A uniform electric field E = E0 j is set-up in a region of space. A frame is placed in that region in such a way that its plane is perpendicular to the y-axis. Which of the following changes would decrease the magnitude of the electric flux through the frame?A) sliding the frame sideways parallel to the x-axis within the xz-planeB) Sliding the frame sideways parallel to the z-axis within the xz-planeC) moving the frame vertically along the y-axis keeping parallel to the xz-planeD) rotating the frame in the xz-plane with respect to the y-axisE) tilting the frame so that its plane is now in the yz-plane

Answers

Answer 1

Answer:

The correct answer to the following question will be Option E (Leaning back the camera such that the plane seems to be in the yz-axis now.).

Explanation:

The given field is:

⇒  [tex]E=EO \ j[/tex]

The above-given field does have an E-field perpendicular to something like the plane.

So,

⇒  [tex]ECos\theta=ECos 90^{\circ}[/tex]

We know that the value of "Cos 90°" is zero.

⇒  [tex]Cos 90^{\circ}=0[/tex]

The other given choices are not related to the given circumstances. So that Option E seems to be the right answer.


Related Questions

Unpolarized light enters a polarizer with vertical polarization axis. The light that passes through passes another polarizer with transmission axis at 40 degrees to the horizontal. What is the intensity of the light after the second polarizer expressed as a fraction of the original intensity

Answers

Answer:

  I = 0.2934 I₀

Explanation:

The expression that governs the transmission of polarization is

         I = I₀ cos² θ

Let's apply this to our case, when the unpolarized light enters the first polarized, the polarized light that comes out has the intensity of

        I₁ = I₀ / 2

this is the light that enters the second polarizer

        I = I₁ cos² θ  

         

we substitute

        I = I₀ / 2 cos² 40

        I = I₀ 0.2934

        I = 0.2934 I₀

A wheel has a rotational inertia of 16 kgm2. Over an interval of 2.0 s its angular velocity increases from 7.0 rad/s to 9.0 rad/s. What is the average power done by the torque

Answers

Answer:

128.61 Watts

Explanation:

Average power done by the torque is expressed as the ratio of the workdone by the toque to time.

Power = Workdone by torque/time

Workdone by the torque = [tex]\tau \theta[/tex] = [tex]I\alpha * \theta[/tex]

I is the rotational inertia = 16kgm²

[tex]\theta = angular\ displacement[/tex]

[tex]\theta = 2 rev = 12.56 rad[/tex]

[tex]\alpha \ is \ the\ angular\ acceleration[/tex]

To get the angular acceleration, we will use the formula;

[tex]\alpha = \frac{\omega_f^2- \omega_i^2}{2\theta}[/tex]

[tex]\alpha = \frac{9.0^2- 7.0^2}{2(12.54)}\\\alpha = 1.28\ rad/s^{2}[/tex]

Workdone by the torque = 16 * 1.28 * 12.56

Workdone by the torque = 257.23 Joules

Average power done by the torque = Workdone by torque/time

=  257.23/2.0

= 128.61 Watts

The magnetic field strength at the north pole of a 2.0-cm-diameter, 8-cm-long Alnico magnet is 0.10 T. To produce the same field with a solenoid of the same size, carrying a current of 1.8 A , how many turns of wire would you need

Answers

Answer:

The number of turns of the solenoid is 3536 turns

Explanation:

Given;

magnetic field of the solenoid, B = 0.1 T

current in the solenoid, I = 1.8 A

length of the solenoid, L = 8cm = 0.08m

The magnetic field near the center of the solenoid is given by;

B = μ₀nI

Where;

μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

n is number of turns per length

I is the current in the coil

The number of turns per length is calculated as;

n = B / μ₀I

n = (0.1 ) / (4π x 10⁻⁷ x 1.8)

n = 44203.95 turns/m

The number of turns is calculated as;

N = nL

N = (44203.95)(0.08)

N = 3536 turns

Therefore, the number of turns of the solenoid is 3536 turns

g Doppler Radar gathers information about precipitation by sending out pulses of ______ energy that is reflected back by the precipitation towards the radar. Group of answer choices

Answers

Answer:

Doppler Radar gathers information about precipitation by sending out pulses of ___Radio wave___ energy

Which pieces of information does the National Weather Service produce?

Answers

Answer:

1. It collects weather data as part of a network around the country.

2. its territories, adjacent waters and ocean areas for the protection of life and property and the enhancement of the national economy.

Answer:

Maps with isotherms

Explanation:

In an undergraduate physics lab, a simple pendulum is observed to swing through 71 complete oscillations in a time period of 1.80 min. What are the period and length of the pendulum

Answers

Explanation:

We have

A simple pendulum is observed to swing through 71 complete oscillations in a time period of 1.80 min.

The frequency of a pendulum is equal to the no of oscillation per unit time. so,

[tex]f=\dfrac{N}{t}\\\\f=\dfrac{71}{1.8\times 60}\\\\f=0.65\ Hz[/tex]

Tim period is reciprocal of frequency. So,

[tex]T=\dfrac{1}{0.65}\\\\T=1.53\ s[/tex]

The time period of a pendulum is given by :

[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]

l is length of pendulum

[tex]l=\dfrac{T^2g}{4\pi ^2}\\\\l=\dfrac{T^2g}{4\pi ^2}\\\\l=\dfrac{(1.53)^2\times 9.8}{4\pi ^2}\\\\l=0.58\ m[/tex]

So, the period and length of the pendulum are 1.53 s and 0.58 m respectively.

An electromagnetic wave is propagating towards the west. At a certain moment the direction of the magnetic field vector associated with this wave points vertically up. What is the direction of the electric field vector?

Answers

Answer:

the electric field is pointing horizontal direction and in south direction

Explanation:

In an electromagnetic wave, the magnetic field and electrical field are perpendicular to each other and these are perpendicular to the direction of the waves.

A 32-cm-long solenoid, 1.8 cm in diameter, is to produce a 0.30-T magnetic field at its center. If the maximum current is 4.5 A, how many turns must the solenoid have?

Answers

Answer:

16,931 turns

Explanation:

The magnetic field produced is expressed using the formula

[tex]B = \frac{\mu_0NI}{L}[/tex]

B is the magnetic field = 0.30T

I is the current produced in the coil = 4.5A

[tex]\mu_0[/tex] is the magnetic permittivity in vacuum = 1.26*10^-6Tm/A

L is the length of the solenoid = 32 cm = 0.32 m

N is the number of turns in the solenoid.

Making N the subject of the formula from the equation above;

[tex]B = \frac{\mu_0NI}{L}\\\\BL = \mu_0NI\\\\Dividing\ both\ sides \ by \ \mu_0I\\\\\frac{BL}{\mu_0I} =\frac{\mu_oNI}{\mu_0I} \\\\[/tex]

[tex]N = \frac{BL}{\mu_0I}[/tex]

Substituting the give values to get N;

[tex]N = \frac{0.3*0.32}{1.26*10^{-6} * 4.5}\\\\N = \frac{0.096}{0.00000567} \\\\N = 16,931.21[/tex]

The number of turns the solenoid must have is approximately 16,931 turns

A box experiencing a gravitational force of 600 N. is being pulled to the right with a force of 250 N. 825 N. frictional force acting on the box as it moves to the right what is the net force in the Y direction

Answers

Answer:A

Explanation:

Explanation:

Given that,

Gravitational force = 600 N

Frictional force = 25 N

Pulled by the Force = 250 N

We know that,

The gravitational force in downward and normal force act in upward. the frictional force in left side and the box pulled by the force to the right side.

The balance equation is along y-axis

The box will not move in y-axis therefore, the net force in the y-axis will be zero.

Hence, The net force in the y-direction will be zero.

Suppose that 300 keV X-ray photons are aimed at a zinc cube (Zinc, Z = 30). According to the chart below, what effect will predominate when the X-rays hit the metal?
a) Photoelectric Effect 3
b) Compton Effect 3
c) Pair Production

Answers

Answer:

the answer is option A = photoelectric effect

Explanation:

If the threshold frequency of a metal is lower than the energy of X-rays, then photoelectric effect will happen.

3) A lead sinker of mass 225 grams and density of 11.3 g/cm3 is attached to the bottom of a wooden block of mass 25 grams and density 0.5 g/cm3. Calculate the apparent weight when both are submerged in water.

Answers

Answer:

180.1 g

Explanation:

Data provided in the question

Mass of lead sinker = 225 grams

Density = 11.3 g/cm^3

The Wooden block of mass = 25 grams

Density = 0.5/g cm^3

Based on the above information, the apparent weight is

Before that we need to do the following calculations

[tex]V_1 = \frac{m_1}{D_1}[/tex]

[tex]= \frac{225}{11.3}[/tex]

= 19.91 cm^3

[tex]V_2 = \frac{m_2}{D_2}[/tex]

[tex]= \frac{25}{0.5}[/tex]

= 50 cm^3

Now as we know that

V = V_1 + V_2

= 19.91 cm^3 + 50 cm^3

= 69.91 cm^3

Now the weight of dispacement of water is

[tex]m = VD_{water}[/tex]

[tex]= 69.91 cm^3 (1 \frac{g}{cm^3} )[/tex]

= 69.91 g

Therefore the apparent weight is

[tex]W = m_1 + m_2 - m[/tex]

= 225 + 25 - 69.91 g

= 180.1 g

Determining the Mass of a Mystery Mystery object Object distance (m) Brick mass (kg) Brick distance (m) Brick torque (Nm) Object mass (kg) Fobject (N) Fbricks (N) Fpivot point (N) A. 1.00 20 B. 1.00 20 C. 1.00 20 D. 1.00 20

Answers

Answer:

Explanation:

according to resultant of two parallel forces,

Fpivot = Fobject + Fbricks

so that, the net force is zero

A meat baster consists of a squeeze bulb attached to a plastic tube. When the bulb is squeezed and released, with the open end of the tube under the surface of the basting sauce, the sauce rises in the tube to a distance h, as the drawing shows. Using 1.013  105 Pa for the atmospheric pressure and 1200 kg/m3 for the density of the sauce, find the absolute pressure in the bulb when the distance h is (a) 0.15 m and (b) 0.10 m.

Answers

Answer:

(a) P = 103064 Pa = 103.064 KPa

(b) P = 102476 Pa = 102.476 KPa

Explanation:

(a)

First we need to find the gauge pressure:

Gauge Pressure = Pg = (density)(g)(h)

Pg = (1200 kg/m³)(9.8 m/s²)(0.15 m)

Pg = 1764 Pa

So, the absolute Pressure is:

Absolute Pressure = P = Atmospheric Pressure + Pg

P = 1.013 x 10⁵ Pa + 1764 Pa

P = 103064 Pa = 103.064 KPa

(b)

First we need to find the gauge pressure:

Gauge Pressure = Pg = (density)(g)(h)

Pg = (1200 kg/m³)(9.8 m/s²)(0.1 m)

Pg = 1176 Pa

So, the absolute Pressure is:

Absolute Pressure = P = Atmospheric Pressure + Pg

P = 1.013 x 10⁵ Pa + 1176 Pa

P = 102476 Pa = 102.476 KPa

The absolute pressure in the bulb is approximately 1.031 x 10⁵ Pa when h = 0.15 m and 1.025 x 10⁵ Pa when h = 0.10 m.

Absolute pressure is the total pressure exerted by a fluid, including both the pressure from the fluid itself and the atmospheric pressure. It is the sum of the gauge pressure, which is the pressure above atmospheric pressure, and the atmospheric pressure. Absolute pressure is measured relative to a complete vacuum, where the pressure is zero.

In fluid mechanics, absolute pressure is important for determining the forces and behaviors of fluids in various systems. It is commonly expressed in units such as pascals (Pa), atmospheres (atm), pounds per square inch (psi), or torr.

The absolute pressure in the bulb can be calculated using the following formula:

P = P₀ + ρgh

where:

P is the absolute pressure in the bulb,

P₀ is the atmospheric pressure (1.013 x 10⁵ Pa),

ρ is the density of the sauce (1200 kg/m³),

g is the acceleration due to gravity (9.8 m/s²), and

h is the height of the sauce in the tube.

(a) When h = 0.15 m:

P = 1.013 x 10⁵ Pa + (1200 kg/m³) x (9.8 m/s²) x (0.15 m)

P ≈ 1.013 x 10⁵ Pa + 1764 Pa

P ≈ 1.031 x 10⁵ Pa

(b) When h = 0.10 m:

P = 1.013 x 10⁵ Pa + (1200 kg/m³) x (9.8 m/s²) x (0.10 m)

P ≈ 1.013 x 10⁵ Pa + 1176 Pa

P ≈ 1.025 x 10⁵ Pa

Learn more about Absolute Pressure, here:

https://brainly.com/question/13390708

#SPJ6

The fastest pitched baseball was clocked at 47 m/s. Assume that the pitcher exerted his force (assumed to be horizontal and constant) over a distance of 1.0 m, and a baseball has a mass of 145 g.(a) What force did he produce on the ball during this record-setting pitch? (b) Draw free-body diagrams of the ball during the pitch and just after it left the pitcherâs hand.

Answers

Answer:

Explanation:

F ×1 = 0.5×0.145×47×47

F = 160.15 N

Light of wavelength 575 nm falls on two double slits spaced 0.30 mm apart. What is the required distance from the slits to a screen if the spacing between the first and second dark fringe is to be 4.00 mm

Answers

Answer:

L = 2.1 m

Explanation:

From Young's Double Slit Experiment, the formula for the distance between two consecutive dark or bright fringes, called fringe spacing, is derived as:

Δx = λL/d

where,

Δx = distance between first and second dark fringe = 4 mm = 4 x 10⁻³ m

λ = wavelength of light = 575 nm = 5.75 x 10⁻⁷ m

d = distance between the slits = 0.3 mm = 3 x 10⁻⁴ m

L = Distance from slits to screen = ?

Therefore,

4 x 10⁻³ m = (5.75 x 10⁻⁷ m)(L)/(3 x 10⁻⁴ m)

L = (4 x 10⁻³ m)/(1.92 x 10⁻³)

L = 2.1 m

A 0.3 mm long invertebrate larva moves through 20oC water at 1.0 mm/s. You are creating an enlarged physical model of this larva so you can better study its flow pattern in the laboratory. Your model must be able to move at 50 cm/s and you will place the model in honey instead of water. Honey has a density of 1400 kg/m3 and a viscosity of 600 Pa-s.

Required:
How long should your model be?

Answers

Answer:

Explanation:

For the problem, we should have same reynolds number

ρvd/mu = constant

1000×1×10⁻³×0.3×10⁻³/1.002×10⁻³ = 1400×0.5×d/600

d = 25.66 cm

Two children of mass 20.0 kg and 30.0 kg sit balanced on a seesaw with the pivot point located at the center of the seesaw. If the children are separated by a distance of 3.00 m, at what distance from the pivot point is the small child sitting in order to maintain the balance

Answers

Answer:

The distance from the pivot point that the small child will sit in order to maintain the balance is 1.8 m

Explanation:

Given;

mass of the bigger child, M = 30 kg

mass of the smaller child, m = 20 kg

distance between the two children, d = 3 m

This information can be represented diagrammatically;

                                    3m

         |<------------------------------------------------>|

----------------------------------------------------------------------------

         ↓             x            Δ            3-x           ↓

         20kg                                                 30kg

x is the distance from the pivot point that the small child will sit in order to maintain the balance

Take moment about the pivot;

Clockwise moment = anticlockwise moment

30(3-x) = 20x

90 -30x = 20x

90 = 20x + 30x

90 = 50x

x = 90 / 50

x = 1.8 m

Therefore, the distance from the pivot point that the small child will sit in order to maintain the balance is 1.8 m

The distance from the pivot point which the small child must sit in order to maintain the balance is 1.8 meters.

Let the first child be A.Let the second child be B.

Given the following data:

Mass of A = 20.0 kgMass of B = 30.0 kgDistance = 3.00 m

To determine what distance from the pivot point is the small child sitting in order to maintain the balance, we would take moment about a pivot:

Let the distance from the pivot be n.

Note: The distance of the child from the pivot is equal to [tex]3-n[/tex]

For moment:

Clockwise moment = anticlockwise moment

[tex]30(3-n) = 20n\\\\90-30n=20n\\\\90=20+30n\\\\90=50n\\\\n=\frac{90}{50}[/tex]

n = 1.8 meters

Read more: https://brainly.com/question/2400211

Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.659 kJ of heat. It shrinks on cooling, and the atmosphere does 385 J of work on the balloon.

Answers

Answer:

-310J

Explanation:

The change in internal energy (ΔE) of a system is the sum of the heat (Q) and work (W) done on or by the system. i.e

ΔE = Q + W       ----------------------(i)

If heat is released by the system, Q is negative. Else it is positive.

If work is done on the system, W is positive. Else it is negative.

In this case, the system is the balloon and;

Q = -0.659kJ = -695J    [Q is negative because heat is removed from the system(balloon)]

W = +385J  [W is positive because work is done on the system (balloon)]

Substitute these values into equation (i) as follows;

ΔE = -695 + 385

ΔE = -310J

Therefore, the change in internal energy is -310J

PS: The negative value indicates that the system(balloon) has lost energy to its surrounding, thereby making the process exothermic.

Three flat layers of transparent material are stacked upon one another. The top layer has index of refraction n1, the middle has n2 and the bottom one has n3. If n1 > n2 > n3, and if a ray of light strikes the top layer at an angle of incidence, in which layer is the angle of refraction the greatest? Why?
a. the bottom layer
b. the top layer
c. Once the ray enters the touching layers, the angle of refraction remains constant.
d. the middle layer

Answers

Answer:

a. the bottom medium

Explanation:

it has the least index of refraction and hence most rarer.

A student sits on a rotating stool holding two 1 kg objects. When his arms are extended horizontally, the objects are 0.9 m from the axis of rotation, and he rotates with angular speed of 0.61 rad/sec. The moment of inertia of the student plus the stool is 6 kg m^2 and is assumed to be constant. The student then pulls the objects horizontally to a radius 0.39 m from the rotation axis.

Required:
a. Calculate the final angular speed of the student. Answer in units of rad/s.
b. Calculate the change in kinetic energy of the system. Answer in units of J.

Answers

Answer:

a) the final angular speed is 0.738 rad/s

b) the change in kinetic energy = 0.3 J

Explanation:

the two 1 kg objects have a total mass of 2 x 1 = 2 kg

radius of rotation of the objects = 0.9 m

moment of inertial of the student and the chair = 6 kg-m^2

initial angular speed of rotation of the sitting student and object system ω1 = 0.61 rad/s

final angular speed of rotation of the sitting student and object system ω2 = ?

moment of inertia of the rotating object is

[tex]I = mr^{2}[/tex] = 2 x [tex]0.9^{2}[/tex] = 1.62 kg-m^2

total moment of inertia of sitting student and object system will be  

==> 6 + 1.62 = 7.62 kg-m^2

The initial angular momentum of the sitting student and object system will be calculated from

==> Iω1 = 7.62 x 0.61 = 4.65 kg-rad/s-m^2

if the radius of rotation of the object is reduced to 0.39 m,

new moment of inertia of the rotating object will be

[tex]I = mr^{2}[/tex]  = 2 x [tex]0.39^{2}[/tex] = 0.304 kg-m^2

new total moment of inertia of the sitting student and object system will be

==> 6 + 0.304 = 6.304 kg-m^2

The final momentum of the sitting student and object system will be calculated from

==> Iω2 = 6.304 x ω2 = 6.304ω2

According to conservation of angular momentum, initial momentum of the system must be equal to the final momentum of the system. Therefore,

4.65 = 6.304ω2

ω2 = 4.65/6.30 = 0.738 rad/s

b) Rotational kinetic energy of the system = [tex]\frac{1}{2} Iw^{2}[/tex]

for the initial conditions, kinetic energy is

==>  [tex]\frac{1}{2} Iw1^{2}[/tex] =  [tex]\frac{1}{2}* 7.62*0.61^{2}[/tex] = 1.417 J

for the final conditions, kinetic energy is

==>  [tex]\frac{1}{2} Iw1^{2}[/tex] =  [tex]\frac{1}{2}*6.304*0.738^{2}[/tex] = 1.717 J

change in kinetic energy = final KE - initial KE

==> 1.717 - 1.417 = 0.3 J

A horizontal force of 480 n is applied to a stationary wooden box in one direction and a 600 n horizontal force is applied in the opposite direction. What is the additional force is needed for the box to remain stationary

Answers

Answer:

The additional force is  [tex]F_3 = 120 \ N[/tex]

Explanation:

From the question we are told that

      The horizontal force in one direction is  [tex]F_i = 480 \ N[/tex]

       The horizontal force in the opposite direction is  [tex]F_f = -600 \ N[/tex]

The negative sign shows that it is acting in the opposite direction

Generally for the box to remain stationary the net force on it must be equal to zero  that is  

        [tex]F_1 + F_2 +F_3 = 0[/tex]

Where [tex]F_3[/tex] is the additional force required  

    So

          [tex]F_3 = -F_1 - F_2[/tex]

substituting values

         [tex]F_3 = -480 - [-600][/tex]

        [tex]F_3 = -480 + 600[/tex]

       [tex]F_3 = 120 \ N[/tex]

           

A ball drops some distance and gains 30 J of kinetic energy. Do NOT ignore air resistance. How much gravitational potential energy did the ball lose? Group of answer choices

Answers

Answer:

Greater than 30 J

Explanation:

We know that if the resistance air is nothing then the potential energy is directly translated into the energy of the kinetic i.e kinetic energy also there is second condition is arises If the resistance of air is used to operate towards the air resistance then the potential energy is greater then the kinetic energy .

In the given mention question the ball is gaining the 30 J of the kinetic energy on drooping it on the air resistance it simply means that the ball is losing the potential energy of 30 J.Therefore the gravitational potential energy of the ball is greater then  than 30 J

The gravitational potential energy where the ball loses should be Greater than 30 J

Translation of the potential energy to the kinetic energy:

In the case when the resistance air should be nothing so this transformation could be done. Also there should be the second condition when the air resistance should be used for operating other than the potential energy that should be more than the kinetic energy.

Since in the given situation, the ball should be gained the 30 J of the kinetic energy so here the ball should lose the potential enery of 30 J.

learn more about energy here: https://brainly.com/question/15182235

Please help! Calculate velocity. Show all work!

Answers

Answer:

v = 23.66 m/s

Explanation:

recall that one of the equations of motion may be expressed:

v² = u² + 2as,

Where

v = final velocity (we are asked to find this)

u = initial velocity = 0 m/s since we are told that it starts from rest

a = acceleration = 0.56m/s²

s = distance traveled = given as 500m

Simply substitute the known values into the equation:

v² = u² + 2as

v² = 0 + 2(0.56)(500)

v² = 560

v = √560

v = 23.66 m/s

A conventional current of 8 A runs clockwise in a circular loop of wire in the plane, with center at the origin and with radius 0.078 m. Another circular loop of wire lies in the same plane, with its center at the origin and with radius 0.03 m. How much conventional current must run counterclockwise in this smaller loop in order for the magnetic field at the origin to be zero

Answers

Answer:

I2 = 3.076 A

Explanation:

In order to calculate the current in the second loop, you take into account that the magnitude of the magnetic field at the center of the ring is given by the following formula:

[tex]B=\frac{\mu_oI}{2R}[/tex]        (1)

I: current in the wire

R: radius of the wire

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

In the case of the two wires with opposite currents and different radius, but in the same plane, you have that the magnitude of the magnetic field at the center of the rings is:

[tex]B_T=\frac{\mu_oI_1}{2R_1}-\frac{\mu_oI_2}{2R_2}[/tex]         (2)

I1: current of the first ring = 8A

R1: radius of the first ring = 0.078m

I2: current of the second ring = ?

R2: radius of the first second = 0.03m

To find the values of the current of the second ring, which makes the magnitude of the magnetic field equal to zero, you solve the equation (2) for I2:

[tex]\frac{\mu_oI_2}{2R_2}=\frac{\mu_oI_1}{2R_1}\\\\I_2=I_1\frac{R_2}{R_1}=(8A)\frac{0.03m}{0.078m}=3.076A[/tex]

The current of the second ring is 3.076A and makes that the magntiude of the total magnetic field generated for both rings is equal to zero.

what is the largest star in our night sky​

Answers

VY Canis Majoris is the largest star in our night sky

"Consider the Earth and the Moon as a two-particle system. (a) How far from the center of the Earth is the gravitational field of this two-particle system zero?"

Answers

a is the correct

Explanation:

hope you like then comment

How much work is needed to move an object from one position to another when both positions are located the same distance from the center of the earth

Answers

Answer:

The product of the object's weight and the horizontal distance between the two positions.

Explanation:

Work is the product of force and the distance through which this force is moved. The distance moved can be vertical, or horizontal. For two bodies located the same distance from the center of the earth, the work done will be the product of the weight of the product and the horizontal distance between the two positions. If the vertical work is needed, then the work is zero, since there is no height gradient between them.

A piece of tape is pulled from a spool and lowered toward a 100-mg scrap of paper. Only when the tape comes within 8.0 mm is the electric force magnitude great enough to overcome the gravitational force exerted by Earth on the scrap and lift it.

Requried:
Determine the magnitude and direction of the electric force exerted by the tape on the paper at this distance.

Answers

Answer:

 The magnitude of the electric force is  [tex]F_e = 0.00098 \ N[/tex]

Explanation:

From the question we are told that

    The  mass of the paper is  [tex]m= 100 mg = 100 *10^{-6} \ kg[/tex]

    The  position is  [tex]d = 8.0\ mm = 0.008 \ m[/tex]

Generally the magnitude of the  electric force at the point of equilibrium between the electric force and the gravitational force is  mathematically represented as  

         [tex]F_e = F_g = mg[/tex]

Where  [tex]F_g[/tex] is gravitational force

   substituting values

         [tex]F_e = 100 *10^{-6} * 9.8[/tex]

         [tex]F_e = 0.00098 \ N[/tex]

Now generally the gravitational force acts downward (negative y axis ) hence the reason the electric force is same magnitude but opposite in direction (upward  + y - axis  )

A particle accelerator fires a proton into a region with a magnetic field that points in the x-direction. (a) If the proton is moving in the y-direction, what is the direction of the magnetic force on the proton

Answers

Answer:

The magnitude of the magnetic field will act in a direction towards me.

Explanation:

When a charged particle enters a magnetic field, it is deflected. The direction of travel of the particle is deflected, but the kinetic energy of the particle is not affected. The force experienced by a charged particle as it enters a magnetic field that acts perpendicular to the path of the velocity of the particle, will produce a force that is perpendicular to both the direction of travel of the particle and the direction of the magnetic field. In this case, the proton moves in the y-direction, the magnetic field is in the x-direction, therefore the force experienced by the particle will be towards me.

Which scientist's work led to our understanding of how planets move around
the Sun?
A. Albert Einstein
B. Lord Kelvin
C. Johannes Kepler
D. Edwin Hubble

Answers

Answer:

Johannes Kepler

Explanation:

He made rules about planetary motion.The scientist Johannes Kepler was a German astronomer.He found out that the planets evolved around the Sun.He also made the laws of planetary motion.

Hope this helped,

Kavitha

It was Johanne keplers work
Other Questions
Read the excerpt from "A Quilt of a Country." Once these disparate parts were held together by a common enemy, by the fault lines of world wars and the electrified fence of communism. With the end of the cold war there was the creeping concern that without a focus for hatred and distrust, a sense of national identity would evaporate, that the left side of the hyphenAfrican-American, Mexican-American, Irish-Americanwould overwhelm the right. What does the use of the term fault lines reveal about how the author views world wars? She believes that world wars are necessary. She believes that world wars divide Americans. She believes that world wars are a small concern. She believes that world wars are harmful to people. What is the range of the function y= 3 startroot x+8 endroot? suppose the ball has the smallest possible frequency that allows it to go all the way around the circle. what tension in the string when the ball is at the highest point Foodborne illnesses can last:Up to 1-2 hoursUp to 24-48 hoursUp to 3-4 monthsA lifetime Which is a symptom of the common cold?mild feveritchy feetliver failureshaky hands Amanda considers shopping to be a game. She goes shopping because she enjoys finding bargains and discounts. Amanda is always on the lookout for special offers and discounts. Hence, Amanda's hedonic needs are satisfied by a sense of:. Find the values of a and b in the rhombus. Solve for the value of c, if c=a+b. What is the range of the linear parent function?O A. All real numbersB. Negative real numbers (y< 0)C. Nonnegative real numbers (y=0)D. Positive real numbers (y> 0) Solve by any method from this unit. y2 - 5y = 3 Please help Determine the magnitude of the force between two 11 m-long parallel wires separated by 0.033 m, both carrying 5.2 A in the same direction. 7. Use the properties of operations to simplify this algebraic expression. Rewrite the expression by following the directions in each step. 5(x 4) + 3x 9x + 7 Step 1: Rewrite the subtraction operations as addition of negative numbers. (1 point) Step 2: Use the distributive property. (1 point) Step 3: Use the commutative property of addition to reorder terms so that like terms are together. (1 point) Step 4: Use the associative property of addition to group like terms. (1 point) Step 5: Simplify. (1 point) Which could cause topsoil to be lost? a) wind and water erosion b)lack of use c)compaction d)desertification what are muscles made of Discuss Clonal Selection Theory in human physiology and its application in Rubeola Infection in a 6-year-old child. Please help ASAP!! Will give brainliest Liam works at a zoo. He was looking at some data showing the masses of their 5555 African elephants. The mean mass of the elephants was 3,800 kg3{,}800\,{\text{kg}}3,800kg3, comma, 800, start text, k, g, end text, and the median mass was 3,600 kg3{,}600\,{\text{kg}}3,600kg3, comma, 600, start text, k, g, end text. The smallest elephant, named Lola, weighed 2,700 kg2{,}700\,{\text{kg}}2,700kg2, comma, 700, start text, k, g, end text. Lola then got very sick and lost weight until her mass reached 1,800 kg1{,}800\,{\text{kg}}1,800kg1, comma, 800, start text, k, g, end text. How will Lola's mass decreasing affect the mean and median? Choose 1 answer: Choose 1 answer: (Choice A) A Both the mean and median will decrease. (Choice B) B The median will decrease, and the mean will stay the same. (Choice C) C The mean will decrease, and the median will stay the same. (Choice D) D The mean will decrease, and the median will increase. The lender usually has the right to collect the principal, but is NOT allowed to collect the interest if the loan is: Which pane, available on the View tab, allows a user to preview the content of the message that is selected in themailbox folder?O Folder paneReading paneContent paneTo Do bar PLS HELP!Which is one of the big ideas that guides Earth science?Earth's watersEarth in the universeEarth in the solar systemevolution of life on Earth 2m^2? + 10 = 210Answer plssss