A stone is thrown towards a wall with an initial velocity of v0=19m/s and an angle = 71 with the horizontal, as illustrated in the figure below. The stone reaches point A at the top of the wall, t=3.5s after being thrown. Determine (a) the height h of the wall, (b) the maximum height H of the path of the stone, (c) the horizontal distance between the launching point and point A and (d) the horizontal reach of the stone if the wall did not exist

A Stone Is Thrown Towards A Wall With An Initial Velocity Of V0=19m/s And An Angle = 71 With The Horizontal,

Answers

Answer 1

Answer:

(a) 2.85 m

(b) 16.5 m

(c) 21.7 m

(d) 22.7 m

Explanation:

Given:

v₀ₓ = 19 cos 71° m/s

v₀ᵧ = 19 sin 71° m/s

aₓ = 0 m/s²

aᵧ = -9.8 m/s²

(a) Find Δy when t = 3.5 s.

Δy = v₀ᵧ t + ½ aᵧ t²

Δy = (19 sin 71° m/s) (3.5 s) + ½ (-9.8 m/s²) (3.5 s)²

Δy = 2.85 m

(b) Find Δy when vᵧ = 0 m/s.

vᵧ² = v₀ᵧ² + 2 aᵧ Δy

(0 m/s)² = (19 sin 71° m/s)² + 2 (-9.8 m/s²) Δy

Δy = 16.5 m

(c) Find Δx when t = 3.5 s.

Δx = v₀ₓ t + ½ aₓ t²

Δx = (19 cos 71° m/s) (3.5 s) + ½ (0 m/s²) (3.5 s)²

Δx = 21.7 m

(d) Find Δx when Δy = 0 m.

First, find t when Δy = 0 m.

Δy = v₀ᵧ t + ½ aᵧ t²

(0 m) = (19 sin 71° m/s) t + ½ (-9.8 m/s²) t²

0 = t (18.0 − 4.9 t)

t = 3.67

Next, find Δx when t = 3.67 s.

Δx = v₀ₓ t + ½ aₓ t²

Δx = (19 cos 71° m/s) (3.67 s) + ½ (0 m/s²) (3.67 s)²

Δx = 22.7 m


Related Questions

Four point charges have the same magnitude of 2.4×10^−12C and are fixed to the corners of a square that is 4.0 cm on a side. Three of the charges are positive and one is negative. Determine the magnitude of the net electric field that exists at the center of the square.

Answers

Answer:

7.2N/C

Explanation:

Pls see attached file

The sound level of one person talking at a certain distance from you is 61 dB. If she is joined by 5 more friends, and all of them are talking at the same time as loudly as she is, what sound level are you being exposed to?

Answers

Answer:

Explanation:

For sound level in decibel scale the relation is

dB = 10 log I / I₀ where I₀ = 10⁻¹² and I is intensity of sound whose decibel scale is to be calculated .

Putting the given values

61 = 10 log I / 10⁻¹²

log I / 10⁻¹² = 6.1

I = 10⁻¹² x 10⁶°¹

[tex]=10^{-5.9}[/tex]

intensity of sound of 5 persons

[tex]I=5\times 10^{-5.9}[/tex]

[tex]dB=10log\frac{5 X 10^{-5.9}}{10^{-12}}[/tex]

= 10log 5 x 10⁶°¹

= 10( 6.1 + log 5 )

= 67.98

sound level will be 67.98 dB .

If a key is pressed on a piano, the frequency of the resulting sound will determine the ________, and the amplitude will determine the ________ of the perceived musical note.

Answers

Answer:

If a key is pressed on a piano, the frequency of the resulting sound will determine the ___PITCH_____, and the amplitude will determine the _____LOUDNESS___ of the perceived musical note.

Explanation:

The frequency of a vibrating string is primarily based on three factors:

The sounding length (longer is lower, shorter is higher)

The tension on the string (more tension is higher, less is lower)

The mass of the string, normally based on a uniform density per unit length (higher mass is lower, lower mass is higher)

To make a shorter string (such as in an upright piano) sound the same fundamental frequency as a longer string (such as in a 9' grand piano), either the thickness of the string must be increased (which increases the density and the mass) or the tension must be decreased, and usually it's a bit of both.

Thicker strings are often stiffer and that creates more inharmonic partials, and lower tension is associated with other problems, so the best way to make a string sound lower is the make it longer, but it is not practical to make a piano from strings that are all the same density and tension, because the lowest strings would have to be ridiculously long. Nine feet is already a great demand on space for a single musical instrument, and of course those pianos are extremely expensive and difficult to move.

And alsoBesides the pitch of a musical note, perhaps the most noticeable feature in how loud the note is. The loudness of a sound wave is determined from its amplitude. While loudness is only associated with sound waves, all types of waves have an amplitude. Waves on a calm ocean may be less than 1 foot high. Good surfing waves might be 10 feet or more in amplitude. During a storm the amplitude might increase to 40 or 50 feet.

Many things can influence the amplitude.

What is producing the sound?

How far are you from the source of the sound? The farther away the smaller the amplitude.

Intervening material. Sound does not travel through walls as well as air.

Depends on what is detecting the wave sound. Ear vs. microphone.

Answer:

The frequency will determine the pitch

the amplitude will determine the loudness

Explanation:

The frequency of a sound refers to the number of vibrations made by the sound wave produced in a unit of time. This usually affects how high or how low a note is perceived in music. High-frequency sounds have higher pitches, while low-frequency sounds have lower pitches.

The amplitude of a sound wave refers to the height between the wave crests and the equilibrium line in a sound wave. It shows how loud a sound will be. High amplitude sounds are loud while low amplitude sounds are quiet.

Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus

Answers

Answer:

D). Uranus.

Explanation:

Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.

As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, option D is the correct answer.

A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation between the plates is increased, what will happen to the charge on the capacitor and the electric potential across it

Answers

Answer:

The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)

Explanation:

The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. [tex]Q[/tex], the amount of charge stored in this capacitor, will stay the same.

The formula [tex]\displaystyle Q = C\, V[/tex] relates the electric potential across a capacitor to:

[tex]Q[/tex], the charge stored in the capacitor, and[tex]C[/tex], the capacitance of this capacitor.

While [tex]Q[/tex] stays the same, moving the two plates apart could affect the potential [tex]V[/tex] by changing the capacitance [tex]C[/tex] of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:

[tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex],

where

[tex]\epsilon[/tex] is the permittivity of the material between the two plates.[tex]A[/tex] is the area of each of the two plates.[tex]d[/tex] is the distance between the two plates.

Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of [tex]\epsilon[/tex]. Neither will that change the area of the two plates.

However, as [tex]d[/tex] (the distance between the two plates) increases, the value of [tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex] will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.

On the other hand, the formula [tex]\displaystyle Q = C\, V[/tex] can be rewritten as:

[tex]V = \displaystyle \frac{Q}{C}[/tex].

The value of [tex]Q[/tex] (charge stored in this capacitor) stays the same. As the value of [tex]C[/tex] becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.  

A solid wooden door, 90 cm wide by 2.0 m tall, has a mass of 35 kg. It is open and at rest. A small 500-g ball is thrown perpendicular to the door with a speed of 20 m/s and hits the door 60 cm from the hinged side, causing it to begin turning. The ball rebounds along the same line with a speed of 16.0 m/s relative to the ground.

Required:
How much energy is lost during this collision?

a. 15J
b. 16J
c. 13J
d. 4.8J
e. 30J

Answers

Answer:

the kinetic energy lost in the collison is a) 30 J

Explanation:

given data

mass of door m1 = 35 kg

width a = 90 cm = 0.9 m

the mass of ball  m2 = 500 g = 0.5 kg

initial speed of ball  u = 20 m/s

final speed of ball  v = 16 m/s

r = 60 cm = 0.6 m

soluion

we will consider here final angular speed of the door = w

so now we use conservation of angular momentum  that is

Li = Lf    ........................1

that is express as

m2 × u × r = I × w + m2 × v × r

put here value and we get  

0.5 × 20 × 0.6 = [tex](m1 \times \frac{a^2}{12})[/tex] × w + 0.5 × 16 × 0.6

solve it we get

w = 0.508 rad/s

so that here

the kinetic energy lost in the collison,

KE = KE initial - KE final     ..................2

put here value

KE = 0.5 × m2 × u² - (0.5 × I × w² + 0.5 × m2 × v²)

KE = 0.5 × (0.5 × 20² - (35 × 0.9² ÷ 12) × 0.508² - 0.5 × 16²) J

KE = 30 J

the kinetic energy lost in the collison is a) 30 J

Three solid, uniform, cylindrical flywheels, each of mass 65.0 kg and radius 1.47 m, rotate independently around a common axis through their centers. Two of the flywheels rotate in one direction at 8.94 rad/s, but the other one rotates in the opposite direction at 3.42 rad/s.

Required:
Calculate the magnitude of the net angular momentum of the system.

Answers

Answer:

the angular momentum is 1015.52 kg m²/s

Explanation:

given data

mass of each flywheel, m = 65 kg

radius of flywheel, r = 1.47 m

ω1 = 8.94 rad/s

ω2 = - 3.42 rad/s

to find out

magnitude of the net angular momentum

solution

we get here Moment of inertia that is express as

I = 0.5 m r²    .................1

put here value and we get

I = 0.5 × 65 × 1.47 × 1.47

I = 70.23 kg m²

and

now we get here Angular momentum that is express as

L = I × ω    ...........................2

and Net angular momentum will be

L = 2 × I x ω1 - I × ω2

put here value and we get

L = 2 × 70.23 × 8.94 - 70.23 × 3.42

L = 1015.52 kg m²/s

so

the angular momentum is 1015.52 kg m²/s

The magnitude of the net angular momentum of the system will be "1015.52 kg.m²/s".

Momentum

According to the question,

Flywheel's mass, m = 65 kg

Flywheel's radius, r = 1.47 m

ω₁ = 8.94 rad/s

ω₂ = 3.42 rad/s

We know,

The moment of inertia (I),

= 0.5 m r²

By substituting the values,

= 0.5 × 65 × 1.47 × 1.47

= 70.23 kg.m²

hence, The angular momentum be:

→ L = I × ω or,

     = 2 × I × ω₁ - l × ω₂

     = 2 × 70.23 × 8.94 - 70.23 × 3.42

     = 1015.52 kg.m²/s

Thus the above answer is correct.

Find out more information about momentum here:

https://brainly.com/question/25121535

The position of a particle is r(t)= (4.0t'i+ 2.4j- 5.6tk) m. (Express your answers in vector form.) (a) Determine its velocity (in m/s) and acceleration (in m/s2) as functions of time. (Use the following as necessary: t. Assume t is seconds, r is in meters, and v is in m/s, Do not include units in your answer.) v(t)= ________m/s a(t)= ________m/s2 (b) What are its velocity (in m/s) and acceleration (in m/s2) at time t 0? v(0) =_______ m/s a(0)=_______ m/s2

Answers

Corrected Question:

The position of a particle is r(t)= (4.0t²i+ 2.4j- 5.6tk) m. (Express your answers in vector form.)

(a) Determine its velocity (in m/s) and acceleration (in m/s²) as functions of time. (Use the following as necessary: t. Assume t is seconds, r is in meters, and v is in m/s, Do not include units in your answer.)

v(t)= ________m/s

a(t)= ________m/s²

(b) What are its velocity (in m/s) and acceleration (in m/s²) at time t 0?

v(0) =_______ m/s

a(0)=_______ m/s²

Answer:

(a)

v(t)= [tex]8ti - 5.6k[/tex] m/s

a(t)= 8i m/s²

(b)

v(0) = -5.6k m/s

a(0)= 8i m/s²

Explanation:

From the question, the position of the particle is given by;

r(t)= (4.0t²i+ 2.4j- 5.6tk)        -----------------(i)

(a)

(i)To get the velocity, v(t), of the particle, we'll take the first derivative of the position of the particle (given by equation (i)) with respect to time, t, as follows;

v(t) = [tex]\frac{dr(t)}{dt}[/tex] = [tex]\frac{d(4.0t^2i + 2.4j - 5.6tk)}{dt}[/tex]

v(t) = [tex]\frac{dr(t)}{dt}[/tex] = [tex]8ti +0j - 5.6k[/tex]

v(t) = [tex]8ti - 5.6k[/tex]          --------------------(ii)

(ii) To get the acceleration, a(t), of the particle, we'll take the first derivative of the velocity of the particle (given by equation (ii)) with respect to time, t, as follows;

a(t) = [tex]\frac{dv(t)}{dt}[/tex]  = [tex]\frac{d(8ti - 5.6k)}{dt}[/tex]

a(t) = 8i                    --------------------(iii)

(b)

(i) To get the velocity of the particle at time t = 0, substitute the value of t = 0 into equation (ii) as follows;

v(t) = [tex]8ti - 5.6k[/tex]  

v(0) = 8(0)i - 5.6k

v(0) = 0 - 5.6k

v(0) = -5.6k

(ii) To get the acceleration of the particle at time t = 0, substitute the value of t = 0 into equation (iii) as follows;

a(t) = 8i

a(0) = 8i

The first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF.A) Estimate the charge that passed through Musschenbroek's body.
B) What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?

Answers

Answer:

a) q = 4.47 10⁻⁵ C

b)     ΔV = 4.47 10⁴ V

Explanation:

A Leyden bottle works as a condenser that accumulates electrical charge, so we can use the formula of the energy stored in a capacitor

           U = Q² / 2C

         Q = √ (2UC)

let's reduce the magnitudes to the SI system

   c = 1 nF = 1 10⁻⁹ F

let's calculate

         q = √ (2 1 10⁻⁹-9)

         q = 0.447 10⁻⁴ C

         q = 4.47 10⁻⁵ C

b) for the potential difference we use

             C = Q / ΔV

            ΔV = Q / C

            ΔV = 4.47 10⁻⁵ / 1 10⁻⁹

            ΔV = 4.47 10⁴ V

Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 21 mi/h. At what rate is the distance between the cars increasin

Answers

Complete question:

Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 21 mi/h. At what rate is the distance between the cars increasing four hours later.

Answer:

The rate at which the distance between the cars is increasing four hours later is 35 mi/h.

Explanation:

Given;

speed of one car, dx/dt = 28 mi/h South

speed of the second car, dy/dt = 21 mi/h West

The distance between the cars is the line joining west to south, which forms a right angled triangle with the two positions.

Apply Pythagoras theorem to evaluate this distance;

let the distance between the cars = z

x² + y² = z² -------- equation (1)

Differentiate with respect to time (t)

[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt}[/tex] ----- equation (2)

Since the speed of the cars is constant, after 4 hours their different distance will be;

x: 28(4) = 112 mi

y: 21(4) = 84 mi

[tex]z = \sqrt{x^2 + y^2} \\\\z = \sqrt{112^2 + 84^2} \\\\z = 140 \ mi[/tex]

Substitute in the value of x, y, z, dx/dt, dy /dt into equation (2) and solve for dz/dt

[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt} \\\\2(112)(28) + 2(84)(21) = 2(140)\frac{dz}{dt} \\\\9800 = 280\frac{dz}{dt} \\\\\frac{dz}{dt} = \frac{9800}{280} \\\\\frac{dz}{dt} = 35 \ mi/h[/tex]

Therefore, the rate at which the distance between the cars is increasing four hours later is 35 mi/h

A 0.410 cm diameter plastic sphere, used in a static electricity demonstration, has a uniformly distributed 35.0 pC charge on its surface. What is the potential (in V) near its surface

Answers

Answer:

The  potential is  [tex]V = 153.659 \ V[/tex]

Explanation:

From the question we are told that

     The diameter of the plastic sphere is  [tex]d = 0.410 \ cm = 0.0041 \ m[/tex]

      The magnitude of the charge is  [tex]q = 35.0 pC = 35.0 *10^{-12} \ C[/tex]

The radius of the plastic sphere is  mathematically evaluated as

          [tex]r = \frac{d}{2}[/tex]

=>     [tex]r = \frac{0.0041}{2}[/tex]

       [tex]r = 0.00205 \ m[/tex]

The  potential near the surface is mathematically represented as

         [tex]V = \frac{k * q}{r }[/tex]

Where k is the Coulombs constant with value [tex]9 *10^{9} \ kg\cdot m^3\cdot s^{-4} \cdot A^{-2}.[/tex]

substituting values  

       [tex]V = \frac{9*10^9 * 35 *10^{-12}}{0.00205}[/tex]

       [tex]V = 153.659 \ V[/tex]

       

A woman living in a third-story apartment is moving out. Rather than carrying everything down the stairs, she decides to pack her belongings into crates, attach a frictionless pulley to her balcony railing, and lower the crates by rope.

Required:
How hard must she pull on the horizontal end of the rope to lower a 49 kg crate at steady speed?

Answers

Answer:

T = 480.2N

Explanation:

In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.

The forces on the boxes are:

[tex]T-Mg=0[/tex]      (1)

T: tension of the rope

M: mass of the boxes 0= 49kg

g: gravitational acceleration = 9.8m/s^2

The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.

By using the equation (1) you obtain:

[tex]T=Mg=(49kg)(9.8m/s^2)=480.2N[/tex]

The woman needs to pull the rope at 480.2N

a certain volume of dry air at NTP is allowed to expand five times of it original volume under adiabatic condition.calculate the final pressure.(air=1.4)​

Answers

Answer:

Final pressure 0.105atm

Explanation:

Let V1 represent the initial volume of dry air at NTP.

under adiabatic condition: no heat is lost or  gained by the system. This does not implies that the constant temperature throughout the system , but rather that no heat gained or loss by the system.

Adiabatic expansion:

[tex]\frac{T_1}{T_2} =(\frac{V_1}{V_2} )^{\gamma -1}[/tex]

273/T2=(5V1/V1)^(1.4−1)

273/T2=5^0.4

Final temperature  T2=143.41 K

Also

P1/P2=(V2/V1)^γ

1/P2=(5V1/V1)^1.4

Final pressure P2=0.105atm

A current carrying wire is oriented along the y axis It passes through a region 0.45 m long in which there is a magnetic field of 6.1 T in the z direction The wire experiences a force of 15.1 N in the x direction.1. What is the magnitude of the conventional current inthe wire?I = A2. What is the direction of the conventional current in thewire?-y+y

Answers

Answer:

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

Explanation:

- To find the direction of the conventional current in the wire you use the following formula:

[tex]\vec{F}=i\vec{l}\ X\ \vec{B}[/tex]       (1)

i: current in the wire = ?

F: magnitude of the magnetic force on the wire = 15.1N

B: magnitude of the magnetic field = 6.1T

l: length of the wire that is affected by the magnetic field = 0.45m

The direction of the magnetic force is in the x direction (+^i) and the direction of the magnetic field is in the +z direction (+^k).

The direction of the current must be in the +y direction (+^j). In fact, you have:

^j X ^k = ^i

The current and the magnetic field are perpendicular between them, then, you solve for i in the equation (1):

[tex]F=ilBsin90\°\\\\i=\frac{F}{lB}=\frac{15.1N}{(0.45m)(6.1T)}=5.5A[/tex]

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 18.0 m/s in the same direction

Answers

Question:

What is the velocity of a 900-kg car initially moving at 30.0 m/s, just after it hits a 150-kg deer initially running at 18.0 m/s in the same direction? Assume the deer remains on the car.

Answer:

28.29m/s

Explanation:

In this situation, linear momentum is conserved. And since the deer remains on the car after collision, the linear momentum is given as;

([tex]m_{C}[/tex] x [tex]u_{C}[/tex]) + ([tex]m_{D}[/tex] x [tex]u_{D}[/tex]) = ([tex]m_{C}[/tex] + [tex]m_{D}[/tex]) v            -----------------(i)

Where;

[tex]m_{C}[/tex] = mass of car

[tex]u_{C}[/tex] = initial velocity of car before collision

[tex]m_{D}[/tex] = mass of deer

[tex]u_{D}[/tex] = initial velocity of the deer before collision

v = common velocity with which the car and the deer move after collision

From the question;

[tex]m_{C}[/tex] = 900kg

[tex]u_{C}[/tex] = +30.0m/s    (direction of the motion of the car taken positive)

[tex]m_{D}[/tex] = 150kg

[tex]u_{D}[/tex] = +18.0m/s    (relative to the direction of the car, the velocity of the deer is also positive )

Substitute these values into equation (i) as follows;

(900 x 30.0) + (150 x 18.0) = (900 + 150)v

27000 + 2700 = 1050v

29700 = 1050v

v = [tex]\frac{29700}{1050}[/tex]

v = 28.29m/s

Therefore, the velocity of the car after hitting the deer is 28.29m/s. This is also the velocity of the deer after being hit by the car.

Find the pressure difference (in kPa) on an airplane wing if air flows over the upper surface with a speed of 125 m/s, and along the bottom surface with a speed of 109 m/s. [Express answer in TWO decimal places]

Answers

Answer:

P= 2414.9 Pa

Explanation:

given

density of air , p = 1.29 kg/m³

speed of air over the upper surface , v₁ = 125 m/s

speed of air over the lower surface , v₂ = 109 m/s

the pressure difference on an airplane wing , P = 0.5 × p × ( v₁² - v₂²)

P = 0.5 × 1.29 × ( 125² - 109²)

P= 0.645(3744)

P = 2414.9 Pa

the pressure difference on an airplane wing is 2414.9 Pa

A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?

Answers

Answer:

Yes the monkey will get hit and it will not avoid the dart.

Explanation:

Yes, the monkey will be hit anyway because the dart will follow a hyperbolic path and and will thus fall below the branches, so if the monkey jumps it will be hit.

No, the monkey will not avoid the dart because dart velocity doesn't matter. The speed of the bullet doesn’t even matter in this case because a faster bullet will hit the monkey at a higher height and while a slower bullet will simply hit the monkey closer to the ground.

When one person was talking in a small room, the sound intensity level was 60 dB everywhere within the room. Then, there were 14 people talking in similar manner simultaneously in the room, what was the resulting sound intensity level?
A. 64 dB
B. 60 dB
C. 69 dB
D. 79 dB
E. 71 dB

Answers

Answer:

E= 71dB

Explanation:

See attached file for step by step calculation

The efficiency of a carnot cycle is 1/6. If on reducing the temperature of the sink 75 degree Celsius, the efficiency becomes 1/3, determine the initial and final temperature between which the cycle is working.

Answers

Answer:

375 and 450

Explanation:

The computation of the initial and the final temperature is shown below:

In condition 1:

The efficiency of a Carnot cycle is [tex]\frac{1}{6}[/tex]

So, the equation is

[tex]\frac{1}{6} = 1 - \frac{T_2}{T_1}[/tex]

For condition 2:

Now if the temperature is reduced by 75 degrees So, the efficiency is [tex]\frac{1}{3}[/tex]

Therefore the next equation is

[tex]\frac{1}{3} = 1 - \frac{T_2 - 75}{T_1}[/tex]

Now solve both the equations

solve equations (1) and (2)

[tex]2(1 - T_2/T_1) = 1 - (T_2 - 75)/T_1\\\\2 - 1 = 2T_2/T_1 - (T_2 - 75)/T_1\\\\ = (T_2 + 75)/T_1T_1 = T_2 + 75\\\Now\ we\ will\ Put\ the\ values\ into\ equation (1)\\\\1/6 = 1 - T_2/(T_2 + 75)\\\\1/6 = (75)/(T_2 + 75)[/tex]

T_2 + 450 = 75

T_2 = 375

Now put the T_2 value in any of the above equation

i.e

T_1 = T_2 + 75

T_1 = 375 + 75

= 450

An electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. What is the direction of the magnetic force on the electron?

Answers

Answer: the direction of the magnetic force on the electron will be moving out of the screen, perpendicular to the magnetic field.

Explanation:

The magnetic force F on a moving electron at right angle to a magnetic field is given by the formula:

F = BqVSinØ

If an electron moves in the plane of this screen toward the top of the screen. A magnetic field is also in the plane of the screen and directed toward the right. Then, the direction of the magnetic force on the electron will be perpendicular to the magnetic field

According to the Fleming's left - hand rule, the direction of the magnetic force on the electron will be moving out of the plane of the screen.

Two charged particles of equal magnitude (+Q and +Q) are fixed at opposite corners of a square that lies in a plane. A test charge +q is placed at the third corner of the square. What is the direction of force on the test charge due to other two charges?

Answers

Answer:

The test charge will take the south-west direction indicated in option 6.

Explanation:

The image is shown below.

Since all the charges are positively charged, they will all repel each other. If we consider the force on +q due to +Q and +Q, then we can proceed as follows

The +Q particle at the top left corner of the cube will exert a vertical downward force on +q in the -ve y-axis.

The +Q particle at the bottom right corner of the cube will exert a force on +q towards the horizontal left on the -ve x-axis.

Both of these forces will act at angle of 90°, and therefore, the resultant force will act at an angle of 45° to horizontal and vertical forces.

The result is that the +q charge will move in a south-west direction of the cube.

What is surface tension??​

Answers

Answer:

Surface tension is the tendency of liquid surfaces to shrink into the minimum surface area possible. Surface tension allows insects (e.g. water striders), usually denser than water, to float and slide on a water surface.

Explanation:

Answer:

It is the tension of the surface film of a liquid caused by the attraction of the particles in the surface layer by the bulk of the liquid, which tends to minimize surface area.

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will Group of answer choices

Answers

Answer:

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

Explanation:

The power dissipation by an electrical circuit is given by the following formula:

Power Dissipation = (Voltage)(Current)

P = VI

but, from Ohm's Law, we know that:

Voltage = (Current)(Resistance)

V = IR

Substituting this in formula of power:

P = (IR)(I)

P = I²R   ---------------- equation 1

Now, if we double the current , then the power dissipated by that circuit will be:

P' = I'²R

where,

I' = 2 I

Therefore,

P' = (2 I)²R

P' = 4 I²R

using equation 1

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

Wanda exerts a constant tension force of 12 N on an essentially massless string to keep a tennis ball (m = 60 g) attached to the end of the string traveling in uniform circular motion above her head at a constant speed of 9.0 m/s. What is the length of the string between her hand and the tennis ball? You may ignore gravity in this problem (assume the motion of the tennis ball and string happen in a purely horizontal plane). A. 41 m B. 0.24 m C. 3.2 cm D. 0.41 m

Answers

Answer:

r = 0.405m = 40.5cm

Explanation:

In order to calculate the length of the string between Wanda and the ball, you take into account that the tension force is equal to the centripetal force over the ball. So, you can use the following formula:

[tex]F_c=ma_c=m\frac{v^2}{r}[/tex]       (1)

Fc: centripetal acceleration (tension force on the string) = 12N

m: mass of the ball = 60g = 0.06kg

r: length of the string = ?

v: linear speed of the ball = 9.0m/s

You solve for r in the equation (1) and replace the values of the other parameters:

[tex]r=\frac{mv^2}{F_c}=\frac{(0.06kg)(9.0m/s)^2}{12N}=0.405m[/tex]

The length of the string between Wanda and the ball is 0.405m = 40.5cm

a wave with a high amplitude______?

Answers

. . . is carrying more energy than a wave in the same medium with a lower amplitude.

Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.652 kJkJ of heat. It shrinks on cooling, and the atmosphere does 389 JJ of work on the balloon. Express your an

Answers

Question:

Calculate the change in internal energy of the following system: A balloon is cooled by removing 0.652 kJ of heat. It shrinks on cooling, and the atmosphere does 389 J of work on the balloon. Express your answer in Joules (J)

Answer:

-263J

Explanation:

Though its difficult and infact impossible to measure the internal energy of a system, the change in internal energy ΔE, can however be determined. This change when it is accompanied by work(W) and transfer of heat(Q) in or out of the system, can be calculated as follows;

ΔE = Q + W       ----------------(i)

Q is negative if heat is lost. It is positive otherwise

W is negative if work is done by the system. It is positive otherwise.

From the question;

Q = -0.652kJ = -652J    {the negative sign shows heat loss}

W = +389J                      {the positive sign shows work done on the system(balloon)}

Substitute these values into equation (i) as follows;

ΔE = -652 + 389

ΔE = -263J

Therefore the change in internal energy is -263J

PS: The negative sign shows that the process is exothermic. This means that the system (balloon) lost some energy to the environment.

Light in vacuum is incident on the surface of a glass slab. In the vacuum the beam makes an angle of 38.0° with the normal to the surface, while in the glass it makes an angle of 26.0° with the normal. What is the index of refraction of the glass?

Answers

Answer:

n_glass = 1.404

Explanation:

In order to calculate the index of refraction of the light you use the Snell's law, which is given by the following formula:

[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]         (1)

n1: index of refraction of vacuum = 1.00

θ1: angle of the incident light respect to normal of the surface = 38.0°

n2: index of refraction of glass = ?

θ2: angle of the refracted light in the glass respect to normal = 26.0°

You solve the equation (1) for n2 and replace the values of all parameters:

[tex]n_2=n_1\frac{sin\theta_1}{sin\theta_2}=(1.00)\frac{sin(38.0\°)}{sin(26.0\°)}\\\\n_2=1.404[/tex]

The index of refraction of the glass is 1.404

Rope BCA passes through a pulley at point C and supports a crate at point A. Rope segment CD supports the pulley and is attached to an eye anchor embedded in a wall. Rope segment BC creates an angle of ϕ = 51.0 ∘ with the floor and rope segment CD creates an angle θ with the horizontal. If both ropes BCA and CD can support a maximum tensile force Tmax = 120 lb , what is the maximum weight Wmax of the crate that the system can support? What is the

Answers

Answer:

Wmax = 63.65 ≈ 64 lb

Explanation:

An experiment is set up to test the angular resolution of an optical device when red light (wavelength ????r ) shines on an aperture of diameter D . Which aperture diameter gives the best resolution? D=(1/2)????r D=????r D=2????r

Answers

Explanation:

As per Rayleigh criterion, the angular resolution is given as follows:

[tex]\theta=\frac{1.22 \lambda}{D}[/tex]

From this expression larger the size of aperture, smaller will be the value of angular resolution and hence, better will be the device i.e. precision for distinguishing two points at very high angular difference is higher.

What is Ohm's Law, and how does it work in real life.

Answers

Explanation:

Ohms law states that the electrical current present in a metallic conductor is directly proportional to the potential difference between the metallic conductor and inversely proportional to the resistance therefore if the voltage is increased resistance also increases provided that temperature and other physical properties remains constant V=IR

Other Questions
Assume that you work for a company that produces different types of flavored salty snacks for many different target markets (for example, flavored potato chips or flavored sunflower seeds). One part of your job is to explore regularly what flavors your potential customers might like. Taste preferences constantly change, and you may not always be aware of all the flavors people crave. With the above research objective in mind, which type of research would you most likely conduct on a regular basis What is the features of Mark 1 Which of the following did NOT occur during the presidency of George H. W. Bush? 1. the 1990 recession 2. the Gulf War 3. the fall of the Berlin wall 4. World Trade Center bombing For each of the following, compute the future value (Do not round intermediate calculations and round your final answers to 2 decimal places. (e.g., 32.16)): Present Value Years Interest Rate Future Value $ 2,250 11 13 % $ 8,752 7 9 76,355 14 12 183,796 8 6 How much energy does an X-ray with an 8 nm (8 x 10-9 m) wavelength have? Drag the tiles to the correct boxes to complete the pairs.Match the feelings to its correspondent combination. Mark writes a check to Sally, intending to use it to pay Sally for babysitting Mark's daughter next week. Sally arrives at Mark's house for a visit, and while Mark is in the bathroom, Sally discovers the check on Mark's desk and takes it. She endorses the check over to Bob in exchange for a used tennis racket. Mark ends up not hiring Sally to babysit. When he discovers the check is missing, he stops payment on it. Bob sues Mark to enforce payment of the check. Which of the following statements is true? a. Mark must pay Bob the amount of the check b. Mark could assert the defense of fraud in the inducement against Bob c. Mark can assert the defense of lack of delivery against Bob d. Mark can assert the defense of failure of consideration against Bob please help! find the value of each shape Air at 80 F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to move water at 60 F and average velocity of 71 ft/s if Reynolds number similarity is enforced? The kinematic viscosity of air at 80 F is 1.69E-4 ft^2/s and the kinematic viscosity of water at 60 F is 1.21E-5 ft^2/s. Round your answer (in ft) to TWO decimal places. 9a+ 6b Help please 18. Which function is the result of translating y = x^2 downward by 3 units and to the left by 4 units? A) y = (x 3)^2 + 4 B) y = (x + 3)^2 4 C) y = (x + 4)^2 3 D) y = (x 4)^2 + 3 (-3 2/3)^2 (thast 3 and 2 thirds btw) Which sequence represents the relationship between pressure and volume of an ideal gas as explained by the kinetic-molecular theory? more gas particles Right arrow. More collisions Right arrow. Higher pressure smaller volume Right arrow. Crowded particles Right arrow. Less collisions Right arrow. Lower pressure smaller volume Right arrow. Crowded particles Right arrow. More collisions Right arrow. Higher pressure more gas particles Right arrow. More kinetic energy Right arrow. More volume Right arrow. Higher pressure Solve for x in the equation 3 x squared minus 18 x + 5 = 47. yaharia is ready to reach the next level in her fitness. She is in great shape, but she still lacks the power needed to lift heavy objects. Which of the following sports would best help yaharia improve her power freestyle swimmingroad cyclingflag footballbeach volleyball Bromine, a liquid at room temperature, has a boiling point PLEASE HURRY!!!!Which activity provides a light level of activity? roller skating walking the dog playing doubles tennis golfing with a cart What was thurgood marshalls occupation? A.Senator B.Lawyer C.Farmer Which of the following rights denied to women are the authors addressing? the right to own property the right to vote the right to serve on juries What does the latent heat of fusion measure?