Answer:
Explanation:
It is frictional force of the ground that helps in bringing the vehicle to stop . In the process of stopping , negative work is done on the car by friction force to overcome its kinetic energy .
At levelled road , for stoppage
Kinetic energy of vehicle = Work done by frictional force . = friction force x displacement .
At upward slopping road , gravitational force acting downward also helps the vehicle to stop do friction has to do less work .
At upward inclined road , for stoppage
Kinetic energy of vehicle = Work done by frictional force + work done by gravitational force = (friction force + gravitational force ) x displacement .
Hence displacement is less .
At downward slopping road , friction has to do more work because friction has to do work against gravitational force acting downwards wards and kinetic energy of the vehicle also .
At downward inclined road , for stoppage
Kinetic energy of vehicle + work done by gravitational force = Work done by frictional force = friction force x displacement .
Hence displacement is more .
Hence displacement is more in the downward slopping.
What is Displacement?Displacement is defined as the change in position of an object. It is a vector quantity and has a direction and magnitude.
It is frictional force of the ground that helps in bringing the vehicle to stop . In the process of stopping , negative work is done on the car by friction force to overcome its kinetic energy .
At levelled road , for stoppage
Kinetic energy of vehicle = Work done by frictional force . = friction force x displacement .
At upward slopping road , gravitational force acting downward also helps the vehicle to stop do friction has to do less work .
At upward inclined road , for stoppage
Kinetic energy of vehicle = Work done by frictional force + work done by gravitational force = (friction force + gravitational force ) x displacement .
Hence displacement is less .
At downward slopping road , friction has to do more work because friction has to do work against gravitational force acting downwards wards and kinetic energy of the vehicle also .
At downward inclined road , for stoppage
Kinetic energy of vehicle + work done by gravitational force = Work done by frictional force = friction force x displacement .
Hence displacement is more in the downward slopping.
To learn more about displacement refer to the link:
brainly.com/question/11934397
#SPJ5
a lamp with flux 1400 lm, has an intensity of
a.) 1400 cd
b.) 100 cd
c.) 1000 cd
d.) 111 cd
An archer shoots an arrow toward a 300-g target that is sliding in her direction at a speed of 2.30 m/s on a smooth, slippery surface. The 22.5-g arrow is shot with a speed of 38.0 m/s and passes through the target, which is stopped by the impact. What is the speed of the arrow after passing through the target
Answer:
4.79m/s
Explanation:
According to law of conservation of momentum;
The sum of momentum of the bodies before collision is equal to the momentum after collision.
m1u1 + m2u2 = (m1+m2)v
Given;
m1 = 0.3kg
u1 = 2.30m/s
m2 = 0.0225kg
u2 = 38m/s
Required
speed of the arrow after passing through the target v
Substituting the given data into the formula
0.3(2.3) + 0.0225(38) = (0.3 + 0.0225)v
0.69 + 0.855 = 0.3225v
1.545 = 0.3225v
v = 1.545/0.3225
v = 4.79m/s
Hence the speed of the arrow after passing through the target is 4.79m/s
Why does the sky change colors at sunset?
The atmosphere reflects colors.
The atmosphere bends light.
The sun changes colors.
The sky changes colors at sunset because the atmosphere ABSORBS some colors of light more than other colors.
The second choice ("The atmosphere bends light") is a correct statement, but it's not the reason that the sky changes colors at sunset.
Answer:
The atmosphere bends light.
Explanation:
I got the test, and passed! =)
A fisherman notices that his boat is moving up and down periodically, owing to waves on the surface of the water. It takes 3.1 ss for the boat to travel from its highest point to its lowest, a total distance of 0.55 mm. The fisherman sees that the wave crests are spaced 4.2 mm apart.
A. How fast are the waves traveling?
B. What is the amplitude of each wave?
C. If the total vertical distance traveled by the boat were 0.500, but the other data remained the same, how fast are the waves traveling?
D. If the total vertical distance traveled by the boat were 0.500, but the other data remained the same, what is the amplitude of each wave?
Answer:
Explanation:
It takes 3.1 s for the boat to travel from its highest point to its lowest, so the period of oscillation
T = 2 x 3.1 = 6.2 s
frequency of wave n = 1 / T = .1613 per sec
Amplitude of oscillation = .55/2 = .275 mm
The fisherman sees that the wave crests are spaced 4.2 mm apart. so wavelength of wave λ = 4.2 mm .
A ) velocity of wave v = n λ
.1613 x 4.2 = .677 mm /s
B ) Amplitude of wave = .275 mm
C ) The vertical distance determines only the amplitude which does not affect the velocity , so velocity will remain unchanged .
D ) Amplitude of wave depends only on the vertical displacement .
The amplitude will become .5 / 2 = .25 mm .
Which of the following do not involve a direction?
Check all that apply.
A. Velocity
B. Distance
C. Time
D. Acceleration
Distance and time I think
Suppose it takes 1.4 s for the monkey to catch the coconut and the initial upward speed of the coconut is 2.9 m/s. Assume the acceleration of gravity is 9.8 m/s 2 . Determine the y coordinate of the location where the monkey catches the coconut. Answer in units of m.
Answer:
y-coordinate where the monkey catches the coconut is 13.664 m.
Explanation:
Given;
time taken for the monkey to catch the coconut, t = 1.4 s
initial upward speed of the coconut, Uy = 2.9 m/s
acceleration due to gravity, g = 9.8 m/s²
The y-coordinate where the monkey catches the coconut is calculated as;
[tex]h_y = U_yt +\frac{1}{2} gt^2\\\\h_y = (2.9\times 1.4) +\frac{1}{2} (9.8)(1.4^2)\\\\h_y = 4.06 + 9.604\\\\h_y = 13.664 \ m[/tex]
Therefore, y-coordinate where the monkey catches the coconut is 13.664 m.
Which of these represent approaches to psychological science? (Choose every correct answer.)
Behavioral
Chemical
Investigative
Metaphysical
Sociocultural
Cognitive
Humanistic
Answer:
cognitive, humanistic, behavioral, sociocultural
Explanation:
Behavioral, sociocultural, cognitive, and humanistic are approaches to psychological science.
Psychology is a term to refer to the discipline that focuses on the study of various topics related to human thought such as:
The conductMental processes of individuals and human groups in different situations,Human experienceDue to the above, several subdisciplines have emerged that focus on the study of each of the topics. For example:
Behavioral psychology: focused on the study of human behavior.
Sociocultural psychology: focused on the study of human behavior and thought in different social situations.
Cognitive psychology: focused on mental processes related to learning.
Humanistic psychology: focused on the study of human thought from a comprehensive approach.
According to the above, options A, E, F, and G are correct because they mention different sub-disciplines of psychology while the other options mention terms that are not related to sub-disciplines or psychological sciences.
Learn more in: https://brainly.com/question/9807106
Electron cloud configuration for
Answer:
electrons are located around the nucleus of an atom.
Explanation:
Electron configurations describe where electrons are located around the nucleus of an atom. For example, the electron configuration of lithium, 1s²2s¹, tells us that lithium has two electrons in the 1s subshell and one electron in the 2s subshell.
You apply a force of 500 N to 150 N/m. how much does it stretch? Show the equation you are using, plus the values into the equation, and show the final answer with the units. 3 significant figures.
Answer:
3.33m
Explanation:
Given parameters:
Force applied =500N
Elastic constant = 150N/m
Unknown:
Amount of stretch or extension = ?
Solution:
To solve this problem use the expression below:
F = k e
F is the force applied
k is the elastic constant
e is the extension
So;
500 = 150 x e
e = [tex]\frac{500}{150}[/tex] = 3.33m
On a low-friction track, a 0.66-kg cart initially going at 1.85 m/s to the right collides with a cart of unknown inertia initially going at 2.17 m/s to the left. After the collision, the 0.66-kg cart is going at 1.32 m/s to the left, and the cart of unknown inertia is going at 3.22 m/s to the right. The collision takes 0.010 s.
What is the unknown inertia?
What is the average acceleration of the heavier cart?
What is the average acceleration of the lighter cart?
Answer:
(a) the unknown inertia is 0.388 kg
(b) the average acceleration of the heavier cart is 317 m/s²
(c) the average acceleration of the lighter cart is 539 m/s²
Explanation:
Given;
mass of the first cart, m₁ = 0.66 kg
initial speed of the first cart, u₁ = 1.85 m/s
let the mass of the cart with unknown inertia be m₂
initial velocity of the second cart, u₂ = 2.17 m/s to the left
velocity of the first cart after collision, v₁ = 1.32 m/s to the left
velocity of the second cart after collision, v₂ = 3.22 m/s
time of collision, t = 0.010 s
(a) What is the unknown inertia?
Apply the principle of conservation of linear momentum, to determine the unknown inertia.
let leftward direction be negative direction
let rightward direction be positive direction
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
0.66(1.85) + m₂(-2.17) = 0.66(-1.32) + m₂(3.22)
1.221 - 2.17m₂ = -0.8712 + 3.22m₂
1.221 + 0.8712 = 3.22m₂ + 2.17m₂
2.0922 = 5.39m₂
m₂ = 2.0922 / 5.39
m₂ = 0.388 kg
The unknown inertia is 0.388 kg
(b) the average acceleration of the heavier cart
the heavier cart has a mass of 0.66 kg
[tex]a = \frac{v_1 - u_1}{t} \\\\a = \frac{-1.32 - 1.85}{0.01} \\\\a = -317 \ m/s^2\\\\|a| = 317 \ m/s^2[/tex]
(c) the average acceleration of the lighter cart;
the lighter cart has a mass of 0.388 kg
[tex]a = \frac{v_2 - u_2}{t} \\\\a = \frac{3.22 - (-2.17)}{0.01} \\\\a =\frac{3.22 \ +\ 2.17}{0.01} \\\\a= 539\ m/s^2[/tex]
He throws a second ball (B2) upward with the same initial velocity at the instant that the first ball is at the ceiling. c. How long after the second ball is thrown do the two balls pass each other? d. When the balls pass each other how far are they above the juggler’s hands? e. When they pass each other what are their velocities?
Answer:
hello your question has some missing parts
A juggler performs in a room whose ceiling is 3 m above the level of his hands. He throws a ball vertically upward so that it just reaches the ceiling.
answer : c) 0.39 sec
d) 2.25 m
e) 1.92 m/sec
Explanation:
The initial velocity of the first ball = 7.67 m/sec ( calculated )
Time required for first ball to reach ceiling = 0.78 secs ( calculated )
Determine how long after the second ball is thrown do the two balls pass each other
Distance travelled by first ball downwards when it meets second ball can be expressed as : d = 1/2 gt^2 = 9.8t^2 / 2
hence d = 4.9t^2 ----- ( 1 )
Initial speed of second ball = first ball initial speed = 7.67 m/sec
3 - d = 7.67t - 4.9t ---- ( 2 )
equating equation 1 and 2
3 = 7.67t therefore t = 0.39 sec
Determine how far the balls are above the Juggler's hands ( when the balls pass each other )
form equation 1 ;
d = 4.9 t^2 = 4.9 *(0.39)^2 = 0.75 m
therefore the height the balls are above the Juggler's hands is
3 - d = 3 - 0.75 = 2.25 m
determine their velocities when the pass each other
velocity = displacement / time
velocity = d / t = 0.75 / 0.39 sec = 1.92 m/sec
why do players choose to follow the unconventional route of kicking down the middle
Answer:
My biggest reason is to make it a habit. Even if the ball goes into the endzone it is a live ball and the offensive players must down the ball. Don't leave any room for "I thought he downed it" or "I thought I heard the whistle" just run to the ball always.
If the players slow down and the returner takes it out of the end zone it could be a big return. Players are on a full sprint for 40+ yards sometimes and instead of breaking down, they choose to contine through the goal line to slow down at a decreased rate (possibly limiting a muscle pull injury).
An atom undergoes nuclear decay, but its atomic number is not changed.
What type of nuclear decay did the atom undergo?
A. Gamma decay
B. Beta decay
C. Nuclear fission
D. Alpha decay
Answer:
A. Gamma decay
Explanation:
A form of nuclear decay in which the atomic number is unchanged is a gamma decay.
The atom has undergone a gamma decay.
In a gamma decay, no changes occur to the mass and atomic number of the substance.
Gamma rays have zero atomic and mass numbers. When they cause decay, they cause no change to the mass and atomic numbers. They simply produce gamma rays during such reactions and these rays are very energetic.Billiard ball A (0.35 kg) is struck such that it moves at 10 m/s toward a
second identical ball (Ball B). After the collision Ball A continues to move
in the same direction at 2 m/s. What is the magnitude of the velocity for
Ball B after the collision?
Before Collision:
10 m/s
A
After Collision:
2 m/s
O
Answer:
6m/s
Explanation:
Using the law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the momentum after collision.
Using the expression
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity after collision
Substitute the given values in the formula
0.35(10)+0.35(2) = (0.35+0.35)v
3.5+0.7 = 0.7v
4.2 = 0.7v
v = 4.2/0.7
v = 6m/s
Hence the magnitude of the velocity for Ball B after the collision is 6m/s
In an Ohmic conductor when voltage is increased what happens to
current?
Answer: If you increase the voltage across a component, there will be more current in the component .
A person pushes down on a lever with a force of 100 N. At the other end of the lever, a force of 200 N lifts a heavy object. What is the mechanical advantage of the lever?
A. 1/2, because the object will be lifted half the distance
B. -1, because the direction changes
C. 2, because the output force is twice the input force
D. 1, because the same amount of work is done
Answer:
Explanation:
C 200÷100=2
Output ÷ Input= MA
Which element has a complete valence electron shell?
selenium (Se)
oxygen (O)
fluorine (F)
argon (Ar)
Answer:
argon (Ar)
Explanation:
Argon is the element from the given choices with a complete valence electron shell.
The valence electron shell is the outermost shell of an atom.
Elements with complete outermost shell are found in the 8th group on the period table. In the 8th group, the elements are generally inert and unreactive. Elements with this configuration have 8 electrons in their outermost shell and 2 for helium. Some of the elements in this group are Helium and NeonAnswer:
argon (Ar)
Explanation:
One of the disadvantages of experimental research is that __________.
A.
it isn’t easily replicated
B.
it doesn’t often reflect reality
C.
the results aren’t generalizable
D.
conditions are not controllable
Please select the best answer from the choices provided
Answer:
B
Explanation:
The nose of an ultralight plane is pointed south, and its airspeed indicator shows 44 m/s. The plane is in a 18 m/s wind blowing toward the southwest relative to earth.
a. letting x be east and y be north, find the components of \vec v_{\rm P/E} (the velocity of the plane relative to the earth.
b.Find the magnitude of \vec v_{\rm P/E}.
c.Find the direction of \vec v_{\rm P/E}.
Answer:
a) vx = -12.7 m/s vy = -56.7m/s
b) v= 58.1 m/s
c) θ = 77.4º S of W
Explanation:
a)
In order to get the components of the velocity of the plane relative to the earth, we need just to get the components of both velocities first:Since the nose of the plane is pointing south, if we take y to be north, and positive, this means that the velocity of the plane can be written as follows:[tex]v_{ps} = -44m/s (1)[/tex]
Since the wind is pointing SW, it's pointing exactly 45º regarding both directions, so we can find its components as follows (they are equal each other in magnitude)[tex]v_{we} = - 18m/s * cos (45) = -12.7 m (2)[/tex]
[tex]v_{ws} = - 18m/s * cos (45) = -12.7 m (3)[/tex]
The component of v along the x-axis is simply (2), as the plane has no component of velocity along this axis:[tex]v_{e} = v_{x} = -12.7 m/s (4)[/tex]
The component of v along the -y axis is just the sum of (1) and (3)[tex]v_{y} = -44 m/s + (-12.7m/s) = -56.7 m/s (5)[/tex]b)
We can find the magnitude of the velocity vector, just applying the Pythagorean Theorem to (4) and (5):[tex]v = \sqrt{(-12.7m/s)^{2} + (-56.7m/s)^{2}} = 58.1 m/s (6)[/tex]
c)
Taking the triangle defined by vx, vy and v, we can find the angle that v does with the negative x-axis, just using the definition of tangent, as follows:[tex]tg_{\theta} =\frac{v_{y} }{v_{x} } = \frac{(-56.7m/s)}{(-12.7m/s} = 4.46 (7)[/tex]
Taking tg⁻¹ from (7), we get:tg⁻¹ θ = tg⁻¹ (4.46) = 77.4º S of W. (8)
Energy Eating a banana enables a monkey to perform 4,000 J of work. How high would this enable a 15 kg monkey to climb? W = F.d F=MYA (Earth's Gravity)
Answer:
27.2m approx
Explanation:
Given data
Work done= 4000J
mass= 15kg
W= mg
W= 15*9.81
W= 147.15N
We know that
Work done= W*d
substitute
4000=147.15*d
divide both sides by 147.15
d= 4000/147.15
d=27.18
Hence the distance is 27.2m approx
According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity. Do you think this equation is valid in any system of units
This question is incomplete, the complete question is;
According to information found in an old hydraulics book, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula; h= (0.04 to 0.09)(D/d)⁴V²/2g
where h is the energy loss per unit weight, D the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity.
Do you think this equation is valid in any system of units
Answer:
YES, the equation is a general equation that is valid in any system of units
Explanation:
Given the data in the question;
h = (0.04 to 0.09)(D/d)⁴ × [tex]\frac{V^{2} }{2g}[/tex]
so
[ N.m/N ] = (0.04 to 0.09) ( m/m)² × (m²/s²)1/2 × (s²/m)
[ N.L/N ] = (0.04 to 0.09) ( L⁴/L⁴) × (L²/T²)1/2 × (T²/L)
∴ [ L ] = (0.04 to 0.09) [L]
So as each term in the equation must have the same dimensions, the constant term (0.04 to 0.09) must be without dimension.
Therefore, YES, the equation is a general equation that is valid in any system of units
differentiate between computer and computer system
A computer is a programmable device that can automatically perform a sequence of calculations or other operations on data once programmed for the task. It can store, retrieve, and process data according to internal instructions. A computer may be either digital, analog, or hybrid, although most in operation today are digital. Digital computers express variables as numbers, usually in the binary system. They are used for general purposes, whereas analog computers are built for specific tasks, typically scientific or technical. The term "computer" is usually synonymous with a digital computers, and computers for business are exclusively digital.
Answer:
The core, computing part of a computer is its central processing unit (CPU), or processor. ... A computer system, therefore, is a computer combined with peripheral equipment and software so that it can perform desired functions.
Explanation:
Hope the answer was helpful
A student releases a small cart at the top of an incline with height H above the floor. The cart experiences very little friction. The student is attempting to cause the cart to go around a vertical loop of radius R without the cart losing contact with the track at the top. The student suggests that the heigt H should equal 2R so that the release height and maximum height of th eloop are the same. However, the student finds that it requires noticably higher hieght than 2R for the cart to go around the loop. Explain why H must be noticably greater than 2R to complete the loop. (Hint: In order for the cart to go around the loop it must have a nonzero velocity at the top of the loop.) answer
Answer:
Explanation:
In the whole process , potential energy of the cart is converted into kinetic energy . At the top of the vertical loop , the whole of potential energy is regained and kinetic energy becomes zero if we release the cart from a height of 2R because difference of height between lowest and highest point of motion is 2R . In that case kinetic energy at top = 0 , velocity v = 0
At the top , weight mg is acting which is providing centripetal force . So cart must have some velocity at the top . If it be v
mv²/R = mg
v = √ gR .
For that purpose , the cart must be released from a height greater than 2R .
The extra height beyond 2R will make the velocity at the top non-zero.
What is a work out time setting? (Gym)
Answer:
It determines how long you do a certain workout.
An open 1-m-diameter tank contains water at a depth of 0.7 m when at rest. As the tank is rotated about its vertical axis the center of the fluid surface is depressed. At what angular velocity
Answer:
Explanation:
To find the angular velocity of the tank at which the bottom of the tank is exposed
From the information given:
At rest, the initial volume of the tank is:
[tex]V_i = \pi R^2 h_i --- (1)[/tex]
where;
height h which is the height for the free surface in a rotating tank is expressed as:
[tex]h = \dfrac{\omega^2 r^2}{2g} + C[/tex]
at the bottom surface of the tank;
r = 0, h = 0
∴
[tex]h = \dfrac{\omega^2 r^2}{2g} + C[/tex]
0 = 0 + C
C = 0
Thus; the free surface height in a rotating tank is:
[tex]h=\dfrac{\omega^2 r^2}{2g} --- (2)[/tex]
Now; the volume of the water when the tank is rotating is:
dV = 2π × r × h × dr
Taking the integral on both sides;
[tex]\int \limits ^{V_f}_{0} \ dV = \int \limits ^R_0 \times 2 \pi \times r \times h \ dr[/tex]
replacing the value of h in equation (2); we have:
[tex]V_f} = \int \limits ^R_0 \times 2 \pi \times r \times ( \dfrac{\omega ^2 r^2}{2g} ) \ dr[/tex]
[tex]V_f = \dfrac{ \pi \omega ^2}{g} \int \limits ^R_0 \ r^3 \ dr[/tex]
[tex]V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{r^4}{4} \Big]^R_0[/tex]
[tex]V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{R^4}{4} \Big] --- (3)[/tex]
Since the volume of the water when it is at rest and when the angular speed rotates at an angular speed is equal.
Then [tex]V_f = V_i[/tex]
Replacing equation (1) and (3)
[tex]\dfrac{\pi \omega^2}{g}( \dfrac{R^4}{4}) = \pi R^2 h_i[/tex]
[tex]\omega^2 = \dfrac{4g \times h_i }{R^2}[/tex]
[tex]\omega =\sqrt{ \dfrac{4g \times h_i }{R^2}}[/tex]
[tex]\omega = \sqrt{\dfrac{4 \times 9.81 \ m/s^2 \times 0.7 \ m}{(0.5)^2} }[/tex]
[tex]\omega = \sqrt{109.87 }[/tex]
[tex]\mathbf{\omega = 10.48 \ rad/s}[/tex]
Finally, the angular velocity of the tank at which the bottom of the tank is exposed = 10.48 rad/s
We should stress again that the Carnot engine does not exist in real life: It is a purely theoretical device, useful for understanding the limitations of heat engines. Real engines never operate on the Carnot cycle; their efficiency is hence lower than that of the Carnot engine. However, no attempts to build a Carnot engine are being made. Why is that
Answer:
The Carnot engine has zero power
Explanation:
Although theoretically the Carnot engine has more efficiency than the real engine. In practice however they tend to have zero power.
This is because all its processes are reversible (that is isothermic and adiabatic).
So the system equilibrates with its surroundings at every point in time. This makes work done very slow and the power generated is zero.
Carnot cycles requires attaining isothermal heat transfers which is quite difficult and take a long time. Also a pump that can handle liquid-vapour phase mixture will be required.
This is not practical.
On a winter day a child of mass 20.0 kg slides on a horizontal sidewalk covered in ice. Initially she is moving at 3.00 m>s, but due to friction she comes to a halt in 2.25 m. What is the magnitude of the constant friction force that acts on her as she slides
Answer:
40 N
Explanation:
According to the scenario, computation of given data are as follows:
Mass (m) = 20 kg
Initially moving (v) = 3
Actual distance (d) = 2.25 m
So, we can calculate friction (f) by using following formula,
f × d = [tex]\frac{1}{2} mv^{2}[/tex]
By putting the value, we get
f × 2.25 = [tex]\frac{1}{2}[/tex] × 20 × [tex]3^{2}[/tex]
f × 2.25 = 10 × 9
f = 90 ÷ 2.25
= 40 N.
Which of the physical variables listed below will change when you change the area of the capacitor plates (while keeping the battery connected).
a. Capacitance
b. Charge on the plates
c. Voltage across the plates
d. Net electric field between the plates
e. Energy stored in the capacitor
Answer:
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
Explanation:
Let A be the area of the capacitor plate
The capacitance of a capacitor is given as;
[tex]C = \frac{Q}{V} = \frac{\epsilon _0 A}{d} \\\\[/tex]
where;
V is the potential difference between the plates
The charge on the plates is given as;
[tex]Q = \frac{V\epsilon _0 A}{d}[/tex]
The energy stored in the capacitor is given as;
[tex]E = \frac{1}{2} CV^2\\\\E = \frac{1}{2} (\frac{\epsilon _0 A}{d} )V^2[/tex]
Thus, the physical variables listed that will change include;
a. Capacitance
b. Charge on the plates
e. Energy stored in the capacitor
A 9800 N car traveling at 22 m/s strikes a concrete bridge support and comes to a complete halt in 0.5 sec. (This only counts as one problem.) Determine the magnitude of the force acting on the car. Suppose a barrier, which contained material that is gradually crushed during impact so that the stopping time was increased to 3 s, had surrounded the bridge support. What would be the magnitude of the new force
Answer:
43955.12N and 7325.85N
Explanation:
Step one:
Given data
Weight of car= 9800N
therefore the mass of the car is
w=mg
m= w/g
m= 9800/9.81
m= 998.98 kg
Speed= 22m/s
duration of impact= 0.5 seconds
we know that
impulse, Ft= mv
F= mv/t
F= 998.98*22/0.5
F=21977.56/0.5
F=43955.12N
Hence the force is 43955.12N
if the time is 3 seconds
then the force will be
F= mv/t
F= 998.98*22/3
F=21977.56/3
F=7325.85N
Two point charges are placed on the x-axis as follows: charge q1 = 3.95 nC is located at x= 0.198 m , and charge q2 = 4.96 nC is at x= -0.297 m. What are the magnitude and direction of the total force exerted by these two charges on a negative point charge q3=6.00nCq that is placed at the origin?
Answer:
F = 2.40 × [tex]10^{-6}[/tex] N
Explanation:
given data
charge q1 = 3.95 nC
x= 0.198 m
charge q2 = 4.96 nC
x= -0.297 m
solution
force on a point charge kept in electric field F = E × q ................1
here E is the magnitude of electric field and q is the magnitude of charge
and
first we will get here electric field at origin
So net field at origin is
E = (Kq2÷r2²) - (kq1÷r1²) ...............2
put here value
E = 9[(4.96÷0.297²)-(3.95÷0.198²)]
E = 400.72 N/C ( negative x direction )
so that force will be
F = 6 × [tex]10^{-9}[/tex] × 400.72
F = 2.40 × [tex]10^{-6}[/tex] N
The net force on the third charge is 2.404 x 10⁻⁶ N.
The given parameters:
Position of first point charge, x1 = 0.198 mPosition of second point charge, x2 = -0.297 mFirst point charge, q1 = 3.95 nCSecond point charge, q2 = 4.96 nCThird point charge, q3 = 6 nC Position of the third charge, = 0The force on the third charge due to first charge is calculated as follows;
[tex]F_{13} = \frac{kq_1 q_3}{r^2} \\\\F_{13} = \frac{9\times 10^9 \times 3.95 \times 10^{-9} \times 6 \times 10^{-9} }{(0.198)^2} (+i)= 5.44 \times 10^{-6} \ N \ (+i)[/tex]
The force on the third charge due to second charge is calculated as follows;
[tex]F_{23} = \frac{kq_2q_3}{r^2} \\\\F_{23} = \frac{9\times 10^9 \times 4.96 \times 10^{-9}\times 6 \times 10^{-9} }{(0.297)^2} (-i)\\\\F_{23} = (3.036 \times 10^{-6} ) \ N \ (-i)[/tex]
The net force on the third charge is calculated as follows;
[tex]F_{net} = 5.44 \times 10^{-6} - 3.036 \times 10^{-6} \\\\F_{net} = 2.404 \times 10^{-6} \ N[/tex]
Learn more about net force here: https://brainly.com/question/14777525