Complete Question
Now if you look at the equation for acceleration given in the question i.e
[tex]a = a_1 + F * m[/tex]
We see that evaluating it in terms of dimension it is incorrect instead the equation should be
[tex]a = a_1 + \frac{F}{m}[/tex]
So in the solution below we will be making use of [tex]a = a_1 + \frac{F}{m}[/tex]
Answer:
The values of a is [tex]a = 4.714 \ m/s^2[/tex]
Explanation:
From the question we are told that
The expression for the acceleration is [tex]a = a_1 + \frac{F}{m}[/tex]
The value of [tex]a_ 1 = 3.0 \ m/s^2[/tex]
The values of [tex]F = 12.0 \ kg \cdot m/s^2[/tex]
The values of m is [tex]m = 7.0 \ kg[/tex]
substituting values
[tex]a = 3 + \frac{12}{7}[/tex]
[tex]a = 4.714 \ m/s^2[/tex]
Which of the following is not considered a behavior?
A. eating
B. anxiety
C. sleeping
D. crying
━━━━━━━☆☆━━━━━━━
▹ Answer
B. Anxiety
▹ Step-by-Step Explanation
Anxiety isn't a behavior since it's a feeling. Behavior and feeling are different things therefore, anxiety is the correct answer.
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Eating, sleeping, and crying all are considered as behaviors. However, anxiety cannot be considered as a behavior because it is a feeling. Thus, the correct option is B.
What is Anxiety?Anxiety is an intense feeling of excessive, and persistent worry and the fear about everyday situations. This includes fast heart rate, rapid breathing, sweating, and feeling tired constantly may occur.
Behavior is the range of actions and mannerisms which are made by individuals, organisms, systems or the artificial entities in some environment. These systems can include other systems or organisms as well as the inanimate physical environment. Behaviors include eating, sleeping, and crying. Anxiety is not a behavior, it is a feeling.
Therefore, the correct option is B.
Learn more about Anxiety here:
https://brainly.com/question/28481974
#SPJ5
A long straight metal rod has a radius of 2.0 mm and a surface charge of density 0.40 nC/m2. Determine the magnitude of the electric field 3.0 mm from the axis.
Answer:
Explanation:
Gauss Theorem
E2πrL=o2πRL/εo
then
E=oR/(rεo)
E=(0.4*10^-9*2*10^-3) / (3*10^-3*8.85*10^-12)
= 30.13 N/C
Find the ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same.
Answer:
The ratio of the new force over the original force is 16
Explanation:
Recall the formula for the gravitational force between two masses M1 and M2 separated a distance D:
[tex]F_G=G\,\frac{M_1\,\,M_2}{D^2}[/tex]
So now, if the masses M1 and M2 are quadrupled and the distance stays the same, the new force becomes:
[tex]F'_G=G\,\frac{4M_1\,\,4M_2}{D^2}=G\,\frac{16\,\,M_1\,\,M_2}{D^2}=16\,\,G\,\frac{M_1\,\,M_2}{D^2}= 16\,\,F_G[/tex]
which is 16 times the original force.
So the ratio of the new force over the original force is 16
The ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same is 16:1.
What does Newton's law of gravitation state?Newton's law of gravitation states that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.
The formula for Newton's law of gravitation is:
[tex]F = G \frac{m_1m_2}{r^{2} }[/tex]
where,
F is the gravitational force.G is the gravitational constant.m₁ and m₂ are the masses of both objects.r is the distance between the objects.The initial force between the planets is:
[tex]F_1 = G \frac{m_1m_2}{r^{2} }[/tex]
The force between the planets if the masses of both planets are quadrupled but the distance between them stays the same is:
[tex]F_2 = G \frac{4m_14m_2}{r^{2} } = 16 G \frac{m_1m_2}{r^{2} }[/tex]
The ratio of F₂ to F₁ is:
[tex]\frac{F_2}{F_1} =\frac{16 G \frac{m_1m_2}{r^{2} }}{G \frac{m_1m_2}{r^{2} }} = \frac{16}{1}[/tex]
The ratio of the gravitational force between two planets if the masses of both planets are quadrupled but the distance between them stays the same is 16:1.
Learn more about Newton's gravitational law here: https://brainly.com/question/9373839
A projectile is launched from ground level with an initial speed of 47 m/s at an angle of 0.6 radians above the horizontal. It strikes a target 1.7 seconds later. What is the vertical distance from where the projectile was launched to where it hit the target.
Answer:
30.67m
Explanation:
Using one of the equations of motion as follows, we can describe the path of the projectile in its horizontal or vertical displacement;
s = ut ± [tex]\frac{1}{2} at^2[/tex] ------------(i)
Where;
s = horizontal/vertical displacement
u = initial horizontal/vertical component of the velocity
a = acceleration of the projectile
t = time taken for the projectile to reach a certain horizontal or vertical position.
Since the question requires that we find the vertical distance from where the projectile was launched to where it hit the target, equation (i) can be made more specific as follows;
h = vt ± [tex]\frac{1}{2} at^2[/tex] ------------(ii)
Where;
h = vertical displacement
v = initial vertical component of the velocity = usinθ
a = acceleration due to gravity (since vertical motion is considered)
t = time taken for the projectile to hit the target
From the question;
u = 47m/s, θ = 0.6rads
=> usinθ = 47 sin 0.6
=> usinθ = 47 x 0.5646 = 26.54m/s
t = 1.7s
Take a = -g = -10.0m/s (since motion is upwards against gravity)
Substitute these values into equation (ii) as follows;
h = vt - [tex]\frac{1}{2} at^2[/tex]
h = 26.54(1.7) - [tex]\frac{1}{2} (10)(1.7)^2[/tex]
h = 45.118 - 14.45
h = 30.67m
Therefore, the vertical distance is 30.67m
A rod has length 0.900 mm and mass 0.500 kgkg and is pivoted at one end. The rod is not uniform; the center of mass of the rod is not at its center but is 0.500 mm from the pivot. The period of the rod's motion as a pendulum is 1.49 ss. What is the moment of inertia of the rod around the pivot
Answer:
The moment of inertia is [tex]I =0.14 \ kg \cdot m^2[/tex]
Explanation:
From the question we are told that
The length of the rod is [tex]l = 0.900 \ m[/tex]
The mass of the rod is [tex]m = 0.500 \ kg[/tex]
The distance of the center of mass from the pivot is [tex]d = 0.500 \ m[/tex]
The period of the rod's motion is [tex]T = 1.49 \ s[/tex]
Generally the period of the motion is mathematically represented as
[tex]T = 2 \pi * \sqrt{\frac{I}{m* g * d} }[/tex]
Where [tex]I[/tex] is the moment of inertia about the pivot so making [tex]I[/tex] the subject of formula
[tex]I = [\frac{T}{2\pi } ]^2 * m * g * d[/tex]
substituting values
[tex]I = [\frac{1.49}{2* 3.142 } ]^2 * 0.5 * 9.8 * 0.5[/tex]
[tex]I =0.14 \ kg \cdot m^2[/tex]
Two cylindrical resistors are made from the same material. The shorter one has length L, diameter D, and resistance R1. The longer one has length 8L, diameter 4D, and resistance R2. How do the resistances of these two resistors compare
Answer:
the resistance of the longer one is twice as big as the resistance of the shorter one.
Explanation:
Given that :
For the shorter cylindrical resistor
Length = L
Diameter = D
Resistance = R1
For the longer cylindrical resistor
Length = 8L
Diameter = 4D
Resistance = R2
So;
We all know that the resistance of a given material can be determined by using the formula :
[tex]R = \dfrac{\rho L }{A}[/tex]
where;
A = πr²
[tex]R = \dfrac{\rho L }{\pi r ^2}[/tex]
For the shorter cylindrical resistor ; we have:
[tex]R = \dfrac{\rho L }{\pi r ^2}[/tex]
since 2 r = D
[tex]R = \dfrac{\rho L }{\pi (\frac{2}{2 \ r}) ^2}[/tex]
[tex]R = \dfrac{ 4 \rho L }{\pi \ D ^2}[/tex]
For the longer cylindrical resistor ; we have:
[tex]R = \dfrac{\rho L }{\pi r ^2}[/tex]
since 2 r = D
[tex]R = \dfrac{ \rho (8 ) L }{\pi (\frac{2}{2 \ r}) ^2}[/tex]
[tex]R = \dfrac{32\rho L }{\pi \ (4 D) ^2}[/tex]
[tex]R = \dfrac{2\rho L }{\pi \ (D) ^2}[/tex]
Sp;we can equate the shorter cylindrical resistor to the longer cylindrical resistor as shown below :
[tex]\dfrac{R_s}{R_L} = \dfrac{ \dfrac{ 4 \rho L }{\pi \ D ^2}}{ \dfrac{2\rho L }{\pi \ (D) ^2}}[/tex]
[tex]\dfrac{R_s}{R_L} ={ \dfrac{ 4 \rho L }{\pi \ D ^2}}* { \dfrac {\pi \ (D) ^2} {2\rho L}}[/tex]
[tex]\dfrac{R_s}{R_L} =2[/tex]
[tex]{R_s}=2{R_L}[/tex]
Thus; the resistance of the longer one is twice as big as the resistance of the shorter one.
How many excess electrons must be distributed uniformly within the volume of an isolated plastic sphere 20.0 cm in diameter to produce an electric field of 1450 N/C just outside the surface of the sphere
Answer:
1.007 × 10^(10) electron
Explanation:
We are given;
Electric Field;E = 1450 N/C
Diameter;d = 20 cm = 0.2 m
So, Radius: r = 0.2/2 = 0.1 m
Formula for Electric field just outside the sphere is given by the formula;
E = kq/r²
Where;
E is the magnitude of the electric field. q is the magnitude of the point charge r is distance from the point charge
k is a constant with a value of 9 x 10^(9) N.m²/C²
Making q the subject, we have;
q = Er²/k
Thus,
q = 1450 × 0.1²/(9 × 10^(9))
q = 1.61 × 10^(-9) C
Now, total charge q is also given by the formula;
q = Ne
Where;
e is charge on electron which is 1.6 × 10^(-19)
N is number of excess electrons
Making N the formula, we have;
N = q/e
N = (1.61 × 10^(-9))/(1.6 × 10^(-19))
N = 1.007 × 10^(10) electron
Molecules in the combustion chamber of a rocket engine are in a high state of random motion. When the molecules are expelled through a nozzle in a more ordered state, will their temperature be higher than, lower than, or the same as their initial temperature in the chamber before being exhausted?
Answer:
The temperature of molecules exhausted through the nozzle
is lower than the temperature in the chamber before being exhausted.
Explanation:
A projectile is fired at time t = 0.0 s from point o at the edge of a cliff, with initial velocity components of Vox = 30 m/s and Voy = 100 m/s. The projectile rises, and then falls into the sea
at point P. The time of flight of the projectile is 25 s. Assume air resistance is negligible.
t
What is the height of the cliff?
560 m
450 m
780 m
400 m
640 m
Answer:
It would be 450 or 640. My final answer would be about 450
Explanation: Because it would't be to high if it was shot Voy = 100
btw i think i know what i know what i am talking about.
The answer would be about 450 m.
What peak is considered a cliff?The top isn't the standard for a cliff to be reckoned as a cliff as such. Any steep rock face particularly at the edge of the sea can be specified as a cliff.
A 'clifftop' just refers to any pinnacle of a cliff. A 'plateau' is any flat extended geologic floor. An 'overhang' is a part of a structure or formation that protrudes from the primary frame and rests such that it is 'overhanging' the ground (striking above it).
Learn more about the height of the cliff here https://brainly.com/question/14524817
#SPJ2
Identify the term used to describe the ability of a liquid to flow against gravity up a narrow tube.
Answer:
This would be capillary action.
Explanation:
The physics behind it is gravity adhesion. The forces that attract between dissimilar molecules or atoms, in our case the contact area between the particles of the liquid and the particles forming the tube.
Angular velocity in the z direction of a flywheel is w(t)=A + Bt2 The numerical values of the constants are A=2.75 and B=1.50. What is the angular acceleration α(t) when t=0s and t=5.00s?
Answer:
α(0) = 0 rad/s²
α(5) = 15 rad/s²
Explanation:
The angular velocity of the flywheel is given as follows:
w(t) = A + B t²
where, A and B are constants.
Now, for the angular acceleration, we must take derivative of angular velocity with respect to time:
Angular Acceleration = α (t) = dw/dt
α(t) = (d/dt)(A + B t²)
α(t) = 2 B t
where,
B = 1.5
AT t = 0 s
α(0) = 2(1.5)(0)
α(0) = 0 rad/s²
AT t = 5 s
α(5) = 2(1.5)(5)
α(5) = 15 rad/s²
I attach a 4.1 kg block to a spring that obeys Hooke's law and supply 3.8 J of energy to stretch the spring. I release the block and it oscillates with a period of 0.13 s. What is the amplitude of oscillation
Answer:
The amplitude of the oscillation is 2.82 cm
Explanation:
Given;
mass of attached block, m = 4.1 kg
energy of the stretched spring, E = 3.8 J
period of oscillation, T = 0.13 s
First, determine the spring constant, k;
[tex]T = 2\pi \sqrt{\frac{m}{k} }[/tex]
where;
T is the period oscillation
m is mass of the spring
k is the spring constant
[tex]T = 2\pi \sqrt{\frac{m}{k} } \\\\k = \frac{m*4\pi ^2}{T^2} \\\\k = \frac{4.1*4*(3.142^2)}{(0.13^2)} \\\\k = 9580.088 \ N/m\\\\[/tex]
Now, determine the amplitude of oscillation, A;
[tex]E = \frac{1}{2} kA^2[/tex]
where;
E is the energy of the spring
k is the spring constant
A is the amplitude of the oscillation
[tex]E = \frac{1}{2} kA^2\\\\2E = kA^2\\\\A^2 = \frac{2E}{k} \\\\A = \sqrt{\frac{2E}{k} } \\\\A = \sqrt{\frac{2*3.8}{9580.088} }\\\\A = 0.0282 \ m\\\\A = 2.82 \ cm[/tex]
Therefore, the amplitude of the oscillation is 2.82 cm
A piston absorbs 42 J of heat from its surroundings while being compressed from 0.0007 m3 to 0.0002 m3 at a constant pressure of 1.0 × 105 Pa. What are the correct values for heat and work for the piston?
Answer:
D
Explanation:
W = P∆V
Use the above equation and substitute, thanks
Four identical charges particles of charge 1Uc, 2Uc,
3Uc and 4Uc
are placed at x = lm, x=2m,
x=3m and
x=5m. The electric field intensity
at origin is?
Answer:
17.94 kN/C is the electric field intensity at the origin due to the charges.
Explanation:
From the question, we are told that
The distance of 1 μC from origin = 1 m
The distance of 2 μC from origin = 2 m
The distance of 3 μC from origin = 3 m
The distance of 4 μC from origin = 5 m
Therefore, for us to find the electric field intensity, we'll solve below:
The formula for Electric field intensity = ( k * q ) / ( r * r )
where , r is distance ,
k = 9 * 10^9 ,
and , q is charge .
now ,
electric field intensity at the origin = [ k * 10^(-6) / 1 * 1 ] +[ k * 2 * 10^(-6) / 2 * 2 ] + [ k * 3 * 10^(-6) / 3 * 3 ] + [ k * 4 * 10^(-6) / 5 * 5 ]
=> electric field intensity at the origin = k * 10^(-6) [ 1 + 1/2 + 1/3 + 4/25 ] N/C
=> electric field intensity at the origin = 9 * 10^9 * 10^(-6) * 1.99 N/C
=> electric field intensity at the origin = 17.94 kN/C
In a high school swim competition, a student takes 1.6 s to complete 1.5 somersaults. Determine the average angular speed of the diver, in rad/s, during this time interval.
Answer:
The angular speed is [tex]w = 5.89 \ rad/s[/tex]
Explanation:
From the question we are told that
The time taken is [tex]t = 1.6 s[/tex]
The number of somersaults is n = 1.5
The total angular displacement during the somersault is mathematically represented as
[tex]\theta = n * 2 * \pi[/tex]
substituting values
[tex]\theta = 1.5 * 2 * 3.142[/tex]
[tex]\theta = 9.426 \ rad[/tex]
The angular speed is mathematically represented as
[tex]w = \frac{\theta }{t}[/tex]
substituting values
[tex]w = \frac{9.426}{1.6}[/tex]
[tex]w = 5.89 \ rad/s[/tex]
Besides the gravitational force, a 2.80-kg object is subjected to one other constant force. The objectstarts from rest and in 1.20 s experiences a displacement of (4.20 i - 3.30 j) m, where the direction of jis the upward vertical direction. Determine the other force.
Answer:
the other force= (16.3i + 14.6j)N
EXPLANATION:
Given:
Mass=2.80-kg
t= 1.2s
Since the object started from rest, the origin is (0,0) which symbolize the the object's initial position.
We will need to calculate the magnitude of the displacement using the below formula;
d = (1/2)at2 + v0t + d0
But note that
d0 = 0,( initial position)
v0 = 0( initial position)
a is the net acceleration
d = √[4.202 + (-3.30)2] m = 5.34 m
Hence, the magnitude of the displacement is 5.34 m, then we can make 'a' the subject of formula in the above expression in order to calculate the value for acceleration, note that d0 = 0,( initial position) and v0 = 0( initial position)
d = (1/2)at2
a = 2d/t2 = 2(5.34)/(1.20)2 m/s2 = 7.42 m/s2
the net acceleration is 7.42 m/s2
Acceleration in terms of the vector can be calculated as
a=2(ri - r0)/t^2
Where t =1.2s which is the time
a= 2(4.2i - 3.30j)/ 1.2^2
a=( 5.83i - 4.58j)m/s
now the net force can now be calculated since we have known the value of acceleration, using the formula below;
F(x) = ma - mg
Where a = 5.83i - 4.58j)m/s and g= 9.8m/s
2.8(5.83i - 4.58j)m/s - (2.80 × 9.8)m/s^2
Therefore, the other force= (16.3i + 14.6j)N
A positive charge moves in the direction of an electric field. Which of the following statements are true?
a. The potential energy associated with the charge decreases.
b. The electric field does positive work on the charge.
c. The electric field does negative work on the charge.
d. The potential energy associated with the charge increases.
e. The electric field does not do any work on the charge.
f. The amount of work done on the charge cannot be determined without additional information.
Answer:
The potential enwrgy associated with charge decreases.
The ele ric field does negative work on the charge.
Explanation:
Answer:
The potential energy associated with the charge decreases
The electric field does positive work on the charge.
An 100 V/m electric field is directed along the x axis. If the potential at the origin is 300 V, what is potential at the point ( -2m, 0) point
Answer:
200volts
Explanation:
Pls see attached file
Answer:
100 V
Explanation:
Electric field E = 100 V/m
Potential at the origin = 300 V
Potential at point (-2m, 0) i.e 2 m behind the origin = ?
From the equation ΔV = EΔd,
ΔV = [tex]V_{0} - V_{x}[/tex]
where [tex]V_{0}[/tex] is the potential at origin,
and [tex]V_{x}[/tex] is the potential at point (-2, 0)
E = electric field
Δd = 0 - (-2) = 2 m
[tex]V_{0} - V_{x}[/tex] = 300 - [tex]x[/tex]
equating, we have
300 - [tex]x[/tex] = 100 x 2
300 - [tex]x[/tex] = 200
[tex]x[/tex] = 100 V
A small ferryboat is 4.70 m wide and 6.10 m long. When a loaded truck pulls onto it, the boat sinks an additional 5.00 cm into the river. What is the weight of the truck
Answer:
M = 1433.5 kg
Explanation:
This exercise is solved using the Archimedean principle, which states that the hydrostatic thrust is equal to the weight of the desalinated liquid,
B = ρ g V
with the weight of the truck it is in equilibrium with the push, we use Newton's equilibrium condition
Σ F = 0
B-W = 0
B = W
body weight
W = M g
the volume is
V = l to h
rho_liquid g (l to h) = M g
M = rho_liquid l a h
we calculate
M = 1000 4.7 6.10 0.05
M = 1433.5 kg
(5 pt) You tie a cord to a pail of water, and your swing the pail in a vertical circular 0.700 m. What is the minimum speed must you give the pail at the highest point of the circle if no water is to spill from it
Answer:
The minimum speed required is 2.62m/s
Explanation:
The value of gravitational acceleration = g = 9.81 m/s^2
Radius of the vertical circle = R = 0.7 m
Given the mass of the pail of water = m
The speed at the highest point of the circle = V
The centripetal force will be needed must be more than the weight of the pail of water in order to not spill water.
Below is the calculation:
[tex]\frac{mV^{2}}{R} = mg[/tex]
[tex]V = \sqrt{gR}[/tex]
[tex]V = \sqrt{9.81 \times 0.7}[/tex]
[tex]V = 2.62 m/s[/tex]
In the photoelectric effect, if the intensity of light shone on a metal increases, what will happen?
Answer:
C) There will be more electrons ejected
Explanation:
The number of electrons ejected whenever a photoelectric effect is identified it is proportional to the intensity of the incident light
Nevertheless, the photoelectrons' maximal kinetic energy is independent of their light intensity
Therefore, the maximum speed of the electron ejected doesn't really depend on the light intensity
So, if the intensity rises, only the number of electrons ejected will rised
Therefore the option c is correct
Answer:
C) There will be more electrons ejected
Explanation:
In the photoelectric effect, photons with an energy of E are shone upon a piece of metal, and if the energy of the photons overcome the work function ϕ of the metal, then electrons with will be ejected from the metal with a kinetic energy KE.
E_photon = Φ + KE
Each photon is capable of ejecting one electron from the metal. Therefore, increasing the intensity of the light (the number of photons shone on the metal) will increase the number of electrons ejected from the metal.
A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the puck a velocity of 45.0 m/s. If both are initially at rest and if the ice is frictionless, how far does the player recoil in the time it takes the puck to reach the goal 15.0 m away
Answer:
0.0241 m
Explanation:
mass of the hockey player m1 = 90 kg
mass of puck m2 = 0.150 kg
puck velocity v1= 45 m/s
distance traveled by puck to reach the goal =15.0 m.
now accoding to momentum conservation law
90×45+0.15×v2 = 0 [ since, If both are initially at rest and if the ice is frictionless,]
therefore, v2= -0.0725 m/s.
Now time taken by the puck to reach the goal
t= 15/45 = 1/3 sec.
therefore, how far does the player recoil in the time
=0.0725×1/3= 0.0241 m.
the distance travelled by the player( recoil ) in the time the puck reach the goal is 0.025m.
Given the data in the question
Mass of the player; [tex]m_1 = 90.0kg[/tex]Mass of puck; [tex]m = 0.150kg[/tex]Since they were both at rest initially
Initial velocity of player; [tex]u_1 = 0[/tex]Initial velocity of puck; [tex]u = 0[/tex]Velocity of player after the hit; [tex]v_1 = \ ?[/tex]Velocity of puck after the hit; [tex]v = 45.0m/s[/tex]Distance to the goal; [tex]s = 15.0m[/tex]Using conservation of liner momentum:
[tex]mu + m_1u_1 = mv+ m_1v_1[/tex]
Now, Since they were both at rest initially
[tex]0 = mv+ m_1v_1[/tex]
We substitute in our values to find the velocity of the player after the hit ( recoil velocity )
[tex]0 =[ 0.150kg * 45.0m/s ] + [ 90.0kg * v_1 ]\\\\0 = 6.75kg.m/s + [ 90.0kg * v_1 ]\\\\90.0kg * v_1 = -6.75kg.m/s \\\\v_1 = -\frac{6.75kg.m/s}{90.0kg} \\\\v_1 =- 0.075m/s[/tex]
{ The negative sign shows that the velocity of both the player and the puck are in opposite direction }
Hence, recoil velocity of the player is 0.075m/s
Now, we determine the time taken for the puck to trach the goal using the relation between distance, velocity and time .
Time = Distance / Velocity
We substitute our values into the expression
[tex]t = \frac{s}{v} \\\\t = \frac{15.0m}{45m/s} \\\\t = 0.3333s[/tex]
Hence, the time taken for the puck to reach the goal is 0.3333 seconds.
Next, we determine the distance travelled by the player( recoil ) in the time the puck reach the goal using the relation between distance, velocity and time .
Time = Distance / Velocity
We substitute in our values
[tex]t = \frac{s}{v}\\\\0.3333s = \frac{s}{0.075m/s} \\\\s = 0.3333s * 0.075m/s\\\\s = 0.025m[/tex]
Therefore, the distance travelled by the player( recoil ) in the time the puck reach the goal is 0.025m.
Learn more: https://brainly.com/question/3637213
Two long, parallel wires carry currents in the same direction. If I1 = 10 A, and I2 = 20 A, and they are d = 1.0 m apart, what is the magnetic field at a point P midway between them?
Answer:
The magnetic field at mid point between two parallel wires is 1.2 x 10⁻⁵ T
Explanation:
Given;
current in the first wire, I₁ = 10 A
current in the second wire, I₂ = 20 A
distance between the two wires, d = 1.0 m
Magnetic field at mid point between two parallel wires is calculated as;
[tex]B = \frac{\mu_o I_1}{2\pi r} + \frac{\mu_o I_2}{2\pi r} \\\\B = \frac{\mu_o }{2\pi r}(I_1 +I_2)[/tex]
where;
r is the midpoint between the wires, = 0.5 m
μ₀ is the permeability of free space, = 4π x 10⁻⁷
[tex]B = \frac{\mu_o }{2\pi r}(I_1 +I_2)\\\\B = \frac{4\pi*10^{-7} }{2\pi *0.5}(10 +20)\\\\B = \frac{4\pi*10^{-7} *30}{2\pi *0.5}\\\\B = 1.2 *10^{-5} \ T[/tex]
Therefore, the magnetic field at mid point between two parallel wires is 1.2 x 10⁻⁵ T
Transverse waves are sent along a 4.50 m long string with a speed of 85.00 m/s. The string is under a tension of 20.00 N. What is the mass of the string (in kg)?
Answer:
m = 0.0125 kg
Explanation:
Let us apply the formula for the speed of a wave on a string that is under tension:
[tex]v = \sqrt{\frac{F}{\mu} }[/tex]
where F = tension force
μ = mass per unit length
Mass per unit length is given as:
μ = m / l
where m = mass of the string
l = length of the string
This implies that:
[tex]v = \sqrt{\frac{F}{m/l} }\\ \\v = \sqrt{\frac{F * l}{m} }[/tex]
Let us make mass, m, the subject of the formula:
[tex]v^2 = \frac{F * l}{m}\\\\m = \frac{F * l}{v^2}[/tex]
From the question:
F = 20 N
l = 4.50 m
v = 85 m/s
Therefore:
[tex]m = \frac{20 * 4.5}{85^2}\\\\m = \frac{90}{7225}\\ \\m = 0.0125 kg[/tex]
A standard 1 kilogram weight is a cylinder 48.5 mm in height and 49.0 mm in diameter. What is the density of the material? kg/m3
Answer:
Density = 10,933.93 kg/m^3
the density of the material is 10,933.93 kg/m^3
Explanation:
Density is the mass per unit volume
Density = mass/volume = m/V
Volume of a cylinder V = πr^2 h
Given;
Height h = 48.5mm = 0.0485 m
Radius r = diameter/2 = 49mm÷2 = 24.5mm = 0.0245m
Substituting the values;
Volume V = π×(0.0245^2)×0.0485
V = 0.000091458438030 m^3
V = 0.000091458 m^3
The mass is given as;
Mass = 1 kg
So, the density can be calculated as;
Density = 1/0.000091458
Density = 10933.92825785 kg/m^3
Density = 10,933.93 kg/m^3
the density of the material is 10,933.93 kg/m^3
Refer the attached photo
Answer:
A
Explanation:
since the wooden bat is an opaque object placed after a translucent object, light will come through the plastic sheet but will be unable to go through the bat. hence the dark shadow of the bat on a lit sheet
At a certain instant, coil A is in a 10-T external magnetic field and coil B is in a 1-T external magnetic field. Both coils have the same area and are oriented at right angles to the field. Which coil will have a greater emf induced in it
Answer:
Impossible to know without more information about the fields.
Explanation:
Changing the magnetic field induces the external magnetic field, but the information regarding magnetic field variation is not provided. We need to required more information for this
Therefore according to the above explanation the correct option is Impossible to know without more information about the fields.
Hence, the b option is correct
A train at rest emits a sound at a frequency of 1057 Hz. An observer in a car travels away from the sound source at a speed of 20.6 m/s. What is the frequency heard by the observer
Answer:
993.52 Hz
Explanation:
The frequency of sound emitted by the stationery train is 1057 Hz.
The car travels away from the train at 20.6 m/s.
The frequency the observer hears is given by the formula:
[tex]f_o = \frac{v - v_o}{v}f[/tex]
where v = velocity of sound = 343 m/s
vo = velocity of observer
f = frequency from source
This phenomenon is known as Doppler's effect.
Therefore:
[tex]f_o = \frac{343 - 20.6}{343} * 1057\\ \\f_o = 322.4 / 343 * 1057\\\\f_o = 993.52 Hz[/tex]
The frequency heard by the observer is 993.52 Hz.
A woman is standing at the rim of a nonuniform cylindrical horizontal platform initially at rest. The platform is free to rotate about frictionless orthogonal axle that goes through its center and has 4 m in diameter and moment of inertia of 500 kgm2. The woman then starts walking along the rim in clockwise direction at a constant speed of 1.50 m/s relative to the Earth. If a woman has 60 kg, how much work does she do to set herself and the platform into motion?
Answer:
e
Explanation:
i took it myself and got it right
A piece of purple plastic is charged with 9.31×106 extra electrons compared to its neutral state. What is its net electric charge (including its sign) in coulombs?
Answer:
Q = - 1.5 x 10⁻¹² Coulomb
Explanation:
While in the neutral state, the charge on the piece of purple plastic must be zero. So the net charge is due to the charge of the extra electrons. Therefore,
Q = ne
where,
Q = net charge on piece of purple plastic = ?
n = No. of extra electrons on piece of purple plastic = 9.31 x 10⁶ electrons
e = Charge on one electron = - 1.6 x 10⁻¹⁹ Coulomb
Therefore,
Q = (9.31 x 10⁶)(- 1.6 x 10⁻¹⁹ Coulomb)
Q = - 1.5 x 10⁻¹² Coulomb