A uniform electric field stack \rightarrow Ei subscript I with rightwards arrow on top is present in the region between infinite parallel plane plates A and B and a uniform electric field stack\rightarrow Eii subscript I I end subscript with rightwards arrow on top is present in the region between infinite parallel plane plates B and C. When the plates are vertical, stack \rightarrow Ei subscript I with rightwards arrow on top is directed to the right and stack \rightarrow Eii subscript I I end subscript with rightwards arrow on top to the left. The signs of the charges on plates A, B and C may be

a. ?, ?, ?.

b. +, ?, ?.

c. +, ?, +.

d. +, +, +.

e. any one of the above

Answers

Answer 1

Answer:

e. any one of the above

Explanation:

A Uniform Electric Field Stack \rightarrow Ei Subscript I With Rightwards Arrow On Top Is Present In

Related Questions

An experimenter finds that standing waves on a string fixed at both ends occur at 24 Hz and 32 Hz , but at no frequencies in between. Part A What is the fundamental frequency

Answers

Answer:

8 Hz

Explanation:

Given that

Standing wave at one end is 24 Hz

Standing wave at the other end is 32 Hz.

Then the frequency of the standing wave mode of a string having a length, l, is usually given as

f(m) = m(v/2L), where in this case, m could be 1. 2. 3. 4 etc

Also, another formula is given as

f(m) = m.f(1), where f(1) is the fundamental frequency..

Thus, we could say that

f(m+1) - f(m) = (m + 1).f(1) - m.f(1) = f(1)

And as such,

f(1) = 32 - 24

f(1) = 8 Hz

Then, the fundamental frequency needed is 8 Hz

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?

Answers

Answer:

a

 [tex]\theta = 0.0022 rad[/tex]

b

 [tex]I = 0.000304 I_o[/tex]

Explanation:

From the question we are told that  

   The  wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]

    The  distance of the slit separation is  [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]

 

Generally the condition for two slit interference  is  

     [tex]dsin \theta = m \lambda[/tex]

Where m is the order which is given from the question as  m = 2

=>    [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]

 substituting values  

      [tex]\theta = 0.0022 rad[/tex]

Now on the second question  

   The distance of separation of the slit is  

       [tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      [tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]

Where  [tex]\beta[/tex] is mathematically evaluated as

       [tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]

  substituting values

     [tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]

    [tex]\beta = 0.06581[/tex]

So the intensity is  

    [tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]

   [tex]I = 0.000304 I_o[/tex]

A circle has a radius of 13m Find the length of the arc intercepted by a central angle of .9 radians. Do not round any intermediate computations, and round your answer to the nearest tenth.

Answers

Answer:

11.7 m

Explanation:

The radius of the circle is 13 m.

The central angle of the arc is 0.9 radians

The length of an arc is given as:

L = r θ

where θ = central angle in radians = 0.9

=> L = 0.9 * 13 = 11.7 m

Length of the arc will be 11.7 m ≈ 10 m

What is an arc length?

Arc length refers to the distance between two points along a curve’s section.

Arc length = radius * theta

where

Arc length  = ? to find

given :

radius = 13 m

theta ( central angle) = 0.9 radians

Arc length = 13 m * 0.9 radians

                = 11.7 m ≈ 10 m

length of the arc will be 11.7 m ≈ 10 m

Learn more about Arc length

https://brainly.com/question/16403495?referrer=searchResults

#SPJ2

How much heat does it take to raise the temperature of 7.0 kg of water from
25-C to 46-C? The specific heat of water is 4.18 kJ/(kg.-C).
Use Q = mcTr-T)
A. 148 kJ
B. 176 kJ
C. 610 kJ
D. 320 kJ​

Answers

Answer:

non of the above

Explanation:

Quantity of heat = mass× specific heat× change in temperature

m= 7kg c= 4.18 temp= 46-25=21°

.......H= 7×4.18×21= 614.46kJ

Answer:610 KJ

Explanation:A P E X answers

How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density

Answers

The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object

Given a double slit apparatus with slit distance 1 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 400 nm on the slits

Answers

Answer:

The maximum number of bright spot is [tex]n_{max} =5001[/tex]

Explanation:

From the question we are told that

     The  slit distance is [tex]d = 1 \ mm = 0.001 \ m[/tex]

      The  wavelength is  [tex]\lambda = 400 \ nm = 400*10^{-9 } \ m[/tex]

       

Generally the condition for interference is  

        [tex]n * \lambda = d * sin \theta[/tex]

Where n is the number of fringe(bright spots) for the number of bright spots to be maximum  [tex]\theta = 90[/tex]

=>     [tex]sin( 90 )= 1[/tex]

So

     [tex]n = \frac{d }{\lambda }[/tex]

substituting values

     [tex]n = \frac{ 1 *10^{-3} }{ 400 *10^{-9} }[/tex]

     [tex]n = 2500[/tex]

given there are two sides when it comes to the double slit apparatus which implies that the fringe would appear on two sides so the maximum number of bright spots is mathematically evaluated as

        [tex]n_{max} = 2 * n + 1[/tex]

The  1  here represented the central bright spot

So  

      [tex]n_{max} = 2 * 2500 + 1[/tex]

     [tex]n_{max} =5001[/tex]      

       

An inquisitive physics student and mountain climber climbs a 47.0-m-high cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of 2.12 m/s.

(a) How long after release of the first stone do the two stones hit the water?

(b) What initial velocity must the second stone have if the two stones are to hit the water simultaneously?

magnitude =

(c) What is the speed of each stone at the instant the two stones hit the water?

first stone =

second stone =

Answers

Answer:

a) Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds, b) The initial velocity of the second stone is -16.038 meters per second, c) The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.

Explanation:

a) The time after the release after the release of the first stone can be get from the following kinematic formula for the first rock:

[tex]y_{1} = y_{1,o} + v_{1,o} \cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex]

Where:

[tex]y_{1}[/tex] - Final height of the first stone, measured in meters.

[tex]y_{1,o}[/tex] - Initial height of the first stone, measured in meters.

[tex]v_{1,o}[/tex] - Initial speed of the first stone, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

Given that [tex]y_{1,o} = 47\,m[/tex], [tex]y_{1} = 0\,m[/tex], [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following second-order polynomial is built:

[tex]-4.984\cdot t^{2} - 2.12\cdot t + 47 = 0[/tex]

Roots of the polynomial are, respectively:

[tex]t_{1} \approx 2.866\,s[/tex] and [tex]t_{2}\approx -3.291\,s[/tex]

Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds.

b) As the second stone is thrown a second later than first one, its height is represented by the following kinematic expression:

[tex]y_{2} = y_{2,o} + v_{2,o}\cdot (t-t_{o}) + \frac{1}{2}\cdot g \cdot (t-t_{o})^{2}[/tex]

[tex]y_{2}[/tex] - Final height of the second stone, measured in meters.

[tex]y_{2,o}[/tex] - Initial height of the second stone, measured in meters.

[tex]v_{2,o}[/tex] - Initial speed of the second stone, measured in meters per second.

[tex]t[/tex] - Time, measured in seconds.

[tex]t_{o}[/tex] - Initial absolute time, measured in seconds.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

Given that [tex]y_{2,o} = 47\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]t_{o} = 1\,s[/tex], [tex]t = 2.866\,s[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following expression is constructed and the initial speed of the second stone is:

[tex]1.866\cdot v_{2,o}+29.926 = 0[/tex]

[tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex]

The initial velocity of the second stone is -16.038 meters per second.

c) The final speed of each stone is determined by the following expressions:

First stone

[tex]v_{1} = v_{1,o} + g \cdot t[/tex]

Second stone

[tex]v_{2} = v_{2,o} + g\cdot (t-t_{o})[/tex]

Where:

[tex]v_{1,o}, v_{1}[/tex] - Initial and final velocities of the first stone, measured in meters per second.

[tex]v_{2,o}, v_{2}[/tex] - Initial and final velocities of the second stone, measured in meters per second.

If [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex], the final speeds of both stones are:

First stone

[tex]v_{1} = -2.12\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (2.866\,s)[/tex]

[tex]v_{1} = -30.227\,\frac{m}{s}[/tex]

Second stone

[tex]v_{2} = -16.038\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (2.866\,s-1\,s)[/tex]

[tex]v_{2} = -34.338\,\frac{m}{s}[/tex]

The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to:_______

a. one-half.
b. double.
c. reduce to one-fourth.
d. quadruple.

Answers

Answer:

D. quadruple

Explanation:

The stored energy varies with the square of the electric charge stored in the capacitor. If you double the charge, the stored energy in the capacitor will quadruple or increase by a factor of 4.

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to :

D. Quadruple

"Energy"

Doubling the potential across a given capacitor causes the energy stored in that capacitor to reduce to Quadruple.

The stored energy shifts with the square of the electric charge put away within the capacitor.

In case you twofold the charge, the put away vitality within the capacitor will fourfold or increment by a calculate of 4.

Thus, the correct answer is D.

Learn more about "energy":

https://brainly.com/question/1932868?referrer=searchResults

Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.

Answers

Answer:

1.363×10^15 seconds

Explanation:

The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.

To calculate the time taken from Kepler's third Law :

T^2 = ( 4π^2/GMe ) r^3

Where Me is the mass of the earth

r is the average distance travel

G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2

π = 3.14

Me = mass of earth = 5.972×10^24kg

r =( r minimum + r maximum)/2 ......1

rmin = 6590km

rmax = 385000km

From equation 1

r = (6590+385000)/2

r = 391590/2

r = 195795km

From T^2 = ( 4π^2/GMe ) r^3

T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3

= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15

= 39.4384/ 3.983×10^14 ) × 7.5059×10^15

= (9.901×10^14) × 7.5059×10^15

T^2 = 7.4321× 10^30

T =√7.4321× 10^30

T = 2.726×10^15 seconds

The time for one way trip from Earth to the moon is :

∆T = T/2

= 2.726×10^15 /2

= 1.363×10^15 secs

at the temperature at which we live, earth's core is solid or liquid?

Answers

Explanation:

The Earth has a solid inner core

Two small identical speakers are connected (in phase) to the same source. The speakers are 3 m apart and at ear level. An observer stands at X, 4 m in front of one speaker. If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:

a. 1 m
b. 2 m
c. 3 m
d. 4 m
e. 5 m

Answers

Answer:

b. 2 m

Explanation:

Given that:

the identical speakers are connected in phases ;

Let assume ; we have speaker A and speaker B which are = 3 meter apart

An observer stands at X = 4m in front of one speaker.

If the amplitudes are not changed, the sound he hears will be least intense if the wavelength is:                  

From above;  the distance between speaker  A and speaker B can be expressed as:

[tex]\sqrt{3^2 + 4^2 } \\ \\ = \sqrt{9+16 } \\ \\ = \sqrt{25} \\ \\ = 5 \ m[/tex]

The path length difference  will now be:

= 5 m - 4 m

= 1 m

Since , we are to determine the least intense sound; the destructive interference for that path length  will be half the wavelength; which is

= [tex]\dfrac{1}{2}*4 \ m[/tex]

= 2 m

The sound will be heard with least intensity if the wavelength is 2 m. Hence, option (b) is correct.

Given data:

The distance between the speakers is, d = 3 m.

The distance between the observer and speaker is, s = 4 m.

The amplitude of sound wave is the vertical distance from the base to peak of wave. Since sound amplitudes are not changed in the given problem. Then  the distance between speaker  A and speaker B can be expressed as:

[tex]=\sqrt{3^{2}+4^{2}}\\\\=\sqrt{25}\\\\=5\;\rm m[/tex]

And the path length difference is,

= 5 m - 4 m

= 1 m

Since , we are to determine the least intense sound; the destructive

interference for that path length  will be half the wavelength; which is

 [tex]=\dfrac{1}{2} \times s\\\\=\dfrac{1}{2} \times 4[/tex]

= 2 m

Thus, we can conclude that the sound will be heard with least intensity if the wavelength is 2 m.

Learn more about the interference here:

https://brainly.com/question/16098226

Lightbulbs are typically rated by their power dissipation when operated at a given voltage. Which of the following lightbulbs has the largest resistance when operated at the voltage for which it's rated?
A. 0.8 W, 1.5 V
B. 6 W 3 V
C. 4 W, 4.5 V
D. 8 W, 6 V

Answers

Answer:

The arrangement with the greatest resistance is the light bulb of option C. 4 W, 4.5 V

Explanation:

The equation for electric power is

power P = IV

also,  I = V/R,

substituting into the equation, we have

[tex]P = \frac{V^{2} }{R}[/tex]

[tex]R = \frac{V^{2} }{P}[/tex]

a)  [tex]R = \frac{1.5^{2} }{0.8}[/tex] = 2.8 Ω

b) [tex]R = \frac{3^{2} }{6}[/tex] = 1.5 Ω

c) [tex]R = \frac{4.5^{2} }{4}[/tex] 5.06 Ω

d) [tex]R = \frac{6^{2} }{8}[/tex] = 4.5 Ω

from the calculations, one can see that the lightbulb with te greates resistance is

C. 4 W, 4.5 V

When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as much energy, how much charge should it have on its plates

Answers

Answer:

2Q

Explanation:

When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;

E  = [tex]\frac{1}{2}qV[/tex]            ------------(i)

Where;

q = charge between the plates of the capacitor

V = potential difference between the plates of the capacitor

From the question;

q = Q

E = Ep

Therefore, equation (i) becomes;

Ep = [tex]\frac{1}{2} QV[/tex]              ----------------(ii)

Make V subject of the formula in equation (ii)

V = [tex]\frac{2E_{p}}{Q}[/tex]

Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;

2Ep = [tex]\frac{1}{2}qV[/tex]

Substitute the value of V into the equation above;

2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])

Solve for q;

[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]

[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]

[tex]q = 2Q[/tex]

Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q

Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z

Answers

The question is not complete, the value of z is not given.

Assuming the value of z = 4.0m

Answer:

the magnitude of the electric field at any point having z(4.0 m)  =

E = 5.65 N/C

Explanation:

given

σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²

z = 4.0 m

Recall

E =F/q (coulumb's law)

E = kQ/r²

σ = Q/A

A = 4πr²

∴ The electric field at point z =

E = σ/zε₀

E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)

E = 5.65 N/C

5) What is the weight of a body in earth. if its weight is 5Newton
in moon?​

Answers

Answer:

8.167

Explanation:

A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacement of 4.9 rad. What is its average angular acceleration

Answers

Answer:

The average angular acceleration is 0.05 radians per square second.

Explanation:

Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:

[tex]\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})[/tex]

Where:

[tex]\omega_{o}[/tex], [tex]\omega[/tex] - Initial and final angular velocities, measured in radians per second.

[tex]\alpha[/tex] - Angular acceleration, measured in radians per square second.

[tex]\theta_{o}[/tex], [tex]\theta[/tex] - Initial and final angular position, measured in radians.

Then,

[tex]\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}[/tex]

Given that [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex], [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]\theta-\theta_{o} = 4.9\,rad[/tex], the angular acceleration is:

[tex]\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}[/tex]

[tex]\alpha = 0.05\,\frac{rad}{s^{2}}[/tex]

Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:

[tex]\omega = \omega_{o} + \alpha \cdot t[/tex]

Where [tex]t[/tex] is the time measured in seconds.

The time is cleared and obtain after replacing every value:

[tex]t = \frac{\omega-\omega_{o}}{\alpha}[/tex]

If [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex],  [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]\alpha = 0.05\,\frac{rad}{s^{2}}[/tex], the required time is:

[tex]t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }[/tex]

[tex]t = 14\,s[/tex]

Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:

[tex]\bar \alpha = \frac{\omega-\omega_{o}}{t}[/tex]

If [tex]\omega_{o} = 0\,\frac{rad}{s}[/tex],  [tex]\omega = 0.70\,\frac{rad}{s}[/tex] and [tex]t = 14\,s[/tex], the average angular acceleration is:

[tex]\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}[/tex]

[tex]\bar \alpha = 0.05\,\frac{rad}{s^{2}}[/tex]

The average angular acceleration is 0.05 radians per square second.

Consider the Earth and the Moon as a two-particle system.

Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"

Answers

sorry but I don't understand

A goalie kicks a soccer ball straight vertically into the air. It takes 5.00 s for the ball to reach its maximum height and come back down to the level of the crossbar. Assume the crossbar of a soccer goal is 2.44 m above the ground. (a) How fast was the ball originally moving when it was kicked. (b) How much longer would it take the ball to reach the ground?

Answers

Answer:

(a)    vo = 24.98m/s

(b)    t = 5.09 s

Explanation:

(a) In order to calculate the the initial speed of the ball, you use the following formula:

[tex]y=y_o+v_ot-\frac{1}{2}gt^2[/tex]      (1)

y: vertical position of the ball = 2.44m

yo: initial vertical position = 0m

vo: initial speed of the ball = ?

g: gravitational acceleration = 9.8m/s²

t: time on which the ball is at 2.44m above the ground = 5.00s

You solve the equation (1) for vo and replace the values of the other parameters:

[tex]v_o=\frac{y-y_o+1/2gt^2}{t}[/tex]        

[tex]v_o=\frac{2.44m-0.00m+1/2(9.8m/s^2)(5.00s)^2}{5.00s}\\\\v_o=24.98\frac{m}{s}[/tex]

The initial speed of the ball is 24.98m/s

(b) To find the time the ball takes to arrive to the ground you use the equation (1) for y = 0m (ground) and solve for t:

[tex]0=24.98t-\frac{1}{2}(9.8)t^2\\\\t=5.09s[/tex]

The time that the ball takes to arrive to the ground is 5.09s

We have that for the Question, it can be said that the speed of  ball and How much longer would it take the ball to reach the ground is

u=25.13m/sX=0.095sec

From the question we are told

A goalie kicks a soccer ball straight vertically into the air. It takes 5.00 s for the ball to reach its maximum height and come back down to the level of the crossbar. Assume the crossbar of a soccer goal is 2.44 m above the ground.

(a) How fast was the ball originally moving when it was kicked.

(b) How much longer would it take the ball to reach the ground?

a)

Generally the Newton equation for the Motion  is mathematically given as

[tex]S=ut+1/2at^2\\\\Therefore\\\\2.44=ut+1/2(9.8)(5)^2\\\\u=25.13m/s\\\\[/tex]

b)

Generally the Newton equation for the Motion  is mathematically given as

[tex]S=ut+1/2at^2\\\\Therefore\\\\t=\frac{-24}{a}\\\\t=\frac{-2*25.013}{9.81}\\\\t=5.095sec\\\\[/tex]

Therefore

[tex]X=5.095-5[/tex]

X=0.095sec

For more information on this visit

https://brainly.com/question/23379286

A parallel-plate capacitor with circular plates of radius R is being discharged. The displacement current through a central circular area, parallel to the plates and with radius R/2, is 9.2 A. What is the discharging current?

Answers

Answer:

The discharging current is [tex]I_d = 36.8 \ A[/tex]

Explanation:

From the question we are told that  

     The radius of each circular plates is  R

     The displacement current is  [tex]I = 9.2 \ A[/tex]

      The radius of the central circular area is  [tex]\frac{R}{2}[/tex]

The discharging current is mathematically represented as

       [tex]I_d = \frac{A}{k} * I[/tex]

where A is the area of each plate which is mathematically represented as

       [tex]A = \pi R ^2[/tex]

and   k is central circular area which is mathematically represented as

     [tex]k = \pi [\frac{R}{2} ]^2[/tex]

So  

     [tex]I_d = \frac{\pi R^2 }{\pi * [ \frac{R}{2}]^2 } * I[/tex]

     [tex]I_d = \frac{\pi R^2 }{\pi * \frac{R^2}{4} } * I[/tex]

     [tex]I_d = 4 * I[/tex]

substituting values

     [tex]I_d = 4 * 9.2[/tex]

     [tex]I_d = 36.8 \ A[/tex]

     

A crate of mass 9.2 kg is pulled up a rough incline with an initial speed of 1.58 m/s. The pulling force is 110 N parallel to the incline, which makes an angle of 20.2° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.10 m.A) How much work is done by the gravitational force on thecrate?
B) Determine the increase in internal energy of the crate-inclinesystem owing to friction.
C) How much work is done by the 100N force on the crate?
D) What is the change in kinetic energy of the crate?
E) What is the speed of the crate after being pulled 5.00m?

Answers

Given that,

Mass = 9.2 kg

Force = 110 N

Angle = 20.2°

Distance = 5.10 m

Speed = 1.58 m/s

(A). We need to calculate the work done by the gravitational force

Using formula of work done

[tex]W_{g}=mgd\sin\theta[/tex]

Where, w = work

m = mass

g = acceleration due to gravity

d = distance

Put the value into the formula

[tex]W_{g}=9.2\times(-9.8)\times5.10\sin20.2[/tex]

[tex]W_{g}=-158.8\ J[/tex]

(B). We need to calculate the increase in internal energy of the crate-incline system owing to friction

Using formula of potential energy

[tex]\Delta U=-W[/tex]

Put the value into the formula

[tex]\Delta U=-(-158.8)\ J[/tex]

[tex]\Delta U=158.8\ J[/tex]

(C). We need to calculate the work done by 100 N force on the crate

Using formula of work done

[tex]W=F\times d[/tex]

Put the value into the formula

[tex]W=100\times5.10[/tex]

[tex]W=510\ J[/tex]

We need to calculate the work done by frictional force

Using formula of work done

[tex]W=-f\times d[/tex]

[tex]W=-\mu mg\cos\theta\times d[/tex]

Put the value into the formula

[tex]W=-0.4\times9.2\times9.8\cos20.2\times5.10[/tex]

[tex]W=-172.5\ J[/tex]

We need to calculate the change in kinetic energy of the crate

Using formula for change in kinetic energy

[tex]\Delta k=W_{g}+W_{f}+W_{F}[/tex]

Put the value into the formula

[tex]\Delta k=-158.8-172.5+510[/tex]

[tex]\Delta k=178.7\ J[/tex]

(E). We need to calculate the speed of the crate after being pulled 5.00m

Using formula of change in kinetic energy

[tex]\Delta k=\dfrac{1}{2}m(v_{2}^2-v_{1}^{2})[/tex]

[tex]v_{2}^2=\dfrac{2\times\Delta k}{m}+v_{1}^2[/tex]

Put the value into the formula

[tex]v_{2}^2=\dfrac{2\times178.7}{9.2}+1.58[/tex]

[tex]v_{2}=\sqrt{\dfrac{2\times178.7}{9.2}+1.58}[/tex]

[tex]v_{2}=6.35\ m/s[/tex]

Hence, (A). The work done by the gravitational force is -158.8 J.

(B). The increase in internal energy of the crate-incline system owing to friction is 158.8 J.

(C). The work done by 100 N force on the crate is 510 J.

(D). The change in kinetic energy of the crate is 178.7 J.

(E). The speed of the crate after being pulled 5.00m is 6.35 m/s

A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.

Answers

Answer:

8.7 m/s^2

82.15°

Explanation:

Given:-

- The initial speed of the car, vi = 25 m/s

- The radius of track, r = 129 m

- Car makes a circular " quarter turn "

- The constant tangential acceleration, at = 1.2 m/s^2

Solution:-

- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:

                          [tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]

- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:

                           at = r*α

                           α = ( 1.2 / 129 )

                           α = 0.00930 rad/s^2

- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).

- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:

                            [tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]

- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:

                            [tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]

- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:

                            [tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]

- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:

                             [tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]

- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:

                          [tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex] 

Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .

A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?

Answers

Answer:

0.087976 Nm

Explanation:

The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;

τ = NIAB sinθ     --------- (i)

Where;

N = number of turns of the loop

I = current in the loop

A = area of each of the turns

B = magnetic field

θ = angle the loop makes with the magnetic field

From the question;

N = 200

I = 4.0A

B = 0.70T

θ = 30°

A = π d² / 4        [d = diameter of the coil = 2.0cm = 0.02m]

A = π x 0.02² / 4 = 0.0003142m²         [taking π = 3.142]

Substitute these values into equation (i) as follows;

τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°

τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5

τ = 200 x 4.0 x 0.0003142 x 0.70      

τ = 0.087976 Nm

Therefore, the torque on the coil is 0.087976 Nm

5. (10 points) Which of the following statements is(are) correct: A. Resistivity purely depends on internal properties of the conductor; B. Resistance purely depends on internal properties of the conductor; C. Resistivity depends on the size and shape of the conductor; D. Resistance depends on the size and shape of the conductor; E. A and D; F. B and C.

Answers

Answer:

B and D

Explanation:

Because

R= resistivity xlenght/ Area

Where R= resistance

A 2.5-kg object falls vertically downward in a viscous medium at a constant speed of 2.5 m/s. How much work is done by the force the viscous medium exerts on the object as it falls 80 cm?

Answers

Answer:

The workdone is [tex]W_v = - 20 \ J[/tex]

Explanation:

From the question we are told that

    The mass of the object is [tex]m = 2.5 \ kg[/tex]

     The speed of fall is [tex]v = 2.5 \ m/s[/tex]

     The depth of fall is  [tex]d = 80\ cm = 0.8 \ m[/tex]

Generally according to the work energy theorem

      [tex]W = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2[/tex]

Now here given the that the velocity is  constant  i.e  [tex]v_1 = v_2 = v[/tex] then

We have that

    [tex]W = \frac{1}{2} mv^2 - \frac{1}{2} mv^2 = 0 \ J[/tex]  

So in terms of workdone by the potential energy of the object and that of the viscous liquid we have

       [tex]W = W_v - W_p[/tex]

Where  [tex]W_v[/tex] is workdone by viscous liquid

             [tex]W_p[/tex] is the workdone by the object which is mathematically represented as

            [tex]W_p = mgd[/tex]

So  

       [tex]0 = W_v + mgd[/tex]

=>    [tex]W_v = - m * g * d[/tex]

substituting values

       [tex]W_v = - (2.5 * 9.8 * 0.8)[/tex]

      [tex]W_v = - 20 \ J[/tex]

The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?

Answers

Answer:

The permittivity of rubber is  [tex]\epsilon = 8.703 *10^{-11}[/tex]

Explanation:

From the question we are told that

     The  magnitude of the point charge is  [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]

      The diameter of the rubber shell is  [tex]d = 32 \ cm = 0.32 \ m[/tex]

       The Electric field inside the rubber shell is  [tex]E = 2500 \ N/ C[/tex]

The radius of the rubber is  mathematically evaluated as

              [tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         [tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]

Where [tex]\epsilon[/tex] is the permittivity of rubber

    =>     [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]

   =>      [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]

substituting values

            [tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]

            [tex]\epsilon = 8.703 *10^{-11}[/tex]

A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?

Answers

Explanation:

KE = q

½ mv² = mCΔT

ΔT = v² / (2C)

ΔT = (200 m/s)² / (2 × 236 J/kg/°C)

ΔT = 84.7°C

This question involves the concepts of the law of conservation of energy.

The temperature change of the bullet is "84.38°C".

What is the Law of Conservation of Energy?

According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.

[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]

where,

ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/s

Therefore,

[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]

ΔT = 84.38°C

Learn more about the law of conservation of energy here:

https://brainly.com/question/20971995

#SPJ2

The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)

Answers

Answer:

Increase of volume (F)  = 8.01%

Explanation:

Given:

Density of fish = 1,080 kg/m³

Density of water = 1,000 kg/m³

density of air = 1.28 kg/m³

Find:

Increase of volume (F)

Computation:

1,080 kg/m³  + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³  

1,080 + 1.28 F =1,000 F + 1,000

80 = 998.72 F

F = 0.0801 (Approx)

F = 8.01%  (Approx)

In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.

Answers

Answer:

Red light

Explanation:

This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)

Two people play tug of war. The 100-kg person on the left pulls with 1,000 N, and the 70-kg person on the right pulls with 830 N. Assume that neither person releases their grip on the rope with either hand at any time, assume that the rope is always taut, and assume that the rope does not stretch. What is the magnitude of the tension in the rope in Newtons

Answers

Answer:

The  tension on the rope  is  T  =  900 N

Explanation:

From the question we are told that  

     The mass of the person on the left is  [tex]m_l = 100 \ kg[/tex]

      The force of the person on the left is  [tex]F_l = 1000 \ N[/tex]

       The mass of the person on the right  is  [tex]m_r = 70 \ kg[/tex]

       The force of the person on the right is  [tex]F_r = 830 \ N[/tex]

     

Generally the net force is  mathematically represented as

         [tex]F_{Net} = F_l - F_r[/tex]

substituting  values

        [tex]F_{Net} = 1000-830[/tex]

       [tex]F_{Net} = 170 \ N[/tex]

Now the acceleration net acceleration of the rope is mathematically evaluated as

        [tex]a = \frac{F_{net}}{m_I + m_r }[/tex]

substituting  values

     [tex]a = \frac{170}{100 + 70 }[/tex]

     [tex]a = 1 \ m/s ^2[/tex]

The  force [tex]m_i * a[/tex]) of the person on the left that caused the rope to accelerate by  a  is  mathematically represented as

        [tex]m_l * a = F_r -T[/tex]

Where T  is  the tension on the rope  

      substituting values

        [tex]100 * 1 = 1000 - T[/tex]

=>      T  =  900 N

         

Two cannonballs are dropped from a second-floor physics lab at height h above the ground. Ball B has four times the mass of ball A. When the balls pass the bottom of a first-floor window at height above the ground, the relation between their kinetic energies, KA and KB, is

Answers

Answer:

1:4

Explanation:

The formula for calculating kinetic energy is:

[tex]KE=\dfrac{1}{2}mv^2[/tex]

If the mass is multiplied by 4, then, the kinetic energy must be increased by 4 as well. Since they will be travelling at the same speed when they are at the same point, the relation between KA and KB must be 1:4 or 1/4. Hope this helps!

The relation between the kinetic energies of the freely falling balls A and B is obtained as [tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex].

Kinetic Energy

The kinetic energy of an object depends on the mass and velocity with which it moves.

While under free-fall, the mass of an object does not affect the velocity with which it falls.

So, the velocities of both the balls are the same.

Let the mass of ball A is 'm'

So, the mass of ball B is '4m'

The kinetic energy of ball A is given by;

[tex]KE_{A}=\frac{1}{2} mv^2[/tex]

The kinetic energy of ball B is given by;

[tex]KE_{B}=\frac{1}{2} 4mv^2 = 2mv^2[/tex]

Therefore, the ratio of kinetic energies of A and B is,

[tex]\frac{KE_{A}}{KE_{B}} =\frac{1}{4}[/tex]

Learn more about kinetic energy here:

https://brainly.com/question/11580018

Other Questions
Lightbulbs are typically rated by their power dissipation when operated at a given voltage. Which of the following lightbulbs has the largest resistance when operated at the voltage for which it's rated? A. 0.8 W, 1.5 V B. 6 W 3 V C. 4 W, 4.5 V D. 8 W, 6 V The three major processes in the water cycle are salinity, evaporation, and precipitation. Bob goes shopping at his favorite store and finds a hat that is regularly priced at $40, but it is on sale for 20% off. The sales tax on the hat is 10% of the sale price. How much does Bob end up paying for the hat? Find the fixing force in the cable AB and the reaction force at the support point O M = 18kg talk on the themes-behavior and achievement In the "Input Analysis" section of the spreadsheet model, calculate the correlations between the sales of each type of product and event attendance. Use appropriate ranges from the "Past Event" worksheet for your calculations. How could a scientist use the scientific method to learn more about the Cretaceous era? The name of the theater company that Shakespeare helped manage wasA. Lord Chamberlain's Men.B. Stratford-upon-Avon.C. Queen Elizabeth's Guild.D. Shakespeare's Artists. Neil Armstrong once said, Research is creating new knowledge. What do you think Neil meant by this statement? I NEED HELP PLEASE THANKS! What were the two major demands of the feminist movement? (9-6)+12 whats is the answer? A car is driving at 100 kilometers per hour. How far, in meters, does it travel in 3 seconds? It was 4:36 a.m. She was in a cold sweat and having difficulty breathing. She felt as though she had runa marathon. Fear swept through her-something terrible was going to happen. Panic-stricken, shewoke her husband, Jeremy."Denise, what is it? Is it a nightmare?""No, it's like I'm having an asthma attack. I feel lightheaded and I can't catch my breath. My heart feelslike it's beating a thousand times a minute."Afraid to upset her husband further, Denise didn't tell him that an immense feeling of apprehensionsuddenly overcame her. She got up to drink some water and waited for the anxiety to subside. Hermind was racing. Jeremy had a family history of heart disease. This couldn't be happening to her. Itwas his problem. A few months earlier Jeremy was diagnosed with coronary artery disease. He wasonly 48 years old, the same age as Denise. The scare had encouraged him to gradually end years ofchain smoking and adopt a healthier lifestyle. He was currently working on giving up the occasionalcigarette for good."No," Denise thought to herself. "There's no way this was a sign of heart troubles. I didn't have a painin my chest, I'm physically fit, and I have no family history. There's just no way.After assuring herself of this, Denise was somehow able to fall back asleep.Questions:1. How likely is this to be a heart problem? Asthma? Panic attack? Or...?2. Why do you say this? What are the symptoms that are consistent with your preliminarydiagnosis? Is there anything unusual? Use your trendline equation to determine the gas pressure at 200 K and 400 K. (notice the temperature units) How many times greater is the pressure at 400 K in comparison to 200 K? Is this what youd expect? Why? Which statement accurately describes tectonic plate movement? A)Tectonic plate movement can be prevented with planning. B)Tectonic plate movement does not cause environmental change. C)Tectonic plate movement does not affect organisms. D)Tectonic plate movement is a long-term environmental change. Completa la descripcin de la tarde que pas Brbara con su hermana Celia en el centro de la ciudad. Escribe las formas correctas de SER y ESTAR en el imperfecto, segn el contexto. 1) (1) ____ las seis de la tarde cuando llegamos al centro de la ciudad. Mientras nosotras (2) ____ paseando, nos encontramos con unas chicas a las que yo no conoca; (3)___ unas amigas de mi hermana de la universidad. (4) ____ muy simpticas. Despus de andar y hablar un poco, decidimos entrar en una tienda de ropa que (5)____ de la madre de Pilar, una de las amigas de mi hermana. Mientras nosotras (6) ____ en la tienda, me compr un vestido muy bonito. Fue una autntica ganga porque (7)____ de rebaja y la madre de Pilar me dio un descuento extra. The judicial branch of the United States has many layers and units. On the federal side, there are district courts, appeals (circuit) courts, and the US Supreme Court. On the state side, there are state trial courts, state intermediate appeals courts, and then the highest state courts, which go by a variety of names. To help you understand this complex system, create an infographic of the federal and state court systems that shows their hierarchy and how they are related to one another. Be sure to include details about how each court interacts with other courts in the dual legal system that exists in the United States. Use presentation software such as Microsoft PowerPoint, Microsoft Word, or Google Presentation to create your graphic. Semans is a manufacturer that produces bracket assemblies. Demand for bracket assemblies (X) is 127 units. The following is the BOM in indented form:ITEMDESCRIPTIONUSAGEXBracket assembly1AWall board5BHanger subassembly2DHanger casting3ECeramic knob2CRivet head screw3FMetal tong4GPlastic cap1Below is a table indicating current inventory levels:ItemXABCDEFGInventory27197423201262975100b. What are the net requirements for each item? (Leave no cells blank - be certain to enter "0" wherever required.)ItemNet RequirementsXABCDEFG Calvinism was based on the ideas of ___ Calvinism was It originated in ____ Calvin also set up a _____ One central idea in____in Geneva , Switzerland .