A steam turbine receives steam with a velocity of 28 m/s, specific enthalpy 3000kJ/kg at a rate of 3500 kg per hour. The steam leaves the turbine with a specific enthalpy of 2200kJ/kg at 180 m/s then turbine output is 777.76kW.
To get the turbine output, we must first compute the change in specific enthalpy (h) and mass flow rate ().
Assume that the inlet steam velocity (v1) is 28 m/s.
Specific enthalpy at the inlet (h1) = 3000 kJ/kg
()=3500kg/h mass flow rate
2200 kJ/kg outlet specific enthalpy (h2)
v2 (outlet steam velocity) = 180 m/s
To begin, convert the mass flow rate from kg/h to kg/s as follows: =
[tex]3500 kg/h (1 h/3600 s) = 0.9722 kg/s[/tex]
The change in specific enthalpy (h) can then be calculated:
3000kJ/kg-2200kJ/kg=800kJ/kgh=h1-h2
The following formula can be used to compute the turbine output (P):
[tex]P = ṁ * Δh[/tex]
Substituting P=0.9722kg/s*800kJ/kg=777.76kJ/sork W
As a result, ignoring losses, the turbine output is roughly 777.76kW
Discover more about turbine output from:
https://brainly.com/question/15277651