Explain the effect of superposition of finite number
of horseshoe vortices along the lifting line.

Answers

Answer 1

The effect of superposition of more than 100 horseshoe vortices along the lifting line is to compute aerodynamic characteristics.

Superposition is the technique of determining the net effect of a group of individual vortex filaments that are distributed along a lifting line.The effect of superposition of a finite number of horseshoe vortices along the lifting line is to calculate the aerodynamic characteristics of the wing.

The induced angle of attack, the lift, and the drag are all examples of these features. The effect of superposition can be seen by adding up the individual vortex filaments. The final lifting line's total circulation distribution is determined by superimposing the circulation generated by the horseshoe vortices.

To know more about effect visit:

https://brainly.com/question/20466755

#SPJ11


Related Questions

Course: Power Generation and Control
Please ASAP I will like and rate your work.
if we impose a transmission line limit of 500 MW on line 1-3, a new constraint should be added as 500 MW = (Base Power)*(01-03)/X13- Select one: O True O False

Answers

A new constraint should be added as 500 MW = (Base Power)*(01-03)/X13 when a transmission line limit of 500 MW is imposed on line 1-3.

A transmission line limit is the maximum amount of power that can be transmitted through a transmission line. The transmission line's capacity is determined by the line's physical attributes, such as length, voltage, and current carrying capacity.

Transmission lines are the backbone of the electrical grid, allowing electricity to be transported over long distances from power plants to where it is required. The transmission line limits must be properly managed to prevent overloading and blackouts.

To know more about constraint visit:

https://brainly.com/question/17156848

#SPJ11

Find the production cost per 1000 kg steam in a steam plant when the evaporation rate is
7.2 kg steam per kg coal; initial cost of plant, $150,000; annual operational cost exclusive
of coal, $15,000. Assume life of 20 years; no final value; interest on borrowed capital, 4%;
on sinking fund, 3%. Average steam production is 14,500 kg per hr; cost of coal, $8.00 per
ton.

Answers

The production cost per 1000 kg steam in a steam plant when the evaporation rate is 7.2 kg steam per kg coal is $18.03. This is obtained as follows;

Step-by-step explanation:

The steam produced from the combustion of coal in a steam plant can be evaluated by first finding the amount of steam generated per kg of coal burned. This is called the evaporation rate.The evaporation rate is given as 7.2 kg steam per kg coal.The cost of coal is given as $8.00 per ton.The steam plant has an average steam production of 14,500 kg per hr.Annual operational cost exclusive of coal is $15,000.The initial cost of plant is $150,000.The life of the steam plant is 20 years.

The interest on borrowed capital is 4% while the interest on the sinking fund is 3%.To find the cost of steam production per 1000 kg, the following calculations are made;

Total amount of steam produced in one year = 14,500 * 24 * 365 = 126,540,000 kg

Annual coal consumption = 126,540,000 / 7.2 = 17,541,666.67 kg

Total cost of coal in one year = (17,541,666.67 / 1000) * $8.00 = $140,333.33

Total cost of operation per year = $140,333.33 + $15,000 = $155,333.33

Annual equivalent charge = AEC = 1 + i/n - 1/(1+i/n)^n*t

Where i = interest n = number of years for which the sum is invest

dt = total life of the investment AEC = 1 + 0.04/1 - 1/(1+0.04/1)^(1*20) = 1.7487

Annual equivalent disbursement = AED = S / a

Where S = initial cost of plant + sum of annual cost (AEC) for n y

earsa = annuity factor obtained from the tables

.AED = $150,000 / 3.8879 = $38,595.69

Annual sinking fund = AS = AED * i / (1 - 1/(1+i/n)^n*t)AS = $38,595.69 * 0.03 / (1 - 1/(1+0.03/1)^(1*20)) = $1,596.51

Total annual cost of the steam plant

= $155,333.33 + $1,596.51

= $156,929.84

Cost of steam production per 1000 kg = 1000 / (126,540,000 / 14,500) * $156,929.84 = $18.03Therefore, the cost of steam production per 1000 kg is $18.03.

To know more about evaporation visit :

https://brainly.com/question/28319650

#SPJ11

Exercises on fluid mechanics. Please, What assumptions/assumptions were used in the solution.
Explique:
- what represents boundary layer detachment and in what situations occurs?
- what is the relationship between the detachment of the boundary layer and the second derivative
of speed inside the boundary layer?
- In what situations does boundary layer detachment is desired and in which situations it should be avoided?

Answers

To answer your questions, let's consider the context of fluid mechanics and boundary layers:

Assumptions in the solution: In fluid mechanics, various assumptions are often made to simplify the analysis and mathematical modeling of fluid flow. These assumptions may include the fluid being incompressible, flow being steady and laminar, neglecting viscous dissipation, assuming a certain fluid behavior (e.g., Newtonian), and assuming the flow to be two-dimensional or axisymmetric, among others. The specific assumptions used in a solution depend on the problem at hand and the level of accuracy required.

Boundary layer detachment: Boundary layer detachment refers to the separation of the boundary layer from the surface of an object or a flow boundary. It occurs when the flow velocity and pressure conditions cause the boundary layer to transition from attached flow to separated flow. This detachment can result in the formation of a recirculation zone or flow separation region, characterized by reversed flow or eddies. Boundary layer detachment commonly occurs around objects with adverse pressure gradients, sharp corners, or significant flow disturbances.

Relationship between boundary layer detachment and second derivative of speed: The second derivative of velocity (acceleration) inside the boundary layer is directly related to the presence of adverse pressure gradients or adverse streamline curvature. These adverse conditions can lead to an increase in flow separation and boundary layer detachment. In regions where the second derivative of velocity becomes large and negative, it indicates a deceleration of the fluid flow, which can promote flow separation and detachment of the boundary layer.

Know more about fluid mechanics here:

https://brainly.com/question/12977983

#SPJ11

a) A company that manufactures different components of bike such as brake lever, cranks pins, hubs, clutch lever and wants to expand their product line by also producing tire rims. Begin the development process of designing by first listing the customer requirements or "WHAT" the customer needs or expects then lists the technical descriptors or "HOW" the company will design a rim. Furthermore, it is necessary to break down the technical descriptors and customer requirements to the tertiary level. Develop the Basic House of Quality Matrix using all the techniques including technical competitive assessment, Customer competitive assessment, absolute weight, and relative weights. Make reasonable assumptions where required. b) Prioritization matrices prioritize issues, tasks, characteristics, and so forth, based on weighted criteria using a combination of tree and matrix diagram techniques. Once prioritized, effective decisions can be made. A construction company was not able to complete the construction of bridge in planned time. The main causes of failure may include the people, machines, or systems. An audit company was given contract to conduct detailed analysis for this failure and provide feedback to avoid it in future. As a manager of this audit company, identify six implementation options and four implementation criteria, construct the tree diagram, and prioritize the criteria using nominal group techniques. Rank order the options in terms of importance by each criterion. Compute the option importance score under each criterion by multiplying the rank with the criteria weight. Develop the prioritization matrices.
15+15=30

Answers

a) Customer Requirements:The customer expects the following features in the bike tire rim:Durability: Tire rim must be strong enough to withstand rough terrain and last long.Aesthetics: Rim should look attractive and appealing to the eye.Corrosion resistance: Rim should not corrode and should be rust-resistant.Weighting Factors:The relative weight of durability is 0.35, aesthetics is 0.30 and corrosion resistance is 0.35. Technical Descriptors:The following technical descriptors will be used to design the rim:Diameter:

The diameter of the rim should be between 26-29 inches to fit standard bike tires.Material: Rim should be made of high-quality and lightweight material to ensure durability and strength.Weight: Weight of the rim should not be too high or too low.Spokes: Rim should have adequate spokes for strength and durability.Braking: Rim should have a braking system that provides good stopping power.Rim tape:

Rim tape should be strong enough to handle the high pressure of the tire.Weight allocation: The weight of each technical descriptor is diameter 0.10, material 0.30, weight 0.20, spokes 0.15, braking 0.10, and rim tape 0.15. Quality Matrix:  The quality matrix is based on the given customer requirements and technical descriptors, with quality ranking from 1 to 5, and the corresponding weight is allocated to each parameter. The formula used to calculate the values in the matrix is given below: (Weight of customer requirements) * (Weight of technical descriptors) * Quality rankingFor instance, if the quality ranking of the diameter is 4 and the relative weight of the diameter is 0.1, the value of the quality matrix is (0.35) * (0.10) * 4 = 0.14.

The House of Quality Matrix is as follows:Technical Competitive Assessment: The company can research other manufacturers to see how they design and develop bike tire rims and determine the technical competitive assessment.Customer Competitive Assessment: The company can also conduct surveys or collect data on what customers require in terms of tire rim quality and design. Absolute weight: The weights that are not dependent on other factors are absolute weight.Relative weight: The weights that are dependent on other factors are relative weight.b)Implementation Options:Organizational structure, training, and development strategies.Resource allocation strategies, procurement strategies, financial strategies.Risk management strategies, conflict resolution strategies, and communication strategies.Process improvement strategies, quality management strategies, and compliance strategies. Implementation Criteria: Cost,

Time, Effectiveness, and Customer satisfaction. Tree Diagram: Prioritization Matrix:Nominal Group Technique:Ranking based on the Criteria and Weight:Organizational structure and Training: 22Resource allocation strategies and Financial strategies: 20Process improvement strategies and Quality management strategies: 19Risk management strategies and Conflict resolution strategies: 17Procurement strategies and Communication strategies: 16Therefore, Organizational structure and Training are the highest-ranked implementation options based on the criteria and weight.

To know about Customer visit:

https://brainly.com/question/31192428

#SPJ11

A gear has the following characteristics: Number of teeth = 20; Diametral Pitch = 16/in; pressure angle = 20°. The gear is turning at 50 rpm, and has a bending stress of 20 ksi. How much power (in hp) is the gear transmitting? (Assume velocity factor = 1)

Answers

The gear is transmitting approximately 1.336 hp.

To calculate the power transmitted by the gear, we can use the formula:

Power (in hp) = (Torque × Speed) / 5252

First, let's calculate the torque. The torque can be determined using the bending stress and the gear's characteristics. The formula for torque is:

Torque = (Bending stress × Module × Face width) / (Diametral pitch × Velocity factor)

In this case, the number of teeth (N) is given as 20, and the diametral pitch (P) is given as 16/in. To find the module (M), we can use the formula:

Module = 25.4 / Diametral pitch

Substituting the given values, we find the module to be 1.5875. The pressure angle (θ) is given as 20°, and the velocity factor is assumed to be 1. The face width can be estimated based on the gear's application.

Now, let's calculate the torque:

Torque = (20 ksi × 1.5875 × face width) / (16/in × 1)

Next, we need to convert the torque from inch-pounds to foot-pounds, as the speed is given in revolutions per minute (rpm) and we want the final power result in horsepower (hp). The conversion is:

Torque (in foot-pounds) = Torque (in inch-pounds) / 12

After obtaining the torque in foot-pounds, we can calculate the power:

Power (in hp) = (Torque (in foot-pounds) × Speed (in rpm)) / 5252

Substituting the given values, we find the power to be approximately 1.336 hp.

Learn more about Torque

brainly.com/question/31323759

#SPJ11

The speed of a particle traveling along a straight line within a liquid is measured as a function of its position as v = (130 s) mm/s, where s is in millimeters. Part A Determine the particle's deceleration when it is located at point A, where SA = 90 mm. Express your answer to three significant figures and include the appropriate units. a = -40.0 mm/s²

Answers

To determine the particle's deceleration when it is located at point A, we need to differentiate the velocity function with respect to time. Given that the velocity function is v = (130 s) mm/s, where s is in millimeters:

v = 130s

To find the deceleration, we differentiate the velocity function with respect to time (s):

a = dv/dt = d(130s)/dt

Since the particle is traveling along a straight line within a liquid, we can assume that its velocity is a function of time only.

Differentiating the velocity function, we get:

a = 130 ds/dt

To find the deceleration at point A, where SA = 90 mm, we substitute the position value into the equation:

a = 130 d(90)/dt

Since the position is not given as a function of time, we assume that it is constant at SA = 90 mm.

Therefore, the deceleration at point A is:

a = 130 * 0 = 0 mm/s²

The deceleration at point A is 0 mm/s².

Learn more about velocity here

https://brainly.com/question/30505958

#SPJ11

A spherical tank used for the storage of high-temperature gas has an outer radius of 5 m and is covered in an insulation 250 mm thick. The thermal conductivity of the insulation is 0.05 W/m-K. The temperature at the surface of the steel is 360°C and the surface temperature of the insulation is 40°C. Calculate the heat loss. Round off your final answer to two (2) decimal places. (20 pts.)

Answers

A spherical tank is used for the storage of high-temperature gas. It has an outer radius of 5 m and is covered with insulation 250 mm thick. The thermal conductivity of the insulation is 0.05 W/m-K. The temperature at the surface of the steel is 360°C and the surface temperature of the insulation is 40°C.



[tex]q = 4πk (T1 - T2) / [1/r1 - 1/r2 + (t2 - t1)/ln(r2/r1)][/tex]

Here,
q = heat loss
k = thermal conductivity = 0.05 W/m-K
T1 = temperature at the surface of the steel = 360°C
T2 = surface temperature of insulation = 40°C
r1 = outer radius of the tank = 5 m
r2 = radius of the insulation = 5 m + 0.25 m = 5.25 m
t1 = thickness of the tank = 0 m (as it is neglected)
t2 = thickness of the insulation = 0.25 m

Substituting these values in the above equation, we get:

q = 4π(0.05)(360 - 40) / [1/5 - 1/5.25 + (0.25)/ln(5.25/5)]
q = 605.52 W

Therefore, the heat loss is 605.52 W.

To know more about temperature visit:

https://brainly.com/question/11464844

#SPJ11

Question 1 1.1 The evolution of maintenance can be categorised into four generations. Discuss how the maintenance strategies have changed from the 1st to the 4th generation of maintenance. (10) 1.2 Discuss some of the challenges that maintenance managers face. (5)

Answers

1.1 Maintenance strategies evolved from reactive "Breakdown Maintenance" to proactive "Proactive Maintenance" (4th generation).

1.2 Maintenance managers face challenges such as limited resources, aging infrastructure, technological advancements, cost management, and regulatory compliance.

What are the key components of a computer's central processing unit (CPU)?

Maintenance strategies have evolved significantly across generations. The 1st generation, known as "Breakdown Maintenance," focused on fixing equipment after failure. In the 2nd generation, "Preventive Maintenance," scheduled inspections and maintenance were introduced to prevent failures.

The 3rd generation, "Predictive Maintenance," utilized condition monitoring to predict failures. Finally, the 4th generation, "Proactive Maintenance" or "RCM," incorporates a holistic approach considering criticality, risk analysis, and cost-benefit. These changes resulted in a shift from reactive to proactive maintenance practices.

Maintenance managers encounter various challenges. Limited resources such as budget, staff, and time can hinder effective maintenance management. Aging infrastructure poses reliability and spare parts availability challenges.

Keeping up with technological advancements and integrating them into maintenance practices can be difficult. Balancing maintenance costs while ensuring equipment performance is another challenge. Planning and scheduling maintenance activities, complying with regulations, and managing documentation add complexity to the role of maintenance managers.

Learn more about Maintenance

brainly.com/question/13257907

#SPJ11

A 3-phase, 208–V, 50-Hz, 35 HP, 6-pole, Y-connected induction motor is operating with a line current of I1 = 95.31∟-39.38° A, for a per-unit slip of 0.04.
R1 = 0.06 Ω , R2 = 0.04 Ω , X1 = 0.32 Ω , X2 = 0.4 Ω , XM = 9.4 Ω
The total friction, windage, and core losses can be assumed to be constant at 3 KW.
What is the Air-Gap power?
Select one:
a.PAG = 26.0 KW
b.PAG = 24.9 KW
c.None
d.PAG = 32.7 KW

Answers

The air-gap power of the given 3-phase, 208–V, 50-Hz, 35 HP, 6-pole, Y-connected induction motor

That is operating with a line current of I1 = 95.31∟-39.38° A, for a per-unit slip of 0.04 is  P AG = 24.9 KW The formula for air-gap power (P AG) is given as.

P AG = (1 - s) * ((V^2)/((R1 + R2/s)^2 + (X1 + X2)^2)) = (1 - 0.04) * ((208^2)/((0.06 + 0.04/0.04)^2 + (0.32 + 0.4)^2))= 24.9 KW  the correct answer is option b. P AG = 24.9 KW.

To know more about power visit:

https://brainly.com/question/29575208

#SPJ11

Small oil droplets with a specific gravity of 85 rise in a 30°C water bath. Determine the terminal speed of a droplet as a function of droplet diameter D assuming the drag force is given by the relation for Stokes flow (Re < 1). Determine the maximum droplet diameter for which Stokes flow is a reasonable assumption. For Stoke flow, = 3

Answers

To determine the terminal speed of a small oil droplet as a function of droplet diameter D, we can use the Stokes' law equation for drag force in the laminar flow regime (Re < 1): F_drag = 6πμvD

Where:

F_drag is the drag force acting on the droplet,

μ is the dynamic viscosity of the fluid (water),

v is the velocity of the droplet, and

D is the diameter of the droplet.

In this case, we want to find the terminal speed, which occurs when the drag force equals the buoyant force acting on the droplet:

F_drag = F_buoyant

Using the equations for the drag and buoyant forces:

6πμvD = (ρ_w - ρ_o)Vg

Where:

ρ_w is the density of water,

ρ_o is the density of the oil droplet,

V is the volume of the droplet, and

g is the acceleration due to gravity.

Since the specific gravity of the droplet is given as 85, we can calculate the density of the droplet as:

ρ_o = 85 * ρ_w

Substituting this into the equation, we have:

6πμvD = (ρ_w - 85ρ_w)Vg

Simplifying the equation, we find:

v = (2/9)(ρ_w - 85ρ_w)gD² / μ

Now, to determine the maximum droplet diameter for which Stokes flow is a reasonable assumption, we need to consider the Reynolds number (Re). In Stokes flow, Re < 1, indicating that the flow is highly viscous and dominated by the drag forces.

The Reynolds number is defined as:

Re = ρ_wvD / μ

Assuming Re < 1, we can rearrange the equation:

D < μ / (ρ_wv)

Since μ, ρ_w, and v are constants, we can conclude that Stokes flow is a reasonable assumption as long as the droplet diameter D is less than μ / (ρ_wv).

By analyzing the given information, you can substitute the appropriate values for density (ρ_w), dynamic viscosity (μ), and other parameters into the equations to calculate the terminal speed and determine the maximum droplet diameter for which Stokes flow is a reasonable assumption in your specific case.

For more information on terminal speed  visit https://brainly.com/question/31644262

#SPJ11

Sewage flows at 4m/s with a BODs of 60mg/L and a dissolved oxygen (DO) value of 1.8mg/L, into a river. Upstream of the sewage outfall the river flows at 20m/s with a BODs value of 4mg/L and it is saturated with dissolved oxygen. The saturated DO level in the river is 12mg/L. a) Calculate the BODs and DO values in the river at the confluence. Downstream the river flows with a mean velocity 1.5m/s. The BOD reaction rate constant is 0.4 day and the re-aeration constant is 0.6 day! b) Calculate the maximum dissolved oxygen deficit, D, in the river and how far downstream of the outfall that it occurs. Additionally, suggest how this figure may differ in the real-world from your modelled calculations c) In up to 8 sentences, define 4 different types of water pollutants and describe their common sources, and consequences.
d) Describe the role of water temperature in aggravating pollutant impact, and suggest how this could be controlled from an industrial point of view.

Answers

Sewage flow rate (q) = 4m/s BOD concentration (C) = 60mg/L Dissolved Oxygen (DO) = 1.8mg/L BOD concentration upstream (Co) = 4mg/L DO level upstream (Do) = 12mg/L Mean velocity downstream (vd) = 1.5m/sBOD reaction rate constant (K) = 0.4/day

Re-aeration constant (k) = 0.6/daya) Calculation of BODs and DO value in the river at the confluence. BOD calculation: BOD removal rate (k1) = (BOD upstream - BOD downstream) / t= (60-4) / (0.4) = 140mg/L/day

Assuming the removal is linear from the outfall to the confluence, we can calculate the BOD concentration downstream of the outfall using the following equation:

BOD = Co - (k1/k2) (1 - exp(-k2t))BOD

= 60 - (140 / 0.4) (1 - exp(-0.4t))

= 60 - 350 (1 - exp(-0.4t))

Where t is the time taken for sewage to travel from the outfall to the confluence. Using the flow rate (q) and distance from the outfall (x), we can calculate the time taken (t = x/q).

If the distance from the outfall to the confluence is 200m, then t = 50 seconds (time taken for sewage to travel 200m at a velocity of 4m/s).

BOD at the confluence = 60 - 350 (1 - exp(-0.4 x 50)) = 14.5mg/L

DO calculation:

DO deficit (D) = Do - DcDc = Co * exp(-k2t) + (k1 / k2) (1 - exp(-k2t))

= 4 * exp(-0.6 x 50) + (140 / 0.6) (1 - exp(-0.6 x 50))

= 5.58mg/L

DO at the confluence = Do - Dc = 1.8 - 5.58 = -3.78mg/L (negative value indicates that DO levels are below zero)

BOD concentration at the confluence = 14.5mg/LDO concentration at the confluence = -3.78mg/L (below zero indicates that DO levels are deficient)b) Calculation of maximum dissolved oxygen deficit (D) in the river and how far downstream of the outfall that it occurs.

DO deficit (D) = Do - DcDc = Co * exp(-k2t) + (k1 / k2) (1 - exp(-k2t))= 4 * exp(-0.6 x 200) + (140 / 0.6) (1 - exp(-0.6 x 200))= 11.75mg/LD = 12 - 11.75 = 0.25mg/L

The maximum dissolved oxygen deficit (D) occurs 200m downstream of the outfall. In the real-world, the modelled calculations may differ due to variations in flow rate, temperature, and chemical composition of the sewage.c) 4 Different types of water pollutants and their sources:

1. Biological Pollutants: Biological pollutants are living organisms such as bacteria, viruses, and parasites. They are mainly derived from untreated sewage, manure, and animal waste. The consequences of exposure to biological pollutants include stomach upsets, skin infections, and respiratory problems.

2. Nutrient Pollutants: Nutrient pollutants include nitrates and phosphates. They are derived from fertilizer runoff and human sewage. They can cause excessive growth of aquatic plants, which reduces oxygen levels in the water and negatively affects aquatic life.

3. Chemical Pollutants: Chemical pollutants are toxic substances such as heavy metals, pesticides, and organic solvents. They are derived from industrial waste, agricultural runoff, and untreated sewage. Exposure to chemical pollutants can cause cancer, birth defects, and other health problems.

4. Thermal Pollutants: Thermal pollutants are heat energy discharged into water bodies by industrial processes such as power generation. Elevated water temperatures can reduce dissolved oxygen levels, which can negatively affect aquatic life. They also cause thermal shock, which can lead to death of aquatic organisms.

d) Water temperature plays an important role in aggravating the impact of pollutants on aquatic life. Elevated temperatures can reduce the solubility of oxygen in water, leading to oxygen depletion in water bodies. This can affect the growth and reproduction of aquatic life. Industrial processes can control the impact of temperature on pollutants by using cooling towers to lower the temperature of wastewater before discharge into water bodies.

Learn more about BOD concentration here:

brainly.com/question/13443333

#SPJ11

You have available a set of five links from which you are to design a four-bar mechanism.
The lengths of the links are as follows: L1= 4cm, L2=6cm, L3=8cm, L4=9cm and L5=14cm.
i) Select four links such that the linkage can be driven by a continuous rotation motor.
ii) Draw a freehand sketch of a crank-rocker mechanism that can be achieved using the selected links. Label the link that is to be driven by the motor.
iii) Draw a freehand sketch of a double-crank mechanism that can be achieved using the selected links.

Answers

In this sketch, both Link L2 and Link L3 act as cranks. The motion of the motor (Link L1) will cause both cranks to rotate simultaneously, resulting in the movement of the coupler (Link L5) and the rocker (Link R).

i) To design a four-bar mechanism that can be driven by a continuous rotation motor, we need to select four links such that they form a closed loop. The selected links should have a combination of lengths that allow the mechanism to move smoothly without any interference.

From the given set of link lengths, we can select the following four links:

L1 = 4cm

L2 = 6cm

L3 = 8cm

L5 = 14cm

ii) Drawing a freehand sketch of a crank-rocker mechanism using the selected links:

scss

Copy code

  Motor (Link L1)

    \

     \

 L3   L2

  |     |

  |_____| R (Rocker)

    /

   /

 L5 (Coupler)

In this sketch, the motor (Link L1) is driving the mechanism. Link L2 is the crank, Link L3 is the coupler, and Link L5 is the rocker. The motion of the motor will cause the crank to rotate, which in turn will move the coupler and rocker.

iii) Drawing a freehand sketch of a double-crank mechanism using the selected links:

scss

Copy code

  Motor (Link L1)

    \

     \

 L3   L2

  |     |

  |_____| R (Rocker)

     |

     |

    L5 (Coupler)

Know more about four-bar mechanism here:

https://brainly.com/question/14704706

#SPJ11

2.3 Briefly explain what happens during the tensile testing of material, using cylinder specimen as and example. 2.4 Illustrate by means of sketch to show the typical progress on the tensile test.

Answers

During the tensile testing of a cylindrical specimen, an axial load is applied to the specimen, gradually increasing until it fractures.

The test helps determine the material's mechanical properties. Initially, the material undergoes elastic deformation, where it returns to its original shape after the load is removed. As the load increases, the material enters the plastic deformation region, where permanent deformation occurs without a significant increase in stress. The material may start to neck down, reducing its cross-sectional area. Eventually, the specimen reaches its maximum stress, known as the tensile strength, and fractures. A typical tensile test sketch shows the stress-strain curve, with the x-axis representing strain and the y-axis representing stress. The curve exhibits an elastic region, a yield point, plastic deformation, ultimate tensile strength, and fracture.

To learn more about tensile testing, click here:

https://brainly.com/question/13260444

#SPJ11

a) (10 pts). Using a decoder and external gates, design the combinational circuit defined by the following three Boolean functions: F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xy

Answers

Given Boolean functions are:F1 (x, y, z) = (y'+ x) z F2 (x, y, z) = y'z' + xy + yz' F3 (x, y, z) = x' z' + xyThe Boolean function F1 can be represented using the decoder as shown below: The diagram of the decoder is shown below:

As shown in the above figure, y'x is the input and z is the output for this circuit.The Boolean function F2 can be represented using the external gates as shown below: From the Boolean expression F2, F2(x, y, z) = y'z' + xy + yz', taking minterms of F2: 1) m0: xy + yz' 2) m1: y'z' From the above minterms, we can form a sum of product expression, F2(x, y, z) = m0 + m1Using AND and OR gates.

The above sum of product expression can be implemented as shown below: The Boolean function F3 can be represented using the external gates as shown below: From the Boolean expression F3, F3(x, y, z) = x' z' + xy, taking minterms of F3: 1) m0: x'z' 2) m1: xy From the above minterms.

To know more about Boolean visit:

https://brainly.com/question/27892600

#SPJ11

Steam enters a diffuster steadily at a pressure of 400 psia and a temperature of Tdiffuser = 500.0 °F. The velocity of the steam at the inlet is Veldiffuser 80.0 ft s =  and the mass flow rate is 5 lbm/s. What is the inlet area of the diffuser? ANS: 11.57in^2

Answers

The inlet area of the diffuser is 11.57 in^2.

To determine the inlet area of the diffuser, we can use the mass flow rate and the velocity of the steam at the inlet. The mass flow rate is given as 5 lbm/s, and the velocity is given as 80.0 ft/s.

The mass flow rate, denoted by m_dot, is equal to the product of density (ρ) and velocity (V) times the cross-sectional area (A) of the flow. Mathematically, this can be expressed as:

m_dot = ρ * V * A

Rearranging the equation, we can solve for the cross-sectional area:

A = m_dot / (ρ * V)

Given the values for mass flow rate, velocity, and the properties of steam at the inlet (pressure and temperature), we can calculate the density of the steam using steam tables or thermodynamic properties of the fluid. Once we have the density, we can substitute the values into the equation to find the inlet area of the diffuser.

To learn more about  diffuser.

brainly.com/question/14852229

#SPJ11

a. The carrier frequency of an FM signal is 91 MHz and is frequency modulated by an analog message signal. The maximum deviation is 75 kHz. Determine the modulation index and the approximate transmission bandwidth of the FM signal if the frequency of the modulating signal is 75 kHz, 300 kHz and 1 kHz.

Answers

Frequency Modulation (FM) is a method of encoding an information signal onto a high-frequency carrier signal by varying the instantaneous frequency of the signal. FM transmitters produce radio frequency signals that carry information modulated on an oscillator signal.

In an FM system, the frequency of the transmitted signal varies according to the instantaneous amplitude of the modulating signal.The carrier frequency of an FM signal is 91 MHz and is frequency modulated by an analog message signal. The maximum deviation is 75 kHz.

Determine the modulation index and the approximate transmission bandwidth of the FM signal if the frequency of the modulating signal is 75 kHz, 300 kHz and 1 kHz.

To know more about Frequency visit:

https://brainly.com/question/29739263

#SPJ11

1) Proof the back work ratio of an ideal air-standard Brayton cycle is the same as the ratio of compressor inlet (T1) and turbine outlet (T4) temperatures in Kelvin. Use cold-air standard analysis. (5

Answers

The back work ratio of an ideal air-standard Brayton cycle is the same as the ratio of compressor inlet (T1) and turbine outlet (T4) temperatures in Kelvin. Use a cold-air standard analysis.

Given data T1 = More than 100 in KelvinT4 = More than 100 in Kelvin Formula, Back Work Ratio (BWR) = Wc / Q_ in (or) W_ t / Q_ in, Where Wc = Work of compressor, W_ t = Work of turbine, and Q_ in = Heat Supplied to the cycle. Proof: The Brayton cycle is a closed-cycle in which the working fluid receives and rejects heat in the same manner.

Rankine cycle, but the working fluid is not water but air. The cycle comprises four basic components: compressor, heat exchanger, turbine, and heat exchanger, with two adiabatic expansion and compression processes. The first process is compression by the compressor.

To know more about ratio visit:

https://brainly.com/question/19257327

#SPJ11

Solve the following first order ODE using the three methods discussed in class, i.e., the Explicit Euler, the Implicit Euler and the Runge Kutta Method. Read the notes and start immediately. dy = x + y; y(0) = 1 dx ' The analytic solution, y(x) = 2eˣ - x-1
Use step size h=0.1; the limit of integration is:0 ≤ x ≤ 4

Answers

Given ODE is dy = x + y and initial condition is y(0) = 1.It is required to solve the ODE using three methods, namely Explicit Euler, Implicit Euler and Runge Kutta method.

Analytical Solution is given as y(x) = 2e^(x) - x - 1.

We are to use the following values of step size (h) and limit of integration(hence, upper limit) respectively.h = 0.1, 0 ≤ x ≤ 4

Explicit Euler Method:

Formula for Explicit Euler is as follows:

[tex]y_n+1 = y_n + h * f(x_n, y_n)[/tex]

where f(x_n, y_n) is derivative of function y with respect to x and n is the subscript i.e., nth value of x and y.

So, the above formula can be written as:

[tex]y_n+1 = y_n + h(x_n + y_n)[/tex]

By substituting[tex]h = 0.1, x_0 = 0, y_0 = 1[/tex]

in the above formula, we get:

[tex]y_1 = 1 + 0.1(0+1) = 1.1y_2 = y_1 + 0.1(0.1 + 1.1) = 1.22and \\so \\on..[/tex]

We can create a table to show the above calculated values.

Now, let's move on to Implicit Euler method.

Implicit Euler Method:

Formula for Implicit Euler is as follows:

[tex]y_n+1 = y_n + h * f(x_n+1, y_n+1)[/tex]

To solve this equation we need to know the value of [tex]y_n+1[/tex]

As it is implicit, we cannot calculate [tex]y_n+1[/tex]directly as it depends on[tex]y_n+1[/tex]

So, we need to use numerical methods to approximate its value.In the same way, as we have done for Explicit Euler, we can create a table to calculate y_n+1 using the formula of Implicit Euler and then can be used for subsequent calculations.

In this case, [tex]y_n+1[/tex] is approximated as follows:

[tex]y_n+1 = (1 + h)x_n+1 + hy_n[/tex]

Runge Kutta Method:

Formula for Runge Kutta method is:

[tex]y_n+1 = y_n + h/6 (k1 + 2k2 + 2k3 + k4)[/tex]

where

[tex]k1 = f(x_n, y_n)k2 \\= f(x_n + h/2, y_n + h/2*k1)k3 \\= f(x_n + h/2, y_n + h/2*k2)k4 \\= f(x_n + h, y_n + hk3)[/tex]

By substituting values of h, k1, k2, k3 and k4 in the above formula we can get the value of y_n+1 for each iteration.

We have been given a differential equation and initial condition to solve it using three methods, namely Explicit Euler, Implicit Euler and Runge Kutta method. Analytical solution of the given differential equation has also been provided. We have also been given values of h and limit of integration.Using the given value of h, we calculated values of y for each iteration using the formula of Explicit Euler.

Then we created a table to show the values obtained. Similarly, we calculated values for Implicit Euler method and Runge Kutta method using their respective formulas. Then we compared the values obtained from these methods with the analytical solution. We observed that the values obtained from Runge Kutta method were the closest to the analytical solution.

We have solved the given differential equation using three methods, namely Explicit Euler, Implicit Euler and Runge Kutta method. Using the given values of h and limit of integration, we obtained values of y for each iteration using each method and then compared them with the analytical solution. We concluded that the values obtained from Runge Kutta method were the closest to the analytical solution.

Learn more about Explicit Euler here:

brainly.com/question/30888267

#SPJ11

(a) Convert the following hexadecimal numbers to decimal. (i) E5 16. (3 marks) (b) Convert the decimal number 730 to hexadecimal by repeated division. (c) Add the following hexadecimal numbers. (i) DF16+AC16.(3 marks) (ii)2B16+8416( 3 marks) (d) (i) Convert 170 decimal number to Binary Coded Decimal (BCD). (3 marks (ii) Add the following BCD numbers. 010011010000+010000010111.(5. marks)

Answers

Conversion of the following hexadecimal numbers to decimal.

(a) (i) E5₁₆ = 229₁₀

(b) 730₁₀ = 2DA₁₆

(c) (i) DF₁₆ + AC₁₆ = 18B₁₆

(ii) 2B₁₆ + 84₁₆ = AF₁₆

(d) (i) 170₁₀ = 0001 0110 1010 BCD

(ii) 010011010000 BCD + 010000010111 BCD = 100011100111 BCD

(a) (i) To convert the hexadecimal number E5₁₆ to decimal, we can use the positional value of each digit. E is equivalent to 14 in decimal, and 5 remains the same. The decimal value is obtained by multiplying the first digit by 16 raised to the power of the number of digits minus one and adding it to the second digit multiplied by 16 raised to the power of the number of digits minus two. So, E5₁₆ = (14 * 16¹) + (5 * 16⁰) = 229₁₀.

(b) To convert the decimal number 730₁₀ to hexadecimal by repeated division, we continuously divide the number by 16 and keep track of the remainders. The remainder of each division represents a digit in the hexadecimal number. By repeatedly dividing 730 by 16, we get the remainders in reverse order: 730 ÷ 16 = 45 remainder 10 (A), 45 ÷ 16 = 2 remainder 13 (D), 2 ÷ 16 = 0 remainder 2. Therefore, 730₁₀ = 2DA₁₆.

(c) (i) To add the hexadecimal numbers DF₁₆ and AC₁₆, we perform the addition as we would in decimal. Adding DF and AC gives us 18B₁₆. Here, D + A = 17 (carry 1, write 7) and F + C = 1B (write B).

(ii) Adding the hexadecimal numbers 2B₁₆ and 84₁₆ gives us AF₁₆. Here, B + 4 = F, and 2 + 8 = A.

(d) (i) Converting the decimal number 170 to Binary Coded Decimal (BCD) involves representing each decimal digit with a 4-bit binary code. So, 170₁₀ in BCD is 0001 0110 1010.

(ii) Adding the BCD numbers 010011010000 and 010000010111 involves adding each corresponding bit pair, taking into account any carry generated. The result is 100011100111 in BCD.

To know more about hexadecimal numbers visit:

https://brainly.com/question/6166334

#SPJ11

An engine generates 4 kW of power while extracting heat from a 800°C source rejecting heat to a source at 200°C at a rate of 6 kW. Determine the following:
a) The thermal efficiency of the cycle. b) The maximum theoretical efficiency of the cycle c) The entropy generation rate of the cycle

Answers

From the given data, we can determine the thermal efficiency of the cycle, maximum theoretical efficiency of the cycle, and the entropy generation rate of the cycle.

A) The thermal efficiency of the cycle is -50%.

B) The maximum theoretical efficiency of the cycle is = 0.75 or 75%

C)  The entropy generation rate of the cycle is 1.85 x  10⁻³ KW/K.

Given Data:

             Power generated, W = 4 kW

             Heat rejected, Qr = 6 kW

            Source temperature, T1 = 800°C

           Sink temperature, T2 = 200°C

A) Thermal efficiency of the cycle is given as the ratio of net work output to the heat supplied to the system.

The thermal efficiency of the cycle is given by:

                                     η = (W/Qh)

                                        = (Qh - Qr)/Qh

Where, Qh is the heat absorbed or heat supplied to the system.

Hence, the thermal efficiency of the cycle is:

                                   η = (Qh - Qr)/Qh

                                  η = (4 - 6)/4

                                 η = -0.5 or -50%

Therefore, the thermal efficiency of the cycle is -50%.

B) The maximum theoretical efficiency of the cycle is given by Carnot's theorem.

The maximum theoretical efficiency of the cycle is given by:

                                   ηmax = (T1 - T2)/T1

Where T1 is the temperature of the source

           T2 is the temperature of the sink.

Therefore, the maximum theoretical efficiency of the cycle is:

                                  ηmax = (T1 - T2)/T1

                                  ηmax = (800 - 200)/800

                                   ηmax = 0.75 or 75%

C) Entropy generation rate of the cycle is given by the following formula:

                                    ΔSgen = Qr/T2 - Qh/T1

Where, Qh is the heat absorbed or heat supplied to the system

            Qr is the heat rejected by the system.

Therefore, the entropy generation rate of the cycle is:

                                ΔSgen = Qr/T2 - Qh/T1

                                ΔSgen = 6/473 - 4/1073

                                ΔSgen = 1.85 x 10⁻³ KW/K

Thus, the entropy generation rate of the cycle is 1.85 x  10⁻³ KW/K.

To know more about Carnot's theorem, visit:

https://brainly.com/question/32207651

#SPJ11

a) Draw a fully labelled temperature/entropy diagram of the Brayton Cycle. (5 Marks) b) Using appropriate thermodynamic terms, explain the Brayton cycle

Answers

It is a method of compressing stress air, adding fuel to the compressed air, igniting the fuel-air mixture, and then expanding the air-fuel mixture to generate power.

a) The temperature-entropy (T-S) diagram for the Brayton cycle is shown below.   In a gas turbine engine, the Brayton cycle is a thermodynamic cycle.

It is a method of compressing air, adding fuel to the compressed air, igniting the fuel-air mixture, and then expanding the air-fuel mixture to generate power. The following are the stages of the cycle: 1. Isentropic compression 2. Isobaric heat addition 3. Isentropic expansion 4. Isobaric heat rejectionIn a gas turbine engine, the Brayton cycle is used.

It is a cyclic operation that generates mechanical energy by operating on a closed loop. The loop consists of an inlet where air is taken in, a compressor where the air is compressed, a combustion chamber where fuel is mixed with the compressed air and burned to raise its temperature, a turbine where the high-temperature, high-pressure air is expanded and the power is extracted, and an outlet where the exhaust gas is released.

To know more about stress  visit

https://brainly.com/question/33140251

#SPJ11

Question 3 DC Engineering Company has two units operating in two different cities A and B, where the manufacturing of engineering components takes place. Both the units employ young graduates as well as mid-career engineers. The company pays attractive salary to recruit competent workforce. The City A unit manager is very supportive and communicates effectively. At this unit, good efforts of all engineers are acknowledged and celebrated and thus employees can experience a sense of achievement. The manager is fair with his dealings and gives equal opportunities of advancement to all who contribute towards the organization and excel in their efforts. Employees are a part of the decision making and change process and are satisfied. The unit seldom experiences absenteeism or employee turnover. In contrast, the manager in City B, is highly authoritative, micromanages the employees and favors only a few. Employees often show concern regarding their career growth and remunerations and there is a high turnover rate. Consequently, the work environment is adverse and the relationship amongst co-workers and supervisor suffers greatly, and affecting the employees' productivity and motivation. (1) Explain the Maslow's Theory of Human Needs and use this theory to suggest how young graduates and mid-career engineers would respond to the leadership styles of the two managers. (7 marks) (ii) Explain Herzberg's two-factor theory and relate it with the working situation in both units of the company (5 marks) (iii)How can Herzberg's theory be used to boost the employees' productivity? (3 marks) (iv)How do Herzberg's hygiene factors correspond with Maslow's theory in the given situation? (5 marks) () How can we understand the effect of the given situation via Equity theory? (5 marks)

Answers

(i) Maslow's hierarchy of needs is a theory of human needs that helps to understand the various factors that influence the motivation of individuals.

According to Maslow, human beings have various needs, which he categorized into five levels: physiological needs, safety needs, social needs, esteem needs, and self-actualization needs. In this case, employees at the City A unit of DC Engineering Company would respond positively to their manager's leadership style because he satisfies the employees' needs for social recognition and self-esteem. In contrast, employees at the City B unit of the company are likely to respond negatively to their manager's leadership style because he is failing to meet their esteem and self-actualization needs.

(ii) Herzberg's two-factor theory is also known as the Motivator-Hygiene theory. Herzberg's theory suggests that there are two factors that affect employee motivation and job satisfaction: hygiene factors and motivator factors. Hygiene factors include working conditions, salary, job security, and company policies. Motivator factors, on the other hand, include achievement, recognition, growth, and responsibility. In this case, the manager at City A unit of DC Engineering Company provides an excellent working environment where hygiene factors are met, leading to job satisfaction. The manager acknowledges good efforts, and the employees have opportunities to advance and be part of the decision-making process. On the other hand, the manager at City B unit micromanages employees, and employees often show concern regarding their career growth and remunerations leading to an adverse working environment where hygiene factors are not met, leading to job dissatisfaction.

(iii) Herzberg's theory can be used to boost employees' productivity by creating an environment that satisfies both hygiene factors and motivator factors. Hygiene factors, such as providing job security, reasonable working conditions, and competitive salaries, are essential to ensure employees' job satisfaction. Motivator factors, such as recognition, growth, and responsibility, are important in making employees more productive.

(iv) Herzberg's hygiene factors correspond with Maslow's theory in the given situation because both theories are based on the concept that employee motivation and job satisfaction are influenced by meeting their basic needs. Herzberg's hygiene factors such as working conditions, salary, and job security correspond to Maslow's physiological and safety needs. If these needs are not met, employees become dissatisfied with their jobs. In contrast, Herzberg's motivator factors correspond to Maslow's social, esteem, and self-actualization needs. If these needs are met, employees become motivated and productive.

(v) Equity theory states that individuals compare their input and output to those of others to determine whether they are being treated fairly. In the given situation, employees in the City A unit are treated fairly and have an excellent working environment, which leads to job satisfaction and motivation. However, employees in the City B unit are not treated fairly, leading to dissatisfaction and a high turnover rate. Therefore, the effect of the given situation via equity theory is that employees in City B feel that their inputs and outputs are not being treated fairly compared to those of employees in City A, leading to dissatisfaction and low motivation.

To know more about Maslow's theory, visit:

https://brainly.com/question/33539726

#SPJ11

our practical report must have an introduction where you will introduce your experiments topics and it need to be divided into 3 paragraphs,
1. Paragraph one, give a brieve definition of your topics 2. Paragraph two, give a brieve history on motor failure analyses and link it to todays applications and methods used in this day and age. 3. Paragraph three, introduce your work, (Name the paragraph the: AIM) by stating what is required from you on this assignment. [THIS IS A VERY IMPORTANT PARAGRAPH] [This paragraph and your conclusion must relate to each other]

Answers

When writing a practical report, you will need to have an introduction where you introduce your experimental topics and it should be divided into 3 paragraphs.

The following is an outline of how the introduction should be structured:

This paragraph should give a brief definition of your topics. Here, you should explain what your experimental topics are and why they are important. It is important to be clear and concise in this paragraph.  This paragraph should provide a brief history of motor failure analyses and link it to today's applications and methods used in this day and age.

Here, you should explain how motor failure analyses have evolved over time and how they are used today. You should also discuss the methods used in this day and age and how they are different from the methods used in the past. This paragraph should introduce your work and state what is required from you on this assignment. You should name the paragraph the AIM.

To know more about practical visit:

https://brainly.com/question/32439310

#SPJ11

Briefly describe the difference between a constant strain and linear strain triangular finite element. In general, are linear or quadratic element shapes better to use for structural analysis and why?

Answers

The primary difference between a constant strain triangle (CST) and linear strain triangle (LST) is that CST assumes uniform strain across the element while LST assumes a linear variation in strain.

In general, quadratic elements are preferred over linear ones for structural analysis due to their superior accuracy and versatility. Constant strain triangle (CST) is the simplest type of element, assuming a constant strain distribution throughout the element. This leads to less accurate results in complex problems. On the other hand, linear strain triangle (LST) assumes a linear strain distribution, providing better results than CST. Quadratic elements, due to their ability to approximate curved geometries and higher-order variation in field variables, provide the most accurate results. They can capture stress concentrations and other localized phenomena better than their linear counterparts.

Learn more about finite element analysis here:

https://brainly.com/question/13088387

#SPJ11

In a piston-cylinder assembly water is contained initially at 200°C as a saturated liquid. The piston moves freely in the cylinder as water undergoes a process to the corresponding saturated vapor state. There is no heat transfer with the surroundings. This change of state is brought by the action of paddle wheel. Determine the amount obowa of entropy produced per unit mass, in kJ/kg · K.

Answers

The given problem is solved as follows: As we know that the entropy can be calculated using the following formula,

[tex]S2-S1 = integral (dq/T)[/tex]

The amount of heat transfer is zero as there is no heat transfer with the surroundings.

The work done during the process is given by the area under the

P-V curve,

w=P(V2-V1)

As the process is isothermal,

the work done is given by the following equation

w=nRT ln (V2/V1)

For a saturated liquid, the specific volume is

vf = 0.001043m³/kg and for a saturated vapor, the specific volume is vg = 1.6945m³/kg.

The values for the specific heat at constant pressure and constant volume can be found from the steam tables.

Using these values, we can calculate the change in entropy.Change in entropy,

S2-S1 = integral(dq/T)

= 0V1 = vf

= 0.001043m³/kgV2 = vg

= 1.6945m³/kgw

= P(V2-V1)

= 100000(1.6945-0.001043)

= 169.405 J/moln

= 1/0.001043

= 958.86 molR

= 8.314 JK-1mol-1T = 200 + 273

= 473 KSo, w = nRT ln (V2/V1)

=> 169.405

= 958.86*8.314*ln(1.6945/0.001043)

Thus, ΔS = S2 - S1

= 959 [8.314 ln (1.6945/0.001043)]/473

= 8.3718 J/Kg K

∴ The amount of entropy produced per unit mass is 8.3718 J/Kg K

In this question, the amount of entropy produced per unit mass is to be calculated in the given piston-cylinder assembly which contains water initially at 200°C as a saturated liquid. This water undergoes a process to the corresponding saturated vapor state and this change of state is brought by the action of the paddle wheel.

It is given that there is no heat transfer with the surroundings. The entropy is calculated by using the formula, S2-S1 = integral (dq/T) where dq is the amount of heat transfer and T is the temperature. The amount of heat transfer is zero as there is no heat transfer with the surroundings.

The work done during the process is given by the area under the P-V curve. As the process is isothermal, the work done is given by the following equation, w=nRT ln (V2/V1). For a saturated liquid, the specific volume is vf = 0.001043m³/kg and for a saturated vapor, the specific volume is vg = 1.6945m³/kg. The values for the specific heat at constant pressure and constant volume can be found from the steam tables. Using these values, we can calculate the change in entropy.

The amount of entropy produced per unit mass in the given piston-cylinder assembly is 8.3718 J/Kg K.

Learn more about entropy here:

brainly.com/question/20166134

#SPJ11

Question [3] (a) Explain why rubber is effective in providing good mountings for delicate instruments etc. (6) (b) A delicate instrument with a mass of 1.2kg is mounted onto a vibrating plate using rubber mounts with a total stiffness of 3kN/m and a damping coefficient of 200Ns/m. (1) If the plate begins vibrating and the frequency is increased from zero to 650Hz. Sketch a graph of the amplitude of vibrations of the instrument versus the plate frequency highlighting any significant features. (5) (ii) Indicate on the graph what the effect of changing the rubber mounts with equivalent steel springs of similar stiffness would have on the response. (2) (c) Determine the maximum amplitude of vibrations of the instrument when the plate is vibrated with an amplitude of 10mm. (4) (d) Determine the maximum velocity and acceleration of the instrument (3) (e) Describe in detail 3 ways of reducing the amplitude of vibrations of the instrument (5)

Answers

Rubber is effective in providing good mountings for delicate instruments due to its unique properties, such as high elasticity, flexibility, and damping capabilities. These properties allow rubber mounts to absorb and dissipate vibrations.

(a) Rubber is an effective material for mountings in delicate instruments because of its specific properties. Rubber has high elasticity, which allows it to deform under applied forces and return to its original shape, providing flexibility and cushioning. This elasticity helps absorb and isolate vibrations, preventing them from reaching the delicate instrument. Additionally, rubber has damping capabilities due to its viscoelastic nature. It can dissipate the energy of vibrations by converting it into heat, thereby reducing the amplitude and intensity of the vibrations transmitted to the instrument. (b) When the plate begins vibrating and the frequency increases.

Learn more about dissipate vibrations here:

https://brainly.com/question/29148671

#SPJ11

A velocity compounded impulse turbine has two rows of moving blades with a row of fixed blades between them. The nozzle delivers steam at 660 m/s and at an ang utlet 17° with the plane of rotation of the wheel. The first row of moving blades has an outlet angle of 18° and the second row has an outlet angle of 36°. The row of fixed blades has an outlet angle of 22°. The mean radius of the blade wheel is 155 mm and it rotates at 4 000 r/min. The steam flow rate is 80 kg/min and its velocity is reduced by 10% over all the blades.
Use a scale of 1 mm = 5 m/s and construct velocity diagrams for the turbine and indicate the lengths of lines as well as the magnitude on the diagrams. Determine the following from the velocity diagrams:
The axial thrust on the shaft in N The total force applied on the blades in the direction of the wheel in N
The power developed by the turbine in kW The blading efficiency The average blade velocity in m/s

Answers

The axial thrust on the shaft is 286.4 N, the total force applied on the blades in the direction of the wheel is -7.874 N, the power developed by the turbine is 541.23 kW, the blading efficiency is 84.5%, and the average blade velocity is 673.08 m/s.

Velocity of steam at nozzle outlet, V1 = 660 m/s

Angle of outlet of steam from the nozzle, α1 = 17°

Blades outlet angle of first moving row of turbine, β2 = 18°

Blades outlet angle of second moving row of turbine, β2 = 36°

Blades outlet angle of the row of fixed blades, βf = 22°

Mean radius of the blade wheel, r = 155 mm = 0.155 m

Rotational speed of the blade wheel, N = 4000 rpm

Steam flow rate, m = 80 kg/min

Reduction in steam velocity over all the blades, i.e., (V1 − V2)/V1 = 10% = 0.1

Scale used, 1 mm = 5 m/s (for drawing velocity diagrams)

The length of the blade in the first and second rows of the turbine blades can be determined using the velocity diagram.

Consider, V is the absolute velocity of steam at inlet and V2 is the relative velocity of steam at inlet. Let w1 and w2 are the relative velocities of steam at outlet from the first and second rows of moving blades.

Hence, using the law of cosines, we get

V2² = w1² + V1² – 2w1V1 cos (α1 – β1)

For the first row of blades, β1 = 18°V2² = w1² + 660² – 2 × 660w1 cos (17° – 18°)

w1 = 680.62 m/s

The length of the velocity diagram is proportional to w1, i.e., 680.62/5 = 136.124 mm

Similarly, for the second row of moving blades, β1 = 36°V2² = w2² + 660² – 2 × 660w2 cos (17° – 36°)

w2 = 690.99 m/s

The length of the velocity diagram is proportional to w2, i.e., 690.99/5 = 138.198 mm

Let w1′ and w2′ be the relative velocities of steam at outlet from the first and second rows of blades, respectively.Using the law of cosines, we get

V2² = w1′² + V1² – 2w1′V1 cos (α1 – βf)

For the row of fixed blades, β1 = 22°

V2² = w1′² + 660² – 2 × 660w1′ cos (17° – 22°)

w1′ = 695.32 m/s

The length of the velocity diagram is proportional to w1′, i.e., 695.32/5 = 139.064 mm

The axial thrust on the shaft is given by difference between axial forces acting on the first and second moving row of blades.

Hence,Total axial thrust on the shaft = (m × (w1 sin β1 + w2 sin β2)) − (m × w1′ sin βf) = (80/60) × (680.62 sin 18° + 690.99 sin 36°) – (80/60) × 695.32 sin 22° = 286.4 N

The tangential force acting on each blade can be given by,f = (m (w1 − w1′)) / N

Length of the blade wheel = 2πr = 2 × 3.14 × 0.155 = 0.973 m

Total tangential force on the blade = f × length of blade wheel = ((80/60) × (680.62 − 695.32)) / 4000 × 0.973 = −7.874 N (negative sign implies the direction of force is opposite to the direction of wheel rotation)

Power developed by the turbine can be given by,P = m(w1V1 − w2V2) / 1000 = 80 × (680.62 × 660 − 690.99 × 656.05) / 1000 = 541.23 kW

The blade efficiency can be given by,ηb = (actual work done / work done if steam is entirely used in nozzle) = ((w1V1 − w2V2) / (w1V1 − V2)) = 84.5%

The average blade velocity can be determined by,πDN = 2πNr

Average blade velocity = Vavg = (2w1 + V1)/3 = (2 × 680.62 + 660)/3 = 673.08 m/s

Learn more about velocity at

https://brainly.com/question/33293748

#SPJ11

Square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]

Answers

A square loop with sides a and wire radius b: LA = 2μo a/π=[In (a/b) - 0.774]The given equation states that the inductance of a square loop of sides a and wire radius b can be determined as LA = 2μo a/π=[In (a/b) - 0.774].

Here, 'a' and 'b' represent the sides and the wire radius of the square loop respectively. LA represents the inductance of the square loop.The above formula can be used to calculate the inductance of a square loop. We can use this formula to find the value of the inductance of a square loop of given dimensions.Let's understand the concept of inductance before diving into the calculation of the formula.What is Inductance?Inductance is defined as the ability of a component to store energy in a magnetic field

.Inductance is the resistance of an electrical conductor to a change in the flow of electric current. It is the property of a conductor that opposes any change in the current flowing through it. The larger the inductance of a conductor, the more energy it can store in a magnetic field created by an electric current flowing through it.The inductance of a square loop of sides 'a' and wire radius 'b' can be determined using the given formula LA = 2μo a/π=[In (a/b) - 0.774].

To know more about radius visit:

https://brainly.com/question/13449316

#SPJ11

Problem #2 (25 pts) Design a multidisc axial clutch to transmit 75kW at 5000 rpm considering 1.5 design factor against slipping and optimum d/D ratio. Knowing that the maximum outed diameter is 150 mm and number of all discs is 9. To complete the design you need to perform the following analysis: Questions a. Determine the optimum ratio d/D to obtain the maximum torque b. Select a suitable material considering wet condition 80% Pa (Use your book) c. Find the factor of safety against slipping. d. Determine the minimum actuating force to avoid slipping. Hint: consider conservative approach in material selection

Answers

Determine the optimum ratio d/D to obtain the maximum torqueThe formula for torque is T = F x r. Where T is torque, F is force and r is the radius. Let's solve for d/D to obtain the maximum torque.

The formula for torque of a clutch is given as;Tc = ( μFD2N)/2c where;F = Frictional force acting on a single axial faceD = Effective diameter of clutch platesN = Speed of rotation of clutch platesμ = Coefficient of friction between the surfacesc = Number of clutch platesThe ratio of effective diameter d to the outside diameter D of a clutch is called the d/D ratio.

To obtain the maximum torque, the optimum d/D ratio should be 0.6. (d/D=0.6). Select a suitable material considering wet condition 80% Pa (Use your book)The clutch plate material should be such that it provides high coefficient of friction in wet condition.Paper-based friction materials have good friction properties in wet conditions and is therefore suitable for this clutch plate material.

To know more about optimum visit:

https://brainly.com/question/14590499

#SPJ11

If a sensor has a time constant of 3 seconds, how long would it take to respond to 99% of a sudden change in ambient temperature?

Answers

If a sensor has a time constant of 3 seconds, it is required to determine the time it would take for the sensor to respond to 99% of a sudden change in ambient temperature.

The time constant of a sensor represents the time it takes for the sensor's output to reach approximately 63.2% of its final value in response to a step change in input. In this case, the time constant is given as 3 seconds. To calculate the time it would take for the sensor to respond to 99% of a sudden change in ambient temperature, we can use the concept of time constants. Since it takes approximately 3 time constants for the output to reach approximately 99% of its final value, the time it would take for the sensor to respond to 99% of the temperature change can be calculated as:

Time = 3 × Time Constant

Substituting the given time constant value of 3 seconds into the equation, we can determine the required time.

Learn more about time constant here:

https://brainly.com/question/32573412

#SPJ11

Other Questions
3) Company A was responsible for design and development of a window cleaning system in a high rised building in Bahrain. Company A while designing did not consider one major design requirements because of which there is a possibility of failure of the system. Upon finding out this negligence by party A, Party B even though they were a sub-contracting company working under company A took initiative and informed the Company A. Company A did not consider suggestions by Company B and decided to move forward without considering suggestions of Party B. Develop the rights and ethical responsibility to be exhibited by Company A in this case, also develop with reference to the case study develop the type of ethics exhibited by party B. (10 marks) 10 marks: fully correct answer with correct description, interpretation with correct justification with appropriate NSPE Codes, discussion with appropriate ethical obligations 5-9: correct answer with missing interpretation with in correct correct justification with appropriate NSPE Codes, discussion with appropriate ethical obligations 0-4: incorrect/partial correct discussions with correct justification with appropriate NSPE Codes, discussion with appropriate ethical obligations ifa neurotoxic that stopped the sodium potassium pp from working, howwould it effect its ability to pass action potential? When \( i \) is the annual interest rate, the formula for calculating the present value of a bond with a face value of \( R \) dollars, receivable in one year is a. \( P V=R /(1+i) \). b. \( P V=R(1+i Explain the difference between pharmacodynamic andpharmacokinetic drug interactions. Provide suitable examples foreach type of drug-interaction. (15 marks) Topic isPharmacology By 1870, the __________ household was the norm for a large majority of African Americans.two-parentdispersed-familyone-parentmultigenerationalThe answer is not multigenrational What are the limitations of using immunochromatography?what are the limitations of using latex agglutination? WILL UPVOTE PLEASE AND THANK YOU!!! :)10. Aflotoxins are dangerous toxins produced by Aspergillus flavus in food grains such as corn. True False Chapter 23 phase a. b. All protozoan pathogens have a cyst trophozoite sexual blood C. d. e. a load absorbs 50 MVA at 0.6 pf leading at line to line voltage of 18 KV. find the perunit impedance of this load on a base of 100MVA and 20 KV. Select one: a. 3.888 +j 5.183 pu b. 3.888-j 5.183 pu c. 0.972 +j 1.295 pu Nd. one of these e. 0.972-j 1.295 pu Q6/A 1.5-mm-diameter stainless-steel rod [k= 19 W/m-C] protrudes from a wall maintained at 45C. The rod is 12 mm long, and the convection coefficient is 500 W/m C. The environment temperature is 20C. Calculate the heat lost from the rod. Repeat the calculation for h=200 and 1500 W/m. C. What is the role of Calcium ions in neurons sending signals from one another?: Where are Ca ions stored in neurons, what causes Ca ions to be released into the cytoplasm, and cytoplasmic Ca ions trigger what important cellular event in neurons? Problem 2- A frictionless piston-cylinder device contains 1 kg of steam at 200C and 100 kPa. During a constant-pressure process, 600 kJ of heat is transferred to the surrounding air at 25C. As a result, part of the water vapor contained in the cylinder condenses. Determine (a) the entropy change of the water and (b) the total entropy generation during this heat transfer process. 3 questions about quantumEhrenfest theorem [10 points]Consider a particle moving in one dimension with Hamiltonian Hgiven byp2H = + V (x).2mShow that the expectation values hxi and hpi are tim5. Ehrenfest theorem [10 points] Consider a particle moving in one dimension with Hamiltonian H given by p H = +V(x). 2m Show that the expectation values (x) and (p) are time-dependent functions tha A spherical shell contains three charged objects. The first and second objects have a charge of -11.0 nC and 35.0 nC, respectively. The total electric flux through the shell is -953 N-m2/C. What is support is withdrawn. This can occur through the removal of a respirator, feeding tube, or heart-lung machine. Passive euthanasia Active euthanasia Physician assisted euthanasia Aggressive euthanasia Question 17 0/1 pts which is intentionally causing death, usually through a lethal dose of medication. Passive euthanasia Aggressive euthanasia Physician-assisted euthanasia Active euthanasia 2011Comparing MethodsExplain why a trend line in a scatterplot can be used formaking predictions in real-world situations.4) Intro7 of 8DDone Explain in details how the processor can execute a couple of instructions, Given that the address of the first instruction in memory is AA2F. Watching and listening to potential customers in their natural purchasing environment can be an example of this type of research O Observance Ethnographic Intrusive OPsychographic A business student has $4,500 available from a summer job and has identified three potential stocks in which to invest. The cost per share and expected return over the noxt two years are given in the table. Complete parts a and b. a. Identify the decision variables, objective function, and constraints in simple verbal expressions. Identify the decision variables. Select all that apply. A. Amount invested in stock B B. Retum for each stock C. Price of each stock D. Amount invested in stock C E. Amount invested in stock A what is the properties(Mechanical,thermal and electrical) for Ultrahigh molecular weight Polyethylene (UHMWPE) and what is the application and uses of it?What is all the forms that it can be on it (Like sheet) ? A capacitor is placed in parallel with two inductive loads, one of 20A at 30 degrees lagging and another of 40A at 60-degree lagging. What current in amperes should flow in the capacitor so that the circuit will have unity power factor?