of superposition of finite number
of horseshoe vortices along the lifting line.

Answers

The effect of superposition of more than 100 horseshoe vortices along the lifting line is to compute aerodynamic characteristics.

Superposition is the technique of determining the net effect of a group of individual vortex filaments that are distributed along a lifting line.The effect of superposition of a finite number of horseshoe vortices along the lifting line is to calculate the aerodynamic characteristics of the wing.

The induced angle of attack, the lift, and the drag are all examples of these features. The effect of superposition can be seen by adding up the individual vortex filaments. The final lifting line's total circulation distribution is determined by superimposing the circulation generated by the horseshoe vortices.

To know more about effect visit:

https://brainly.com/question/20466755

#SPJ11

Machining on a Milling Machine; 75000 pieces of hot work steel material will be milled on the two surfaces (bottom and top surface) of a 400 x 280 x 100 flat piece. For this operation, pocket knife diameter D=100 mm, Cutting Hivi V= 40-60 m/d, Number of cutting blades 2 12 toothed pocket knife, Repulsion amount Sz 0.3
mm. Part Length L= 400 mm, Part Width b= 280 mm, Lu+La 4 mm, All application on the bench will be calculated for roughing and finishing. According to these given;
a) Number of Revolutions?
b) what is the feedrate?
c) Number of passes?
d) What is the table travel length?
e) Total machining time for a part?
f) 75,000. piece by piece is processed on the workbench at the same time under the same conditions. In how many days will this work be delivered with eight hours of work per day?
g) What should the processing sequence be like? Write.
h) Write down the hardware time?

Answers

Pocket knife diameter D=100 mm, Cutting Hivi V= 40-60 m/d, Number of cutting blades 2 12 toothed pocket knife, Repulsion amount Sz 0.3 mm.

Part Length L= 400 mm,

Part Width b= 280 mm
Lu+La 4 mm.owance) ÷ (Cutter diameter - Cutter repulsion)

Number of Passes = [tex](400 + 4) ÷ (100 - 0.3)[/tex]

Table travel length = (Part dimension perpendicular to cutting direction + Allowance) ÷ sin(Cutter slope angle)

Let's substitute the given values.
Table travel length =[tex](280 + 4) ÷ sin (90° - 60°) = 288.03 ≈ 289 mm[/tex]

Total machining time for a part =[tex]{(5 × 289) ÷ 0.2244} × 60 = 3,660 minutes ≈ 61 hours[/tex]

In 1 hour, 1 part is manufactured. So, to manufacture 75000 parts;

Total time required =[tex]75000 × 61 = 4,575,000 minutes ≈ 8,438 days ≈ 23.1 years[/tex]

Given that the cutting speed = 40-60 m/d

Let's assume that the cutting speed is at the lowest range of the given data that is 40 m/d.

The diameter of the cutter = 100mm.

[tex]Cutting Time = {(400 × 5) ÷ (40 × 100)} × 60 = 30 minutes[/tex]

The non-cutting time can be calculated as,

Non-cutting time = Total machining time for a part - Cutting time

= 61 - 30 = 31 minutes.

So, the hardware time will be;

Hardware Time = Cutting time + Non-cutting time = [tex]30 + 31 = 61[/tex] minutes.

To know more about diameter visit:-

https://brainly.com/question/32968193

#SPJ11

A 7/16 in height x 3 in length flat key is keyed to a 2 inches diameter shaft. Determine the torque in the key if bearing stress allowable is 25 Ksi. Answer: A
A. 16,406.25 in-lb
B. 15,248.56 in-lb
C. 17.42 in-lb
D. 246.75 in-lb

Answers

We have been given the following information: Height of the flat key, h = 7/16 in Length of the flat key, l = 3 in Diameter of the shaft, d = 2 in Allowable bearing stress, τ = 25 ksi To determine the torque in the key, we can use the following formula:τ = (2T)/(hd²)where T is the torque applied to the shaft.

Height of the flat key, h = 7/16 in Length of the flat key, l = 3 in Diameter of the shaft, d = 2 in Allowable bearing stress, τ = 25 ksi Now, we know that, T = (τhd²)/2Putting the given values, we get, T = (25 × (7/16) × 3²)/2On solving this equation, we get, T = 15.24856 in-lb Therefore, the torque in the key is 15.24856 in-lb. We need to calculate the torque in the key of the given shaft. The given bearing stress is τ= 25 K si which is allowable. Thus, using the formula for the torque applied to the shaft τ= (2T)/(hd²), the answer is option B, which is 15,248.56 in-lb.

To know more about Allowable visit:-

https://brainly.com/question/33000949

#SPJ11

III. Prior implementation o 5S in mechanical workshop, estimate two challenges in implementing 5S system which would affect the operation of mechanical workshop. Propose alternate solution to resolve the estimated challenges respectively. (4 marks) IV. Define the "mass production" and "just in time" concept. Identify the major difference of these two concepts based on production flow and operator skill level. (6 marks)

Answers

One challenge in implementing the 5S system in a mechanical workshop could be resistance to change from the employees. Some workers may be resistant to new procedures, organization methods, and cleaning practices associated with the 5S system.

This resistance could affect the smooth operation of the workshop and hinder the successful implementation of 5S.

Alternate Solution: Employee Training and Engagement

To address this challenge, it is important to provide thorough training and engage employees in the implementation process. Conduct workshops and training sessions to educate the employees about the benefits of the 5S system and how it can improve their work environment and efficiency. Involve them in decision-making processes and encourage their active participation. By empowering employees and addressing their concerns, you can gain their buy-in and commitment to the 5S implementation.

Know more about 5S system here:

https://brainly.com/question/13773004

#SPJ11

Select all items below which are crucial in lost-foam casting.
(i) Expendable pattern
(ii) Parting line
(iii) Gate
(iv) Riser
(ii), (iii) and (iv)
(i) and (iii)
(i), (ii) and (iii)
(i), (ii) and (iv)

Answers

The correct answer is (i), (ii), and (iv) - (Expendable pattern, Parting line, and Riser ) In lost-foam casting, the following items are crucial:

(i) Expendable pattern: Lost-foam casting uses a pattern made from foam or other expendable materials that vaporize when the molten metal is poured, leaving behind the desired shape.

(ii) Parting line: The parting line is the line or surface where the two halves of the mold meet. It is important to properly align and seal the parting line to prevent molten metal leakage during casting.

(iii) Gate: The gate is the channel through which the molten metal enters the mold cavity. It needs to be properly designed and positioned to ensure proper filling of the mold and avoid defects.

(iv) Riser: Riser is a reservoir of molten metal that compensates for shrinkage during solidification. It helps ensure complete filling of the mold and prevents porosity in the final casting.

Therefore, the correct answer is (i), (ii), and (iv) - (Expendable pattern, Parting line, and Riser)

For more information on Lost-foam visit  https://brainly.com/question/33282866

#SPJ11

The figure above (not drawn to scale) shows a square section solid column of length ll and width w (material's Young modulus E). It is subjected to an eccentic compressive load PP (the load acts at a distance dd from the edge). The column is fixed at one end and free at the other.
Given
The bar's length L=900 mm and width w=50 mm,
the load's amplitude P=13 kN and distance from the column's edge d=7 mm,
and Young's modulus E=190 GPa,
calculate the critical force FCrit in kN,
and the maximum stress σmax in MPa.
The answers are acceptable within a tolerance of 1 kN for the force and 1 MPa for the stress.

Answers

The critical force FCrit and the maximum stress σmax are 2,065 kN and 56.7 MPa .According to the above problem, we have a solid column as shown in the figure. FCrit and the maximum stress σmax. Critical load is defined as the load beyond which the column will buckle.

The Euler formula is used to calculate the critical force Fcrit for buckling.The Euler's Buckling formula is given by:
[tex]P.E.I = ((π²) * n²)/L²[/tex] where, n = number of half waves. We can calculate n using the given data.
The lowest order mode in a fixed-free column is n=1. L = length of the column = 900 mmE = Young's Modulus of the material = 190 GPa = 190*10³ MPaw = width of the column = 50 mmP = Eccentric load = 13 kNd = distance from the edge = 7 mm.

[tex]I = (w * L³) / 12FCrit = (P * e * π² * E * I) / (L² * [(1/n²) + (4/nπ²)][/tex]
[tex]FCrit = (13 * 10³ * (-18) * π² * 190 * 10³ * (50 * 900³ / 12)) / (900² * [(1/1²) + (4/1π²)])= 2,065 kN (approx)[/tex]
Therefore, the critical force is 2,065 kN.

[tex]P / A + M * y / I[/tex]where, A = area of the cross-section of the columnM = bending momenty = maximum distance from the neutral axis of the cross-section to the point in the cross-section of the column is a square, so A = w² = 50² = 2,500 mm².

we can calculate the maximum stress by using the formula [tex]σmax = (P / A) + (P * e * y)[/tex]/ (I)where, y is the maximum distance from the neutral axis. Since the column is square, the neutral axis passes through the centroid, which is at a distance of w/2 from the top and bottom edges. Therefore, y = w/2 = 25 mm

[tex](13 * 10³ / 2,500) + (13 * 10³ * (-18) * 25) / (50 * 900³ / 12)= 56.7 MPa[/tex] (approx)

Therefore, the maximum stress is 56.7 MPa .

To know more about critical force visit:-

https://brainly.com/question/31795416

#SPJ11

2. A punching press makes 25 holes of 20 mm diameter per minute in a plate 15 mm thick. This causes variation in the speed of flywheel attached to press from 240 to 220 rpm. The punching operation takes 2 seconds per hole. Assuming 6 Nm of work is required to shear 1 mm2 of the area and frictional losses account for 15% of the work supplied for punching, determine (a) the power required to operate the punching press, and (b) the mass of flywheel with radius of gyration of 0.5 m.

Answers

(a) Power required to operate the punching press:

The energy required to punch a hole is given by:

Energy = Force x Distance

The force required to punch one hole is given by:

Force = Shearing stress x Area of hole

Shearing stress = Load/Area

Area = πd²/4

where d is the diameter of the hole

Now,

d = 20 mm

Area = π(20)²/4

= 314.16 mm²

Area in m² = 3.14 x 10⁻⁴ m²

Load = Shearing stress x Area

The thickness of the plate = 15 mm

The volume of the material punched out

= πd²/4 x thickness

= π(20)²/4 x 15 x 10⁻³

= 942.48 x 10⁻⁶ m³

The work done for punching one

hole = Load x Distance

Distance = thickness

= 15 x 10⁻³ m

Work done = Load x Distance

= Load x thickness

= 6 x 10⁹ x 942.48 x 10⁻⁶

= 5.6549 J

The punching operation takes 2 seconds per hole

Hence, the power required to operate the punching press = Work done/time taken

= 5.6549/2

= 2.8275 W

Therefore, the power required to operate the punching press is 2.8275 W.

(b) Mass of flywheel with the radius of gyration of 0.5 m:

Frictional losses account for 15% of the work supplied for punching.

Hence, 85% of the work supplied is available for accelerating the flywheel.

The kinetic energy of the fly

wheel = 1/2mv²

where m = mass of flywheel, and v = change in speed

Radius of gyration = 0.5 m

Change in speed

= (240 - 220)

= 20 rpm

Time is taken to punch

25 holes = 25 x 2

= 50 seconds

Work done to punch 25 holes = 25 x 5.6549

= 141.3725 J

Work done in accelerating flywheel = 85% of 141.3725

= 120.1666 J

The initial kinetic energy of the flywheel = 1/2mω₁²

The final kinetic energy of the flywheel = 1/2mω₂²

where ω₁ = initial angular velocity, and

ω₂ = final angular velocity

The change in kinetic energy = Work done in accelerating flywheel

1/2mω₂² - 1/2mω₁² = 120.1666ω₂² - ω₁² = 240.3333 ...(i)

Torque developed by the flywheel = Change in angular momentum/time taken= Iω₂ - Iω₁/Time taken

where I = mk² is the moment of inertia of the flywheel

k = radius of gyration

= 0.5 m

The angular velocity of the flywheel at the beginning of the process

= 2π(240/60)

= 25.1327 rad/s

The angular velocity of the flywheel at the end of the process

= 2π(220/60)

= 23.0319 rad/s

The time taken to punch

25 holes = 50 seconds

Now,

I = mk²

= m(0.5)²

= 0.25m

Let T be the torque developed by the flywheel.

T = (Iω₂ - Iω₁)/Time taken

T = (0.25m(23.0319) - 0.25m(25.1327))/50

T = -0.0021m

The negative sign indicates that the torque acts in the opposite direction of the flywheel's motion.

Now, the work done in accelerating the flywheel

= Tθ

= T x 2π

= -0.0132m Joules

Hence, work done in accelerating the flywheel

= 120.1666 Joules-0.0132m

= 120.1666Jm

= 120.1666/-0.0132

= 9103.35 g

≈ 9.1 kg

Therefore, the mass of the flywheel with radius of gyration of 0.5 m is 9.1 kg.

To know more about opposite visit:

https://brainly.com/question/29134649

#SPJ11

Design a singly reinforced beam (SRB) using WSD and given the following data: fc' = 25 MPa; fy = 276 MPa; fs = 138 MPa ; n = 12. Use 28 mm diameter main bars and 12 mm diameter stirrups. Solve only the following: 1. k, j, (don't round-off) and R (rounded to 3 decimal places) 2. Designing maximum moment due to applied loads.
3. Trial b.d, and t. (Round - off d value to next whole higher number that is divisible by 25.) 4. Weight of the beam (2 decimal places).
5. Maximum moment in addition to weight of the beam. 6. Number of 28 mm diameter main bars. 7. Check for shear 8. Draw details

Answers

To design a singly reinforced beam (SRB) using Working Stress Design (WSD) with the given data, we can follow the steps outlined below:

1. Determine k, j, and R:

k is the lever arm factor, given by k = 0.85.j is the depth factor, given by j = 0.90.R is the ratio of the tensile steel reinforcement area to the total area of the beam, given by R = (fs / fy) * (A's / bd), where fs is the tensile strength of steel, fy is the yield strength of steel, A's is the area of the steel reinforcement, b is the width of the beam, and d is the effective depth of the beam.

2. Design the maximum moment due to applied loads:

The maximum moment can be calculated using the formula Mmax = (0.85 * fy * A's * (d - 0.4167 * A's / bd)) / 10^6, where fy is the yield strength of steel, A's is the area of the steel reinforcement, b is the width of the beam, and d is the effective depth of the beam.

3. Determine trial values for b, d, and t:

Choose suitable trial values for the width (b), effective depth (d), and thickness of the beam (t). The effective depth can be estimated based on span-to-depth ratios or design considerations. Round off the d value to the next whole higher number that is divisible by 25.

4. Calculate the weight of the beam:

The weight of the beam can be determined using the formula Weight = [tex](b * t * d * γc) / 10^6[/tex], where b is the width of the beam, t is the thickness of the beam, d is the effective depth of the beam, and γc is the unit weight of concrete.

5. Determine the maximum moment in addition to the weight of the beam:

The maximum moment considering the weight of the beam can be calculated by subtracting the weight of the beam from the previously calculated maximum moment due to applied loads.

6. Determine the number of 28 mm diameter main bars:

The number of main bars can be calculated using the formula[tex]n = (A's / (π * (28/2)^2))[/tex], where A's is the area of the steel reinforcement.

7. Check for shear:

Calculate the shear stress and compare it to the allowable shear stress to ensure that the design satisfies the shear requirements.

8. Draw details:

Prepare a detailed drawing showing the dimensions, reinforcement details, and any other relevant information.

Learn more about shear here:

brainly.com/question/28194032

#SPJ4

Other Questions
(10 marks) Suppose (x.f) = A(x - x)e-it/h, Find V(x) such that the equation is satisfied. CASE STUDYThe Sands of Time are Running OutJenny is a student at a private college. She also works part-time at a clothing retail store tofund her studies.The retail store needs Jenny to promote sales in view of the Hari Raya festival, thus Jenny hasbeen working extra hours at her part-time job. Jenny, on the other hand, needs the extramoney from the job to pay for her upcoming semesters tuition fees and to fix her car so thatshe can drive home for the long semester holidays. The pending holidays also means the endof her current semester and, unfortunately, the start of final examinations. Jenny simply doesnot have the time to do both, i.e. study for all her final examination papers and work theadditional hours that she needs.Jenny has to sacrifice something and decides to pretend being sick on the day of her BusinessManagement final examination paper, so that she can take the make-up examination thefollow week. This will give her more time to study.She also knows that it will not be hard to get a medical certificate (MC) from the busy collegehealth clinic. Her friend, Dennis, works at the clinic and will be able to provide her with asheet of the clinics letterhead stationery."Even if I have to lie, its fair that I get extra time to study," Jenny convinces herself,"because I have to work; I cant study all the time like students who have their parents to payfor everything." Briefly explain how the Northwest Ordinance promisedgood Government to the American settlers in the NorthwestTerritory? the practice of sports illustrated distributing different versions of a given issue in which editorial content and ads vary according to some specific demographic or regional grouping is referred to as 37. Endocrine signals travel through the blood.Select one:a. TRUEb. false38.Gap genes divide the anterior-posterior axis of the Drosophila embryo into broad regions of gene expression.Select one:a. TRUEb. false Explain the effect of superposition of finite numberof horseshoe vortices along the lifting line. biochemistryhelppvi don't have timeQuestion 31 Once formed a peptide bood can hydrolyze spontaneously under cellular conditions, but this process ocurrs very slowly. The plants to this is O The hydrolysis has a high activation energy O The decomposition of dinitrogen pentaoxide has an activationenergy of 102 kJ/mol and Hrxn = + 55 kJ/mol.What is the activation energy for the reverse reaction?Select one:a. 27 kJ/molb. 47 kJ/ Why do many patients with kidney disease also have hypertension? Multiple Choice Cells of diseased kidneys directly signal the brain stem to increase blood pressure, Diseased kidneys excrete more sodium and water than is needed Changes in blood flow in kidneys leads to release of renin Altered kidney function results in secretion of atrial natriuretic peptide by the heart Steam at 20 bar, 360 C is expanded in a steam turbine to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. draw the T-S diagram of the cycle with respect to the saturation lines Taking into consideration the feed pump, calculate: (a) the network output per kg of steam, and (b) the cycle efficiency If the turbine and the pump each have 80% efficiency, calculate the percentage reduction in the network and cycle efficiency In a health examination survey of a prefecture in Japan, the population was found to have an average fasting blood glucose level of 99.0 with a standard deviation of 12 (normally distributed). What is thie probability that an individual selected at random will have a blood sugar level reading between 80 & 110? a 0.7641 b 0.6147 c 0.5888 d None of the other options Briefly explain how the resources in a GAL architecture can be used to implement a FSM. 2. (3 points) Repeat question 1 for a FPGA 3. (2 point) Theoretically, what size is the largest modulo-n counter that you can build in a Spartan XCS30XL FPGA? 2. Consider a silicon crystal at 300K, with the Fermi level 0.2 eV below the conduction band. CB What type is the material? 021 EF E 0 36 FF 9-112 50-56 (2.5) ZF VB 0.56 ev. On e. VE 2. Eg 1-12 E Obtain numerical solution of the ordinary differential equationy=3t10ywith the initial condition:y(0)=2by Euler method usingh=0.5Perform 3 steps. (4 grading points) Solution of all problems MUST contain general formula and all intermediate results. Perform numerical computations using 4 digits after decimal point. Alveolar epitehlium secretes a phospholipid __________thatlowers the surface tension within the pulmonary alveoli.Betamethasone, a sterioid, is primarily used tospeed up lung development in preterm 1- Write about daily, monthly, and yearly loads.2- Why generated power at electrical stations must equal load power (consumed power).3- What is " based load", "intermediate load" and "peak load", draw.4- Why electrical station are built far from cities?5- On which principles the location of electrical stations is selected.6- Why mainly A/C synchronous generators are used to generate electrical energy.7- Why we use high voltage for transmission lines.8- Compare between A/C and DC transmission lines.9- What do we mean by "synchronized system"?10- What is the role of the "preheater" in electrical stations?11- Why we use low, medium and high-pressure turbines in electrical stations.12- Discuss electrical stations efficiencies. and losses in electrical stations. 9:37 1 Search + LTE X Question 4 Unanswered 1 attempt left. Due on May 6, 11:59 PM A parasitoid predator specializes on an aphid species. That aphid species is only able to exist in the community when ants protect the aphids from other types of predators. Thus ants directly positively impact aphids, and indirectly positively impact the aphid parasitoid predator. This is an example of: A Trophic Cascade B Trophic facilitation C Bottom-up effects D Top-down effects E A competitive hierarchy Submit 9:37 1 Search + LTE X 7. What is the last electron acceptor in aerobic respiration? Which process will proceed with or without oxygen? When would meiosis II occur?A.Before the ovum is ovulatedB.As spermatids are formedC.Both B and CD.Not until the sperm enters the female reproductivetractE.Both A a Which tissue of the body does amoxicillin target fordistribution