Answer:
a = 5
b = 1.3
c = 6.3
Step-by-step explanation:
To find the values of a, b and C respectively, let's find a first by recalling that the diagonals of a rhombus are perpendicular to each other.
Therefore, the angle given as (14a + 20) = 90°
Solve for a
14a + 20 = 90
14a = 90 - 20
14a = 70
a = 70/14
a = 5
==>To find b, also recall that all sides of a rhombus are equal.
Therefore 3b + 4 = 13b - 9
Solve for b
4 + 9 = 13b - 3b
13 = 10b
13/10 = b
b = 1.3
==>Find value of c
c = a + b
c = 5 + 1.3
c = 6.3
Please answer this correctly
Assuming the coin is not weighted and is a fair and standard coin - the chance of flipping head is 1/2. You can either flip head or tails, there are no other possible outcomes.
If sin t=0.29 and sin w = 0.43, both t and w are positive, and the angles determined by t and w are in quadrant 2, then which of the following statements is true? Explain your selection
a. t>w
b. w>t
c. cannot be determined
Answer:
a. t>w
Step-by-step explanation:
Sin t= 0.29
t = sin^-1(0.29)
t= 16.86°
Sin w= 0.43
W = sin^-1(0.43)
W= 25.47°
Angles in the second quadrant are positive in sine and they are generally determined by subtracting the initial value from 180°
For t= 180°-16.86°
t = 163.14°
For w = 180°-25.47°
W= 154.53°
163.14°>154.53°
t>w
Please answer this correctly
Answer:
1/8
Step-by-step explanation:
Total cards = 8
Card with 4 = 1
P(4) = 1/8
given that 3*6=12 and 2*5=9, then a*b may be defined as
Answer:
I noticed a pattern:
3 * 2 + 6 = 12 and 2 * 2 + 5 = 9
This means that a*b = 2a + b.
Which functions have an axis of symmetry of x = -2? Check all that apply. A. f(x) = x^2 + 4x + 3 B. f(x) = x^2 - 4x - 5 C. f(x) = x^2 + 6x + 2 D. f(x) = -2x^2 - 8x + 1 E. f(x) = -2x^2 + 8x - 2
Answer:
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
Step-by-step explanation:
The axis of symmetry is found by h = -b/2a where ax^2 +bx +c
A. f(x) = x^2 + 4x + 3
h = -4/2*1 = -2 x=-2
B. f(x) = x^2 - 4x - 5
h = - -4/2*1 = 4/2 =2 x=2 not -2
C. f(x) = x^2 + 6x + 2
h = -6/2*1 = -3/2 = x=-3/2 not -2
D. f(x) = -2x^2 - 8x + 1
h = - -8/2*-2 = 8/-4 =-2 x=-2
E. f(x) = -2x^2 + 8x - 2
h = - 8/2*-2 = -8/-4 =2 x=2 not -2
Answer:
Hey there! The answer to this question is
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
Which of the following indicates the subtraction property of equality when solving the equation 86 – 2 (9x + 4) = 12x + 18 A) 2(9x + 4) = 86 – 12x – 18 B) x = 2 C) –2(9x + 4) = 12x + 18 – 86 D) 86 – 18x – 8 = 12x + 18
Answer:
D) 86 – 18x – 8 = 12x + 18
X = 2
Step-by-step explanation:
86 – 2 (9x + 4) = 12x + 18
This question has a straight forward answer...
It's just to open up the bracket and ensure that the negative sign before the bracket multiply the values in the bracket exactly.
So opening up the bracket gives us this as the answer
86 - 18x -8 = 12x +18
86-18-8 = 12x+ 18x
60 = 30x
X = 2
The rectangle has an area of 60 square feet. Find its dimensions (in ft). (x + 4) feet smaller value ___________________ ft larger value ____________________ ft
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
The rectangle has an area of 60 square feet. Find its dimensions (in ft) if the length of the rectangle is 4 ft more than its widh.
smaller value ___________________ ft
larger value ____________________ ft
Answer:
Smaller value = 6 ft
Larger value = 10 ft
Step-by-step explanation:
Recall that the area of a rectangle is given by
[tex]Area = W \times L[/tex]
Where W is the width and L is the length of the rectangle.
It is given that the rectangle has an area of 60 square feet.
[tex]Area = 60 \: ft^2 \\\\60 = W \times L \\\\[/tex]
It is also given that the length of the rectangle is 4 ft more than its width
[tex]L = W + 4[/tex]
Substitute [tex]L = W + 4[/tex] into the above equation
[tex]60 = W \times (W + 4) \\\\60 = W^2 + 4W \\\\W^2 + 4W - 60 = 0 \\\\[/tex]
So we are left with a quadratic equation.
We may solve the quadratic equation using the factorization method
[tex]W^2 + 10W - 6W - 60 \\\\W(W + 10) – 6(W + 10) \\\\(W + 10) (W - 6) = 0 \\\\[/tex]
So,
[tex](W + 10) = 0 \\\\W = -10 \\\\[/tex]
Since width cannot be negative, discard the negative value of W
[tex](W - 6) = 0 \\\\W = 6 \: ft \\\\[/tex]
The length of the rectangle is
[tex]L = W + 4 \\\\L = 6 + 4 \\\\L = 10 \: ft \\\\[/tex]
Therefore, the dimensions of the rectangle are
Smaller value = 6 ft
Larger value = 10 ft
Verification:
[tex]Area = W \times L \\\\Area = 6 \times 10 \\\\Area = 60 \: ft^2 \\\\[/tex]
Hence verified.
a water storage tank is in the shape of a hemisphere. If the radius is 29ft, approximate the volume of the tank in cubic feet
Answer:
The answer is 51080.2 cubic feetStep-by-step explanation:
Volume of a hemisphere is given by
[tex]V = \frac{2}{3} \pi {r}^{3} [/tex]
where r is the radius of the hemisphere
From the question
r = 29 ft
Substitute the value of r into the formula
That's
[tex]V = \frac{2}{3} \pi \times {29}^{3} [/tex]
[tex]V = \frac{48778}{3} \pi[/tex]
We have the final answer as
V = 51080.2 cubic feetHope this helps you
Solve of the following equations for x: x + 3 = 6
Answer:
X = 3Step-by-step explanation:
[tex]x + 3 = 6[/tex]
Move constant to R.H.S and change its sign:
[tex]x = 6 - 3[/tex]
Calculate the difference
[tex]x = 3[/tex]
Hope this helps...
Good luck on your assignment..
In 1998, the average price for bananas was 51 cents per pound. In 2003, the following 7 sample prices (in cents) were obtained from local markets:
50, 53, 55, 43, 50, 47, 58.
Is there significant evidence to suggest that the average retail price of bananas is different than 51 cents per pound? Test at the 5% significance level.
Answer:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Step-by-step explanation:
Info given
50, 53, 55, 43, 50, 47, 58.
We can calculate the sample mean and deviation with this formula:
[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2)}{n-1}}[/tex]
represent the mean height for the sample
[tex]s=5.014[/tex] represent the sample standard deviation for the sample
[tex]n=7[/tex] sample size
represent the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value
Hypothesis to test
We want to test if the true mean is equal to 51, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 51[/tex]
Alternative hypothesis:[tex]\mu \neq 51[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing we got:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Add the two rational expressions: (x/x+1)+(2/x)
SOMEBODY HELP
Jill bought 7 books more than Sam. If Sam and Jill together have 25 books, find the
number of books Sam has.
Answer:
Jill bought 16 books and Sam bought 9 books
Step-by-step explanation:
Let the number of books that Jill bought be j.
Let the number of books that Sam bought be s.
Jill bought 7 more books than Sam:
j = 7 + s
They bought 25 books altogether:
j + s = 25
Put j = 7 + s into the second equation:
7 + s + s = 25
7 + 2s = 25
2s = 25 - 7 = 18
s = 18/2 = 9 books
Therefore:
j = 7 + s = 7 + 9
s = 16 books
Jill bought 16 books and Sam bought 9 books.
PLEASE HELP ME! Simplify the expression 3 4 (1440) + 295.25 + (-33.50) to determine how much money the theater brought in.
Answer:
1341.75
Step-by-step explanation:
I did the math :)
The guy above me is correct
Determine the sum of the arithmetic series 6 + 11 + 16 +......
91.
Answer:
873
Step-by-step explanation:
so the equation is: 5x+1
sum is:
[tex] \frac{first \: one \: + \: last \: one}{2} \times quantity \: of \: terms \\ [/tex]
we have 6( 5×1+1) to 91 (5×18+1)
so we have 18 terms
then:
[tex] \frac{91 + 6}{2} \times 18 = 873[/tex]
Pls hurry least to greatest
Answer:
First choice
Step-by-step explanation:
Start by arranging the exponents of 10 in ascending order.
9.4 * 10^-8, 9.25 * 10^-6, 2.5 * 10^3, 7 * 10^3
The exponents are in ascending order, -8, -6, 3, 3
Since the last two exponents are equal, we must compare the numbers that multiply the powers of 10. They are 2.5 and 7. Since 2.5 < 7, ascending order is 2.5, 7. That means the line above is in ascending order.
Answer: First choice
A 90% confidence interval for the average salary of all CEOs in the electronics industry was constructed using the results of a random survey of 45 CEOs. The interval was ($139,048, $154,144). Give a practical interpretation of the interval.
a) 90% of the sampled CEOs have salaries that fell in the interval $139,048 to $154,144b) We are 90% confident that the mean salary of all CEOs in the electronics industry falls in the interval $139,048 to $154,144. c) 90% of all CEOs in the electronics industry have salaries that fall between $139,048 to $154,144d) We are 90% confident that the mean salary of the sampled CEOs falls in the interval $139,048 to $154,144.
Answer:
b) We are 90% confident that the mean salary of all CEOs in the electronics industry falls in the interval $139,048 to $154,144.
Step-by-step explanation:
Confidence interval:
Confidence level of x%
We build from a sample.
Between a and b.
Intepretation: We are x% sure that the population mean is between a and b.
In this question:
90%
45 CEO's
Between ($139,048, $154,144).
So
We are 90% sure that the mean salary of all CEO's falls within this interval.
The correct answer is:
b) We are 90% confident that the mean salary of all CEOs in the electronics industry falls in the interval $139,048 to $154,144.
Please answer this correctly without making mistakes
Answer: Anything above 2
Step-by-step explanation:
Answer: 3,4,5,6,7,8,9 (Any of these digits work)
Step-by-step explanation:
We want to find a digit that makes the number greater than 3260.2. There are many digits that can fit in there.
3318.7≥3260.2
Here, we plugged in a 3. that makes this sentence true because 3318.7 is greater than or equal to 3260.2. Since 3 works, we know that any digit greater than 3 would fit.
Charles's law states that at constant pressure, the volume of a fixed amount of gas varies directly with its temperature measured in Kelvins. A gas has a volume of 250 ml at 300°K. a.) Write an equation for the relationship between volume and temperature. b.) What is the volume if the temperature increases at 420°K?
Answer:
equation is pv=nRT
p, n, R are constants
so, v is directly proportional to Temperature
v1/v2=T1/T2
250/v2=300/420
v2=350
In a jar of coins, 18 out of the 40 coins are dimes. Express the fraction of the coins
that are dimes in three different ways below: (a) as a fraction, (b) as a decimal, and (c) as a percent.
Use long division to determine the decimal.
(a) as a fraction
(b) as a decimal
(c) as a percent
Answer:
Percent: 20%
Fraction: 1/5
Decimal: 0.20
Step-by-step explanation:
8:40*100 =
( 8*100):40 =
800:40 = 20%
Percent to fraction:
20%=20/100
= 0.2
=0.2×10/10
=2/10
=1/5
Percent to decimal:
20/100 = 0.20
I NEED HELP ASAP PLEASE! :)
Answer:
option 1
Step-by-step explanation:
[tex]r=\sqrt{(5\sqrt{2})^{2}+(-5\sqrt{2})^{2} } \\\\=\sqrt{25*2+25*2}\\\\ =\sqrt{50+50}\\\\=\sqrt{100}\\\\=10[/tex]
[tex]x=tan^{-1}(\frac{-5\sqrt{2}}{5\sqrt{2}})\\\\x=tan^{-1} (-1)\\x=\frac{7\pi}{4}[/tex]
[tex]re^{ix}=10e^{i\frac{7\pi}{4}}[/tex]
the linear equation y=2x represents the cost y of x pounds of pears. which order pair lies on the graph of the equation? A. (2,4) B. (1,0) C.(10,5) D. (4,12)
Answer:
A. (2, 4)
Step-by-step explanation:
The ordered pairs represent (x, y). Since you have y =2x, this is the same as ...
(x, 2x)
That is, the second number in the pair needs to be twice the first number in the pair. Since you know your times tables, you know that this is not the case for (1, 0), (10, 5) or (4, 12). Those values of x would give (1, 2), (10, 20), (4, 8).
It is the case that you have (x, 2x) for (2, 4).
The point (2, 4) lies on the graph of y = 2x.
A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.
Hey there! I'm happy to help!
We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)
We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.
We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.
[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]
So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!
15(18+r)=21(18-r)
We use the distributive property to undo the parentheses.
270+15r=378-21r
We subtract 270 from both sides.
15r=108-21
We add 21 to both sides.
36r=108
We divide both sides by 36.
r=3
Therefore, the speed of the river is 3 mph.
You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!
Have a wonderful day!
In order to study the mean blood pressure of people in his town, Richard samples the population by dividing the residents by age and randomly selecting a proportionate number of residents from each age group. Which type of sampling is used?
Answer:
Stratified sampling
Step-by-step explanation:
Samples may be classified as:
Convenient: Sample drawn from a conveniently available pool.
Random: Basically, put all the options into a hat and drawn some of them.
Systematic: Every kth element is taken. For example, you want to survey something on the street, you interview every 5th person, for example.
Cluster: Divides population into groups, called clusters, and each element in the cluster is surveyed.
Stratified: Also divides the population into groups. However, then only some elements of the group are surveyed.
In this question:
Population divided into groups. Some members of each group are surveyed. This is stratified sampling
A pair of surfers collected data on the self-reported numbers of days surfed in a month for 30 longboard surfers and 30 shortboard surfers. Complete parts a and b below.
Longboard: 2, 7, 16, 13, 10, 18, 7, 8, 15, 15, 19, 17, 3, 10, 11, 16, 24 5, 20, 6, 9, 11, 8, 21, 22, 18, 14, 12, 16, 24
Shortboard: 17, 16, 7, 5, 13, 8, 7, 6, 15, 8, 8, 16, 10, 23, 24, 10, 20, 16, 16, 24, 23, 14, 6, 12, 10, 7, 12, 25, 13, 22
a) Compare the typical number of days surfing for these two groups.
The median for the longboards was________ days, and the median for the shortboards was_______ days, showing that those with________ typically surfed more days in this month
b) Compare the interquartile ranges.
The interquartile range for the longboards was________ days, and the interquartile range for the shortboards was_______ days, showing more variation in the days surfed this month for the________
Answer:
(a)The median for the longboards was 13.5 days, and the median for the shortboards was 13 days, showing that those with longboards typically surfed more days in this month.
(b)The interquartile range for the longboards was 10 days, and the interquartile range for the shortboards was 10.5 days, showing more variation in the days surfed this month for the shortboards.
Step-by-step explanation:
Longboard:
2, 7, 16, 13, 10, 18, 7, 8, 15, 15, 19, 17, 3, 10, 11, 16, 24 5, 20, 6, 9, 11, 8, 21, 22, 18, 14, 12, 16, 24
Sorting in ascending order, we have:
[tex]2, 3, 5, 6, 7, 7, \boxed{8, 8}, 9, 10, 10, 11, 11, 12, \boxed{13, 14,} 15,15, 16, 16, 16, 17, \boxed{18, 18}, 19, 20, 21, 22, 24 , 24[/tex]
Median [tex]=\dfrac{13+14}{2}=13.5[/tex]
[tex]Q_1=\dfrac{8+8}{2}=8 \\Q_3=\dfrac{18+18}{2}=18\\$Interquartile range, Q_3-Q_1=18-8=10[/tex]
Shortboard
17, 16, 7, 5, 13, 8, 7, 6, 15, 8, 8, 16, 10, 23, 24, 10, 20, 16, 16, 24, 23, 14, 6, 12, 10, 7, 12, 25, 13, 22
Sorting in ascending order, we have:
[tex]5, 6, 6, 7, 7, 7, \boxed{8, 8,} 8, 10, 10, 10, 12, 12, \boxed{13, 13} 14, 15, 16, 16, 16, 16, \boxed{17, 20,} 22, 23, 23, 24, 24, 25[/tex]
Median [tex]=\dfrac{13+13}{2}=13[/tex]
[tex]Q_1=\dfrac{8+8}{2}=8 \\Q_3=\dfrac{17+20}{2}=18.5\\$Interquartile range, Q_3-Q_1=18.5-8=10.5[/tex]
Therefore:
(a)The median for the longboards was 13.5 days, and the median for the shortboards was 13 days, showing that those with longboards typically surfed more days in this month.
(b)The interquartile range for the longboards was 10 days, and the interquartile range for the shortboards was 10.5 days, showing more variation in the days surfed this month for the shortboards.
Let f(x)= |x| and g(x) = x+2. What are the domain and range of (fog)(x)?
If [tex]f(x)=\mid x\mid[/tex] and [tex]g(x)=x+2[/tex] then [tex]f(g(x))=\mid x+2\mid[/tex].
The domain is [tex]x\in(-\infty, +\infty)=\mathbb{R}[/tex].
The range is [tex]y\in[2,+\infty)[/tex].
Hope this helps.
Answer:
D) domain: all real numbersrange: y>0Step-by-step explanation:
with range there is a horizontal line under the > sign, just as a side note:D
BRANLIEST?
Choose the name of this figure.
A.
line
B.
angle
c.
line segment
D.
ray
Answer:
we dont see aa figure
Step-by-step explanation:
1/3 times the difference of a number and five is -2/3 which equation best shows this
Answer:
[tex]\frac{1}{3}*(x-5)=\frac{-2}{3}[/tex]
Step-by-step explanation:
Let the number be x
Difference of a number & 5 : x-5
1/3 time the difference of a number & 5: 1/3 (x-5)
Equation:
[tex]\frac{1}{3}*(x-5)=\frac{-2}{3}[/tex]
Solution:
[tex]x-5=\frac{-2}{3}*\frac{3}{1}\\\\x-5=-2\\\\x=-2+5\\x=3[/tex]
Please answer this correctly
Answer:
8/25
Step-by-step explanation:
The probability of picking a number less than 9 is 4/5.
The probability of picking an even number is 2/5.
[tex]4/5 \times 2/5[/tex]
[tex]=8/25[/tex]
Please answer this correctly without making mistakes
Answer:
A digit that makes this sentence true is 4.
Step-by-step explanation:
Since the first digit in the number to the left is 3, you simply have to find a digit greater than 3. Here are the possibilities:
4
5
6
7
8
and
9
Out of any of these you can choose, I chose 4.
9514 1404 393
Answer:
3, or any greater digit
Step-by-step explanation:
Suppose the digit is 'd'. Then the value on the right is ...
69.436 +100d
Subtracting the value on the left, we want the difference greater than 0.
69.436 +100d - 352.934 > 0
100d -293.498 > 0 . . . . simplify
100d > 293.498 . . . . . . . add 293.498
d > 2.93498 . . . . . . . . . . divide by 100
That is d is any single digit greater than 2.9. Those digits are ...
d ∈ {3, 4, 5, 6, 7, 8, 9}
Any digit 3 or greater makes the sentence true.
Write the Maclaurin series for f(x) = x^7e^x5. (2 points) a) the summation from n equals 1 to infinity of the quotient of x to the 7th power and n factorial b) the summation from n equals 0 to infinity of the quotient of x to the 12th power and the quantity n plus 5 factorial c) the summation from n equals 0 to infinity of the quotient of x to the quantity 5 times n plus 7 power and n factorial d) the product of x raised to the 5 times n power and the summation from n equals 1 to infinity of the quotient of x to the 7th power and n factorial
Recall that
[tex]e^x=\displaystyle\sum_{n=0}^\infty\frac{x^n}{n!}[/tex]
Then
[tex]e^{x^5}=\displaystyle\sum_{n=0}^\infty\frac{x^{5n}}{n!}[/tex]
and
[tex]x^7e^{x^5}=\displaystyle\sum_{n=0}^\infty\frac{x^{5n+7}}{n!}[/tex]