Answer:
The tissues each bride's guest used is 1.5.
Step-by-step explanation:
We are given that a total of 76 groom's guests and 64 bride's guests attended a wedding. The bride's guests used 96 tissues. The groom's guests used 152 tissues.
We have to find that approximately how many tissues each bride's guest used.
As we know that whenever we have to find the value of 'each item', we have to use division.
Number of bride's guests who attended a wedding = 64
Number of tissues used by the bride's guests = 96
So, the tissues each bride's guest used = [tex]\frac{\text{Total tissues used by bride's guests}}{\text{Total number of bride's guests}}[/tex]
= [tex]\frac{96}{64}[/tex]
= [tex]\frac{3}{2}[/tex] = 1.5
Hence, each bride's guest used approximately 1.5 tissues.
The head of maintenance at XYZ Rent-A-Car believes that the mean number of miles between services is 3639 3639 miles, with a variance of 145,161 145,161 . If he is correct, what is the probability that the mean of a sample of 41 41 cars would differ from the population mean by less than 126 126 miles
Answer:
96.6% probability that the mean of a sample would differ from the population mean by less than 126 miles
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
A reminder is that the standard deviation is the square root of the variance.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 3639, \sigma = \sqrt{145161} = 381, n = 41, s = \frac{381}{\sqrt{41}} = 59.5[/tex]
Probability that the mean of the sample would differ from the population mean by less than 126 miles
This is the pvalue of Z when X = 3639 + 126 = 3765 subtracted by the pvalue of Z when X = 3639 - 126 = 3513. So
X = 3765
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3765 - 3639}{59.5}[/tex]
[tex]Z = 2.12[/tex]
[tex]Z = 2.12[/tex] has a pvalue of 0.983
X = 3513
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3513 - 3639}{59.5}[/tex]
[tex]Z = -2.12[/tex]
[tex]Z = -2.12[/tex] has a pvalue of 0.017
0.983 - 0.017 = 0.966
96.6% probability that the mean of a sample would differ from the population mean by less than 126 miles
Which equation should be used to find the volume of the figure?
V=1/3(10)(6)(12)
V=1/2(10)(6)(12)
V=1/3(10)(6)(13)
V=1/2(10)(6)(13)
Answer:
The answer is option 1.
Step-by-step explanation:
Given that the volume of pyramid formula is:
[tex]v = \frac{1}{3} \times base \: area \times height[/tex]
The base area for this pyramid:
[tex]base \: area = area \: of \: rectangle[/tex]
[tex]base \: area = 10 \times 6[/tex]
Then you have to substitute the following values into the formula:
[tex]let \: base \: area = 10 \times 6 \\ let \: height = 12[/tex]
[tex]v = \frac{1}{3} \times 10 \times 6 \times 12[/tex]
Answer:
A. V = 1/3 (10)(6)(12)
Step-by-step explanation:
Just took the test and got it right
: Bobby's Burger Palace had its
grand opening on Tuesday,
They had 164 1/2 lb of ground
beef in stock. They had 18 1/4
Ib left at the end of the day.
Each burger requires 1/4 lb of
ground beef. How many
hamburgers did they sell?
The surface area of an open-top box with length L, width W, and height H can be found using the
formula:
A = 2LH + 2WH + LW
Find the surface area of an open-top box with length 9 cm, width 6 cm, and height 4 cm.
Answer:
174 square cm
Step-by-step explanation:
2(9×4) + 2(6×4)+ 9×6
2(36) + 2(24) + 54
72 + 48 + 54
120 + 54
174
a bridge in the shape of a parabolic arch is modelled by this function (see pic).
Answer:
(C) 25,35 and 175,35
What is the solution of log (2 t + 4) = log (14 minus 3 t)? –18
[tex]\mathfrak{\huge{\pink{\underline{\underline{AnSwEr:-}}}}}[/tex]
Actually Welcome to the Concept of the Logarithms,
so we get as,
t = 2
In 2 years, my sister will be twice as old as she was 2 years ago, and in 3 years my brother will be three times older than he was 3 years ago. Which sibling is older?
Answer:
Sister
Step-by-step explanation:
Let the sister’s age be x.
Let the brother’s age be y.
2 + x = 2x - 2
3 + y = 3y - 3
Solve the first equation.
x - 2x = - 2 - 2
-x = -4
x = 4
Solve the second equation.
y - 3y = -3 - 3
-2y = -6
y = 3
The sister is 4 years old.
The brother is 3 years old.
The sister is older than the brother.
A random sample has been taken from a normal distribution and the following confidence intervals constructed using the same data: (25.53, 37.87) and (23.59, 39.81). One of these intervals is a 99% CI and the other is a 95% CI. Please match them.
Answer:
(25.53, 37.87): 95% CI
(23.59, 39.81): 99% CI
Step-by-step explanation:
The margin of error of a confidence interval is given by:
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
z is related to the confidence level. The higher the confidence level, the higher the values of z, and thus, we wider the confidence interval is.
In this question:
The narrower C.I. is the 95%, and the wider is the 99%. So
(25.53, 37.87): 95% CI
(23.59, 39.81): 99% CI
It was reported that in a survey of 4764 American youngsters aged 6 to 19, 12% were seriously overweight (a body mass index of at least 30; this index is a measure of weight relative to height). Calculate a confidence interval using a 99% confidence level for the proportion of all American youngsters who are seriously overweight. (Round your answers to three decimal places.)
Answer:
Step-by-step explanation:
confidence level for the proportion of all American youngsters who are seriously overweight is (0.137, 0.163)
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of , and a confidence level of , we have the following confidence interval of proportions.
In which
z is the zscore that has a pvalue
Read
A square with side lengths of 3 cm is reflected vertically over a horizontal line of reflection that is 2 cm below the bottom edge of the square. What is the distance between the points C and C’? cm What is the perpendicular distance between the point B and the line of reflection? cm What is the distance between the points A and A’? cm
Answer:
a) 4 cm
b) 5 cm
c) 10 cm
Step-by-step explanation:
The side lengths of the reflected square are equal to the original, and the distance from the axis(2) also remains the same. From there, it is just addition.
Hope it helps <3
Answer:
A) 4
B) 5
C) 10
Step-by-step explanation:
edge2020
How to find the scale factor, ratio of area, & ratio of volume?
Step-by-step explanation:
If the scale factor of two similar solids is a: b:. then
(1) the ratio of corresponding perimeters is a:b
(2) the ratio of the base areas, of the lateral areas, and of the total areas is [tex]a^2: b^2[/tex]
(3) the ratio of the volumes is [tex]a^3:b^3[/tex]
Here is the feasible region.
28
А
52 + 8y 120
B
y 5
What are the coordinates of vertex A?
Enter your answer in the boxes
Answer:
A(8, 10)
Step-by-step explanation:
Vertex A is on the vertical line x=8, so we can find the y-coordinate by solving the boundary equation ...
5x +8y = 120
5(8) +8y = 120 . . . use the x-value of the vertical line
5 + y = 15 . . . . . . . divide by 8
y = 10 . . . . . . . . . . subtract 5
Point A is (8, 10).
pls help me pls pls
Answer:
B
Step-by-step explanation:
the slope of parallel lines are equal
Together two ferries can transport a day's cargo in 7 hours. The larger ferry can transport cargo three times faster than the smaller ferry. How long does it take the larger ferry to transport a day's cargo working alone?
Answer:
9 hours, 20 minutes
Step-by-step explanation:
When two ferries work together, they transport a day's cargo in 7 hours
The speed proportion or ratio of larger ferry to smaller ferry is given as 3 : 1
The sum of the ratio = 4 (3 + 1)
This means that it will take the smaller ferry = 7 x 4 hours to work alone = 28 hours, since the larger ferry is faster by 3.
Therefore, when larger ferry works alone, it will take it (7 x 4)/3 = 9.33 hours.
9.33 hours = 9 hours, 20 minutes.
plz answer question in screen shot
Answer:
first one 5/[tex]\sqrt{39}[/tex]
Step-by-step explanation:
We must calculate cosθ first :
cos²θ+sin²θ =1⇒ cos²θ= 1-sin²θ=1-(25/8)= 39/64⇒cosθ= √39/8
tanθ = sinθ/cosθtanθ= (5/8)/(√39/8)=5/8*8/√39 = 5/√39The accounting department analyzes the variance of the weekly unit costs reported by two production departments. A sample of 16 cost reports for each of the two departments shows cost variances of 2.5 and 5.5, respectively. Is this sample sufficient to conclude that the two production departments differ in terms of unit cost variance? Use = .10. State the null and alternative hypotheses.
Answer:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{5.5}{2.5}=2.2[/tex]
Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_2 -1 =16-1=15[/tex] and for the denominator we have [tex]n_1 -1 =16-1=15[/tex] and the F statistic have 15 degrees of freedom for the numerator and 15 for the denominator. And the P value is given by:
[tex]p_v =2*P(F_{15,15}>2.2)=0.138[/tex]
For this case the p value is highert than the significance level so we haev enough evidence to FAIL to reject the null hypothesis and we can conclude that the true deviations are not significantly different
Step-by-step explanation:
Information given
[tex]n_1 = 16 [/tex] represent the sampe size 1
[tex]n_2 =16[/tex] represent the sample 2
[tex]s^2_1 = 2.5[/tex] represent the sample deviation for 1
[tex]s^2_2 = 5.5[/tex] represent the sample variance for 2
[tex]\alpha=0.10[/tex] represent the significance level provided
The statistic is given by:
[tex]F=\frac{s^2_2}{s^2_1}[/tex]
Hypothesis to test
We want to test if the variations in terms of the variance are equal, so the system of hypothesis are:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
The statistic is given by:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{5.5}{2.5}=2.2[/tex]
Now we can calculate the p value but first we need to calculate the degrees of freedom for the statistic. For the numerator we have [tex]n_2 -1 =16-1=15[/tex] and for the denominator we have [tex]n_1 -1 =16-1=15[/tex] and the F statistic have 15 degrees of freedom for the numerator and 15 for the denominator. And the P value is given by:
[tex]p_v =2*P(F_{15,15}>2.2)=0.138[/tex]
For this case the p value is highert than the significance level so we haev enough evidence to FAIL to reject the null hypothesis and we can conclude that the true deviations are not significantly different
The steps to prove the Law of Sines with reference to ∆ABC are given. Arrange the steps in the correct order.
1). Draw a perpendicular from point A to side BC. Let AD = h
2). sin A = h/c and sin C = h/a
3). h = c Sin A, h = a sin C
4). c Sin A =a sin C
5). Divide both side by Sin A * Sin C
6). c Sin A/(Sin A * Sin C) =a sin C/(Sin A * Sin C)
7). c/sin C = a/Sin A
8). Similarly prove that, c/sin C = b/Sin B
9). c/sin C = b/Sin B = a/Sin A
correct on plato
The cost c in $ of producing x items is in the equation c=x/7+1 which of the following choices will find the cost c if x is 35
Answer:
care of it and I will get back to you with a new one for me and support you in whatever way
Step-by-step explanation:
try to get the morning and then we can go from there to the meeting tonight but I can tomorrow
The value of the cost when x is 35 given the equation c=x/7+1 is $6.
How to calculate the cost?From the information given, the cost c in $ of producing x items is in the equation c=x/7+1.
Therefore, the value of the cost when x is 35 will be;
c = x/7 + 1
c = 35/7 + 1
c = 5 + 1
c = 6
Therefore, the cost is $6.
Learn more about cost on:
https://brainly.com/question/25109150
#SPJ2
Find a parabola with equation y = ax2 + bx + c that has slope 5 at x = 1, slope −11 at x = −1, and passes through the point (2, 18).
By "slope" I assume you mean slope of the tangent line to the parabola.
For any given value of x, the slope of the tangent to the parabola is equal to the derivative of y :
[tex]y=ax^2+bx+c\implies y'=2ax+b[/tex]
The slope at x = 1 is 5:
[tex]2a+b=5[/tex]
The slope at x = -1 is -11:
[tex]-2a+b=-11[/tex]
We can already solve for a and b :
[tex]\begin{cases}2a+b=5\\-2a+b=-11\end{cases}\implies 2b=-6\implies b=-3[/tex]
[tex]2a-3=5\implies 2a=8\implies a=4[/tex]
Finally, the parabola passes through the point (2, 18); that is, the quadratic takes on a value of 18 when x = 2:
[tex]4a+2b+c=18\implies2(2a+b)+c=10+c=18\implies c=8[/tex]
So the parabola has equation
[tex]\boxed{y=4x^2-3x+8}[/tex]
Using function concepts, it is found that the parabola is: [tex]y = 4x^2 - 3x + 14[/tex]
----------------------------
The parabola is given by:
[tex]y = ax^2 + bx + c[/tex]
----------------------------
Slope 5 at x = 1 means that [tex]y^{\prime}(1) = 5[/tex], thus:
[tex]y^{\prime}(x) = 2ax + b[/tex]
[tex]y^{\prime}(1) = 2a + b[/tex]
[tex]2a + b = 5[/tex]
----------------------------
Slope -11 at x = -1 means that [tex]y^{\prime}(-1) = -11[/tex], thus:
[tex]-2a + b = -11[/tex]
Adding the two equations:
[tex]2a - 2a + b + b = 5 - 11[/tex]
[tex]2b = -6[/tex]
[tex]b = -\frac{6}{2}[/tex]
[tex]b = -3[/tex]
And
[tex]2a - 3 = 5[/tex]
[tex]2a = 8[/tex]
[tex]a = \frac{8}{2}[/tex]
[tex]a = 4[/tex]
Thus, the parabola is:
[tex]y = 4x^2 - 3x + c[/tex]
----------------------------
It passes through the point (2, 18), which meas that when [tex]x = 2, y = 18[/tex], and we use it to find c.
[tex]y = 4x^2 - 3x + c[/tex]
[tex]18 = 4(2)^2 - 3(4) + c[/tex]
[tex]c + 4 = 18[/tex]
[tex]c = 14[/tex]
Thus:
[tex]y = 4x^2 - 3x + 14[/tex]
A similar problem is given at https://brainly.com/question/22426360
Write the following equation into logarithmic form. 5=3x
Answer:
[tex]log_35=x[/tex]
Step-by-step explanation:
I am going to assume you meant [tex]5=3^x[/tex]
When converting exponential equations into logarithmic form, remember this: [tex]y = log_bx[/tex] is equivalent to [tex]x = b^y[/tex]
8716 no es divisible por 4
Answer:
False
Step-by-step explanation:
No esta verdad.
8716/4 = 2179 (divisible por 4)
How does changing the maximum value affect the range? A. The range is greatly affected by this change. B. The range of a data set depends on the number of data, not the specific values. Therefore, the range does not vary by changing the maximum value. C. The range becomes more accurate when the maximum value is an outlier. D. The change in the range is low and insignificant.
Answer:
The correct option is (A).
Step-by-step explanation:
The range of a data set is a measure of variability of that data set.
The range is the difference between the maximum and minimum value of the set.
[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]
Since the maximum value is used in the computation of range, changing the maximum value affects the range greatly.
The correct option is (A).
If a,b,and 2a in ap show that 3ab/2(b-a)
Answer:
[tex]S_n = \frac{3ab}{2 (b-a)}[/tex]
Step-by-step explanation:
The correct question is: If the first, second and last term of an AP are a,b and 2a respectively, then show that the sum of all terms of an AP is 3ab/2(b-a).
Firstly, as we know that the nth term of an A.P. is given by the following formula;
[tex]a_n=a+(n-1)d[/tex] , where a = first term of AP, d = common difference, n = number of terms in an AP and [tex]a_n[/tex] = last term
Since it is given that the first, second and last term of an AP are a,b and 2a respectively, that means;
first term = a
d = second term - first term = b - a
[tex]a_n[/tex] = 2a
So, [tex]a_n=a+(n-1)d[/tex]
[tex]2a=a+(n-1)(b-a)[/tex]
[tex]2a-a=(n-1)(b-a)[/tex]
[tex]a=(n-1)(b-a)[/tex]
[tex]\frac{a}{b-a} = n - 1[/tex]
[tex]\frac{a}{b-a} +1= n[/tex]
[tex]\frac{a+(b-a)}{b-a} = n[/tex]
[tex]n=\frac{b}{b-a}[/tex] ------------- [equation 1]
Now, the formula for the sum to n terms of an AP when the last term is given to us is;
[tex]S_n = \frac{n}{2}[\text{first term} + \text{last term}][/tex]
[tex]S_n = \frac{b}{2\times (b-a)}[a +2a][/tex] {using equation 1}
[tex]S_n = \frac{b}{2 (b-a)}[3a][/tex]
[tex]S_n = \frac{3ab}{2 (b-a)}[/tex]
Hence proved.
A consumer products company is formulating a new shampoo and is interested in foam height (in millimeters). Foam height is approximately normally distributed and has a standard deviation of 20 millimeters. The company wishes to test millimeters versus millimeters, using the results of n samples. Find the boundary of the critical region if the type I error probability is and
Complete question:
A consumer products company is formulating a new shampoo and is interested in foam height (in millimeters). Foam height is approximately normally distributed and has a standard deviation of 20 millimeters. The company wishes to test H0: u=175 millimeters versus Ha:u>175 millimeters, using the results of n samples. Find the boundary of the critical region if the type I error probability is [tex] \alpha = 0.01 [/tex] and n = 16
Answer:
186.63
Step-by-step explanation:
Given:
[tex] \alpha = 0.01 [/tex]
Using the standard normal deviate table:
NORMSINV(0.01) = 2.326
Thus, the Z score = 2.326
To find the critical value if the mean, use the formula:
[tex]\frac{X' - u_0}{\sigma/\sqrt{n}} = Z[/tex]
Since we are to find X', Make X' subject of the formula:
[tex] X' = u_0 + (Z * \frac{\sigma}{\sqrt{n}}) [/tex]
[tex] X' = 175 + (2.326 * \frac{20}{\sqrt{16}}) [/tex]
[tex] X' = 175 + (2.326 * 5) [/tex]
[tex] X' = 175 + 11.63 [/tex]
[tex] X' =186.63 [/tex]
The boundary of the critical region is 186.63
A sample of 120 creative artists is used to test whether creative artists are equally likely to have been born under any of the twelve astrological signs. Assuming that the twelve astrological signs each contain an equal number of calendar days, the expected frequency for each category equalsa) 5
b) 10
c) 12
d) 120
Answer:
b) 10
Step-by-step explanation:
In this case the frequency would be equal to the quotient between the sample that creative artists tell us (that is to say 120 people) and the amount of sastrological signs that there are (that is to say 12 signs), therefore it would be:
F = 120/12 = 10
Which means that the expected frequency for each category equal to 10.
So the answer is b) 10
In a survey at a shoe store, 200 customers were asked whether they have
running shoes or basketball shoes. The results are in the relative frequency
table
Total
Have running shoes
0.16
No running shoes
0.26
Have basketball shoes
No basketball shoes
Total
0.24
0.34
What percentage of the people surveyed have basketball shoes?
Answer:the answer would be 0.42
Step-by-step explanation: The reason is you basically have to add both 0.16 and 0.26 and you get the percentage!
The percentage of the people surveyed who have basketball shoes is 42%.
What is Relative Frequency?Relative frequency of a data set is defined as the ratio of the number of outcomes that occured by the total number of trials.
Given a relative frequency table which shows the relative frequency of each of the sections have running shoes, have basketball shoes, and does not have any one of them or both.
Given that,
Total number of people surveyed = 200
Relative frequency of people who have basketball shoes = 0.16 + 0.26 = 0.42
So percentage = 0.42 × 100 = 42%
Hence the percentage of people who have basketball shoes is 42%.
Learn more about Relative Frequency here :
https://brainly.com/question/30466267
#SPJ7
calcula la fracción generatriz de 0,245 y da como respuesta su numerador
Answer: 49/200, numerador= 49
Step-by-step explanation:
3. Your friend is solving a system of linear equations and finds the following solution:
0=5
What is the solution of the system? Explain your reasoning.
Answer:
No solution.
Step-by-step explanation:
Because the equations are combined but the final answers are not equal, the equations have no solution. This is because "no matter what value is plugged in for the variable, you will ALWAYS get a contradiction".
Hope this helps!
You weigh six packages and find the weights to be 19, 15, 35, 17, 33, and 31 ounces. If you include a package that weighs 39 ounces, which will increase more, the median or the mean?
Answer:
Step-by-step explanation:
Mean & median of 6 packages:
15, 17, 19, 31, 33 , 35
Median = [tex]\frac{19+31}{2}[/tex]
= [tex]\frac{50}{2}[/tex]
= 25
[tex]Mean = \frac{15+17+19+31+33+35}{6}\\\\=\frac{150}{6}\\=25[/tex]
Mean & median of 7 packages:
15,17,19,31,33,35,39
Median = 31
[tex]Mean=\frac{19+15+35+17+33+31+39}{7}\\\\=\frac{189}{7}\\\\=27[/tex]
After including 39 ounce package, Median will increase more
A farmer is tracking the number of soybeans his land is yielding each year. He finds that the function f(x) = −x2 + 20x + 100 models the crops in pounds per acre over x years. Find and interpret the average rate of change from year 10 to year 20.
Answer:
The farmer should expect to LOSE 10 pounds of soybeans per acre per year
Step-by-step explanation:
f(x)=-x^2 + 20x + 100
just find how many soybeans his land will yield (per acre) after 10 and 20 years:
After 10: 200 pounds of soybeans/acre
After 20: 100 pounds of soybeans/acre
Because 10 years have passed and they lost 100 pounds of soybean production per acre, the farmer should expect to lose 10 pounds of soybeans per acre per year (-10 pounds of soybeans per acre/year)