A steam generator with economizer and air heater has an overall draft loss of 21.78 cmWG. If the stack gases are at 117°C and if the atmosphere is at 101.3 kPa and 26°C, what theoretical height of stack in meters is needed when no draft fans are used? Assume that the gas constant for the flue gases is the same as that for air.
580 m
560 m
570 m
550 m

Answers

Answer 1

The theoretical height of the stack in meters needed when no draft fans are used is 575 m (approx). The correct option is option(c).

Given that the overall draft loss of the steam generator with economizer and air heater is 21.78 cmWG. The stack gases are at 117°C and the atmosphere is at 101.3 kPa and 26°C.

The theoretical height of the stack in meters when no draft fans are used is to be calculated. Assuming that the gas constant for the flue gases is the same as that for air, we have:

We know that:

Total draft loss = Hf + Hc + Hi + H o

Hf = Frictional losses in the fuel bed

Hc = Frictional losses in the fuel passages

Hi = Loss of draft in the chimney caused by the change of temperature of the flue gases

H o = Loss of draft in the chimney due to the wind pressure

Let's assume that there is no wind pressure, then the total draft loss =

Hf + Hc + Hi

Putting the values in the above equation:

21.78 = Hf + Hc + Hi

We know that the loss of draft Hi due to a change in temperature is given by:

Hi = Ht (t1 - t2)/t2

Ht = Total height of the chimney from fuel bed to atmosphere

= Hf + Hc + Hch + Hah1

= Temperature of flue gases leaving the chimney in K = (117 + 273) K

= 390 K

h2 = Temperature of the atmospheric air in K = (26 + 273) K

= 299 KK

= Gas constant

= R/M = 0.287/29 kg/mol

= 0.00989 kg/mol

Hch = Height of the chimney from the point of exit of flue gases to the top of the chimney

Hah = Height of the air heater above the point of exit of the flue gases

Let's assume Hah = 0

We know that,

Hc = l ρV²/2g

where

l = Length of flue passages

ρ = Density of flue gases

V = Velocity of flue gases

g = Acceleration due to gravity

Substituting the given values, we get

Hc = 0.7 ρV² .......... (1)

We also know that,

Hf = l ρV²/2g

where l = Length of the fuel bed

ρ = Density of fuel

V = Velocity of fuel

g = Acceleration due to gravity

Substituting the given values, we get

Hf = 1.2 ρV² .......... (2)

Now, combining equation (1) and (2), we get:

21.78 = Hf + Hc + Hi1.2 ρV² + 0.7 ρV² + Ht (t1 - t2)/t2 = 21.78

Let's assume that V = 10 m/s

We know that, ρ = p/RT

where

p = Pressure of flue gases in Pa

R = Gas constant of the flue gases

T = Temperature of flue gases in K

Substituting the given values, we get

ρ = 101.3 × 10³/ (0.287 × 390) = 8.44 kg/m³

Substituting the given values in the equation

21.78 = 1.2 ρV² + 0.7 ρV² + Ht (t1 - t2)/t2, we get:

Ht = 574.68 m

The theoretical height of the stack in meters needed when no draft fans are used is 575 m (approx). Therefore, the correct option is 570 m.

To know more about Steam generators visit:

https://brainly.com/question/18153506

#SPJ11


Related Questions

Catapult Calculations:
Weight of Catapult: 41 grams
Catapult Length: 15cm
Catapult Width: 14cm
Catapult Height: 14.5cm
First Launch: 282cm
Second Launch: 299cm
Avg. Launch: 290.5cm
Accuracy Part
First Launch: 125cm from target
Second Launch: 97 cm from target
Avg. distance from target: 111cm from target
Calculate:
Energy required for launching the projectile
 Maximum height reached by the projectile
 Time of flight
 Spring constant if elastic potential energy is used
 Height required if gravitational potential energy is used
 Force delivered by the launching mechanism
 Acceleration of the projectile at the time of launching
 Graph of distance covered by projectile Vs energy delivered
 Any other relevant parameters

Answers

Due to insufficient information provided (e.g., projectile mass, additional forces), it is not possible to accurately calculate the required parameters for the catapult or provide meaningful analysis.

Investigate, and analyze one Telehealth project in the Caribbean islands.
Prepare a presentation, highlighting the technical specifications for the implementation.

Answers

Telehealth refers to the delivery of medical and health services via telecommunication and virtual technologies. Telehealth services have become increasingly popular in the Caribbean Islands.

These technologies can help bridge the gap in healthcare services caused by poor infrastructure, lack of transportation, and inadequate healthcare facilities. One telehealth project that has been successful in the Caribbean is the Caribbean Telehealth Project.

The Caribbean Telehealth Project is a collaboration between the Caribbean Public Health Agency (CARPHA) and the Pan American Health Organization (PAHO). The project aims to promote telehealth and telemedicine services throughout the Caribbean.

To know more about Telehealth visit:

https://brainly.com/question/32496047

#SPJ11

(a) A system consists of two plants connected by a transmission line and a load that is located at plant 2. Data for the loss equation consists of the information that 100MW transmitted from plant 1 to the load results in a loss of 10MW. Determine the required economic generation for each plant and the power received by the load when incremental cost for the system is 6RM/MWh. Assume that the incremental fuel costs for plant 1 and plant 2 can be approximated by the following equations: λ1=0.007P1+4.1RM/MWh
λ2=0.014P2+4.6RM/MWh

(12 marks) (b) Determine the monthly saving in RM for economic dispatch to serve a load of 200MW between the plants of Q2(a) compared with equal share dispatch. Neglect line loss. (4 marks) (c) Determine the load contribution of plant 1 if the total load which economically distributed is increased to 250MW. (4 marks)

Answers

(a) Solution: Given data is100MW transmitted from plant 1 to the load results in a loss of 10MW. Power transmitted = 100MW, Losses = 10MW i.e. Efficiency = 90% (since efficiency = 100% - Losses %)So, Power received by the load = 0.9 × 100MW = 90MWLet the power generated by Plant 1 be P1, and that generated by Plant 2 be P2.

Total loss in the system = (P1+P2 - 100) × (10/1000)RM (since it is given that 100MW results in a loss of 10MW)

Total cost of generation = λ1 P1 + λ2 P2 For minimum total cost,

d(Total cost of generation)/dP1 = d(Total cost of generation)/dP2 = 0So,

At minimum cost, incremental cost for both the plants should be equal.

So, 0.007P1+4.1 = 0.014P2+4.6P1 = (0.014/0.007)P2 + (4.6/0.007) P1 = 2P2 + 657.14Since, P1 + P2 = 100MW,

So, 3P2 + 657.14 = 100P2 = 114.29MWP1 = 100 - P2 = 85.71MW

The required economic generation is 85.71MW for Plant 1, and 14.29MW for Plant 2.

Power received by the load = 90MWAt incremental cost = 6RM/MWh (given),

Total cost of generation = λ1 P1 + λ2 P2 Total cost of generation = 0.007P1² + 0.014P2² + (4.1P1 + 4.6P2)RM/MWh

At minimum total cost, d(Total cost of generation)/dP1 = d(Total cost of generation)/dP2 = 0So, 0.014P2 = 0.007P1⇒ P1/P2 = 0.5Cost = 0.007(100/3)² + 0.014(200/3)² + 4.1(100/3) + 4.6(200/3) = 422.53 RM

Monthly savings in RM for economic dispatch = Cost of equal share dispatch - Cost of economic dispatch = (1/2)(0.007 × 100² + 0.014 × 100² + 4.1 × 100 + 4.6 × 100) - 422.53 = 37.47 RM

Cost for power distribution of 250MW (without loss) = 0.007(250/3)² + 4.1(250/3) + 4.6(500/3) = 1655.43 RM

Cost for power distribution of 250MW (with loss) = 1655.43 + (P1+P2 - 250) × (10/1000)RM

Cost for power distribution of 250MW (with loss) = 1655.43 + (100 - P1) × (10/1000)⇒ Cost for power distribution of 250MW (with loss) = 1656.93 + 0.1P1

Load contribution of plant 1 = (Cost for power distribution of 250MW (with loss) - Cost for power distribution of 200MW (with loss))/(50/3)

= (1656.93 + 0.1P1 - 1433.93)/16.67

= (223 + 0.006P1) MW

To know more about Power transmitted visit:

https://brainly.com/question/32418219

#SPJ11

List the "destructive" test methods used in evaluation of the weld quality of welded joints (10 p), and briefly explain the procedure and commenting of the results of one of them (10 p)

Answers

Listed below are some destructive testing methods:

Macroscopic examination (visual inspection)Hardness testingBend testingTensile testingFracture toughness testing

Explanation:

In evaluating the quality of welded joints, destructive testing methods are employed.

Destructive testing is a technique that involves subjecting a component or structure to forces or conditions that will eventually cause it to fail, thereby allowing engineers to obtain data about the component's performance and structural integrity.

Listed below are some destructive testing methods used to evaluate the weld quality of welded joints:

Macroscopic examination (visual inspection)Hardness testingBend testingTensile testingFracture toughness testing

One of the most common destructive testing methods employed in evaluating the quality of welded joints is the Bend test.

The bend test is a straightforward test method that involves bending a metal sample, which has been welded to evaluate its ductility, strength, and soundness, at a certain angle or until a specific degree of deformation occurs.

This test determines the quality of the weld and its mechanical properties. The procedure for the Bend test is as follows:

Cut the weld sample to a specific dimension.

Make two cuts across the weld face and down the center of the weld.

Third, use a bending machine to bend the sample until a specified angle is reached or until the sample fails visually.

Finally, inspect the fractured surface of the sample to determine the nature of the failure and evaluate the quality of the weld.

Commenting on the results, the inspector may evaluate the quality of the weld by examining the nature of the fracture.

If the fracture appears to be brittle and transverse, it is an indication that the weld has failed, which means the joint quality is poor.

Conversely, if the fracture appears to be ductile and curved, it is an indication that the joint quality is good and has sufficient strength and ductility.

The Bend test is one of the most common destructive testing methods used in evaluating the quality of welded joints, and it is useful in determining the soundness, ductility, and strength of the weld.

The results of this test allow for the inclusion of a conclusion about the quality of the weld.

To know more about Destructive testing, visit:

https://brainly.com/question/31260340

#SPJ11

Quesion 2. Explain Voltage Regulation the equation for voltage regulation Discuss the parallel operation of alternator Quesion 3. What is principle of synchronous motor and write Characteristic feature of synchronous motor Quesion 4. Differentiate between synchronous generator and asynchronous motor Quesion 5. Write the different method of starting of synchronous motor

Answers

Voltage regulation refers to the ability of a power system or device to maintain a steady voltage output despite changes in load or other external conditions.

Voltage regulation is an important aspect of electrical power systems, ensuring that the voltage supplied to various loads remains within acceptable limits. The equation for voltage regulation is typically expressed as a percentage and is calculated using the following formula:

Voltage Regulation (%) = ((V_no-load - V_full-load) / V_full-load) x 100

Where:

V_no-load is the voltage at no load conditions (when the load is disconnected),

V_full-load is the voltage at full load conditions (when the load is connected and drawing maximum power).

In simpler terms, voltage regulation measures the change in output voltage from no load to full load. A positive voltage regulation indicates that the output voltage decreases as the load increases, while a negative voltage regulation suggests an increase in voltage with increasing load.

Voltage regulation is crucial because excessive voltage fluctuations can damage equipment or cause operational issues. By maintaining a stable voltage output, voltage regulation helps ensure the proper functioning and longevity of electrical devices and systems.

Learn more about power system.
brainly.com/question/28528278

#SPJ11

1. Design decoder BCD 2421 to 7 segment Led display a. Truth table b. Functions c. Draw logic circuit 2. Design subtractor + adder 4bit (include timing diagram (1bit)). a. Truth table b. Functions c. Draw logic circuit

Answers

1) A BCD-to-7-segment decoder, as its name suggests, takes a binary-coded decimal (BCD) as input and produces a pattern of seven output bits (called A, B, C, D, E, F and G).

2) A subtractor is a digital circuit that performs subtraction of numbers.

1. Design Decoder BCD 2421 to 7 segment LED

a.Truth Table

Input | Output

0 | 00000000

1 | 10011111

2 | 01001110

3 | 11001100

4 | 00100110

5 | 10110110

6 | 01111010

7 | 11101010

8 | 00111111

9 | 10111111

b. Functions

Decoders are logic circuits that receive binary coded inputs and convert them into decoded outputs. A BCD-to-7-segment decoder, as its name suggests, takes a binary-coded decimal (BCD) as input and produces a pattern of seven output bits (called A, B, C, D, E, F and G) such that the pattern is interpreted to represent a decimal digit on a seven segment LED display.

c. Logic Circuit

![BCD2421 to 7-segment LED logic circuit]

2. Design Subtractor + Adder 4bit

a. Truth Table

Input 1 | Input 2 | Carry In | Output | Carry Out

0,0,0 | 0,0,0 | 0 | 0,0,0,0 | 0

0,0,1 | 0,0,0 | 0 | 0,0,1,0 | 0

0,1,1 | 1,0,0 | 0 | 1,1,0,1 | 0

1,1,1 | 1,1,0 | 0 | 0,0,1,1 | 1

b. Functions

Adder: An adder is a digital circuit that performs addition of numbers. There are logic gates that can be used to construct adders, such as XOR gates, and half adders which can be combined by multiplexing (or muxing) to create full adders.

Subtractor: A subtractor is a digital circuit that performs subtraction of numbers. It follows the same principle as an adder, but it inverts the inputs and adds a 1 (carry bit) to make the subtraction possible.

c. Logic Circuit

Therefore,

1) A BCD-to-7-segment decoder, as its name suggests, takes a binary-coded decimal (BCD) as input and produces a pattern of seven output bits (called A, B, C, D, E, F and G).

2) A subtractor is a digital circuit that performs subtraction of numbers.

Learn more about the logic circuit here:

https://brainly.com/question/30111371.

#SPJ4

Paragraph 4: For H2O, find the following properties using the given information: Find P and x for T = 100°C and h = 1800 kJ/kg. A. P=361.3kPa X=56 %
B. P=617.8kPa X=54%
C. P=101.3kPa X= 49.8%
D. P-361.3kPa, X=51% Paragraph 5: For H2O, find the following properties using the given information: Find T and the phase description for P = 1000 kPa and h = 3100 kJ/kg. A. T=320.7°C Superheated
B. T=322.9°C Superheated
C. T=306.45°C Superheated
D. T=342.1°C Superheated

Answers

For H2O, at T = 100°C and h = 1800 kJ/kg, the properties are P = 361.3 kPa and x = 56%; and for P = 1000 kPa and h = 3100 kJ/kg, the properties are T = 322.9°C, Superheated.

Paragraph 4: For H2O, to find the properties at T = 100°C and h = 1800 kJ/kg, we need to determine the pressure (P) and the quality (x).

The correct answer is A. P = 361.3 kPa, X = 56%.

Paragraph 5: For H2O, to find the properties at P = 1000 kPa and h = 3100 kJ/kg, we need to determine the temperature (T) and the phase description.

The correct answer is B. T = 322.9°C, Superheated.

These answers are obtained by referring to the given information and using appropriate property tables or charts for water (H2O). It is important to note that the properties of water vary with temperature, pressure, and specific enthalpy, and can be determined using thermodynamic relationships or available tables and charts for the specific substance.

Learn more about properties

brainly.com/question/29134417

#SPJ11

The Shearing strain is defined as the angular change between three
perpendicular faces of a differential elements.
(true or false)

Answers

The given statement, "The Shearing strain is defined as the angular change between three perpendicular faces of differential elements" is false.

What is Shearing Strain?

Shear strain is a measure of how much material is distorted when subjected to a load that causes the particles in the material to move relative to each other along parallel planes.

The resulting deformation is described as shear strain, and it can be expressed as the tangent of the angle between the deformed and undeformed material.

The expression for shear strain γ in terms of the displacement x and the thickness h of the deformed element subjected to shear strain is:

γ=x/h

As a result, option (False) is correct.

To know more about displacement  visit:

https://brainly.com/question/11934397

#SPJ11

A Flyback converter, Vin = 30 V, N1 = 30 turns, and N2 = 15 turns. The self-inductance of winding 1 is 50µH, and fs = 200 kHz. The output voltage is regulated at Vo = 9V. (a) Draw the circuit Diagram (b) Draw the input current and the output current if the out Power is 40 W.

Answers

A flyback converter is a converter that's utilized to switch electrical energy from one source to another with an efficiency of 80-90%. It has a high voltage output and high efficiency.

we get, [tex]VIN = n1/n2 x vo/(1 - vo)30 = 30/15 x 9/6, n1 = 30, n2 = 15 is:V2 = (n2/n1 + n2) x VinV2 = 15/45 x 30V2 = 10VL2 = (vo x (1 - vo))/(fs x I2_max x V2)Given that Vo = 9V, fs = 200 kHz, and V2 = 10VTherefore, L2 = (9 x (1 - 9))/(200,000 x 5.6A x 10) = 53.57 µH. **I2max = 0.7 * 2 * Vo / (L2 * fs) = 5.6, di2/dt = V2[/tex]

current x duty cycle Therefore, the input current can be determined as follows: In = (Pout / η) / Vin = (40/0.9)/30 = 1.48AThe output current is I out = Pout / Vo = 40 / 9 = 4.44ATherefore, the input current when the output power is 40W is 1.48A and the output current is 4.44A.

To know more about high efficiency visit:

brainly.com/question/32330079

#SPJ11

Autogenous shrinkage is a subset of chemical shrinkage. Select one: O True O False Theoretically, cement in a paste mixture can be fully hydrated when the water to cement ratio of the paste is 0.48. Select one: O True O False Immersing a hardened concrete in water should be avoided because it changes the water-to-cement ratio. Select one: O True O False Immersing a hardened concrete in water does not affect the water-to-cement ratio of concrete. Select one: O True O False

Answers

Autogenous shrinkage is not a subset of chemical shrinkage. False.

Theoretically, cement in a paste mixture cannot be fully hydrated when the water-to-cement ratio of the paste is 0.48. False.

Immersing a hardened   concrete inwater does not affect the water-to-cement ratio of concrete. True.

How is this so?

Autogenous shrinkage   is a type of shrinkage that occurs in concrete without external factors,such as drying or temperature changes. It is not a subset of chemical shrinkage.

A water-to-cement ratio of   0.48 is not sufficient for complete hydration. Immersing hardened concrete in water doesnot affect the water-to-cement ratio.

Learn more about shrinkage  at:

https://brainly.com/question/28136446

#SPJ4

Based on the simple procedure for an approximate design of a wind rotor, design the wind rotor for an aero-generator to generate 100 W at a wind speed of 7 m/s. NACA 4412 airfoil may be used for the rotor blade. Some of the recommended design parameters are given below:-
- air density = 1.224 kg/m³.
-combined drive train and generator efficiency = 0.9.
-design power coefficient = 0.4.
-design tip speed ratio, Ap of 5 is recommended for electricity generation.
- From the available performance data of NACA 4412 airfoil, the minimum Co/C of 0.01 is attained at an angle of attack of 4° and the corresponding lift coefficient (CLD) is 0.8.
Calculate the rotor diameter.

Answers

The rotor diameter is D = 1.02 m.

At r = 0.25D, we have:

θ = 12.8°

And, at r = 0.75D, we have:

θ = 8.7°

The number of blades is, 3

Now, For design the wind rotor, we can use the following steps:

Step 1: Determine the rotor diameter

The power generated by a wind rotor is given by:

P = 0.5 x ρ x A x V³ x Cp

where P is the power generated, ρ is the air density, A is the swept area of the rotor, V is the wind speed, and Cp is the power coefficient.

At the design conditions given, we have:

P = 100 W

ρ = 1.224 kg/m³

V = 7 m/s

Cp = 0.4

Solving for A, we get:

A = P / (0.5 x ρ x V³ x Cp) = 0.826 m²

The swept area of a wind rotor is given by:

A = π x (D/2)²

where D is the rotor diameter.

Solving for D, we get:

D = √(4 x A / π) = 1.02 m

Therefore, the rotor diameter is D = 1.02 m.

Step 2: Determine the blade chord and twist angle

To determine the blade chord and twist angle, we can use the NACA 4412 airfoil.

The chord can be calculated using the following formula:

c = 16 x R / (3 x π x AR x (1 + λ))

where R is the rotor radius, AR is the aspect ratio, and λ is the taper ratio.

Assuming an aspect ratio of 6 and a taper ratio of 0.2, we get:

c = 16 x 0.51 / (3 x π x 6 x (1 + 0.2)) = 0.064 m

The twist angle can be determined using the following formula:

θ = 14 - 0.7 x r / R

where r is the radial position along the blade and R is the rotor radius.

Assuming a maximum twist angle of 14°, we get:

θ = 14 - 0.7 x r / 0.51

Therefore, at r = 0.25D, we have:

θ = 14 - 0.7 x 0.25 x 1.02 = 12.8°

And at r = 0.75D, we have:

θ = 14 - 0.7 x 0.75 x 1.02 = 8.7°

Step 3: Determine the number of blades

For electricity generation, a design tip speed ratio of 5 is recommended. The tip speed ratio is given by:

λ = ω x R / V

where ω is the angular velocity.

Assuming a rotational speed of 120 RPM (2π radians/s), we get:

λ = 2π x 0.51 / 7 = 0.91

The number of blades can be determined using the following formula:

N = 1 / (2 x sin(π/N))

Assuming a number of blades of 3, we get:

N = 1 / (2 x sin(π/3)) = 3

Step 4: Check the power coefficient and adjust design parameters if necessary

Finally, we should check the power coefficient of the wind rotor to ensure that it meets the design requirements.

The power coefficient is given by:

Cp = 0.22 x (6 x λ - 1) x sin(θ)³ / (cos(θ) x (1 + 4.5 x (λ / sin(θ))²))

At the design conditions given, we have:

λ = 0.91

θ = 12.8°

N = 3

Solving for Cp, we get:

Cp = 0.22 x (6 x 0.91 - 1) x sin(12.8°)³ / (cos(12.8°) x (1 + 4.5 x (0.91 / sin(12.8°))²)) = 0.414

Since the design power coefficient is 0.4, the wind rotor meets the design requirements.

Therefore, a wind rotor with a diameter of 1.02 m, three blades, a chord of 0.064 m, and a twist angle of 12.8° at the blade root and 8.7° at the blade tip, using the NACA 4412 airfoil, should generate 100 W of electricity at a wind speed of 7 m/s, with a design tip speed ratio of 5 and a design power coefficient of 0.4.

The rotor diameter can be calculated using the following formula:

D = 2 x R

where R is the radius of the swept area of the rotor.

The radius can be calculated using the following formula:

R = √(A / π)

where A is the swept area of the rotor.

The swept area of the rotor can be calculated using the power coefficient and the air density, which are given:

Cp = 2 x Co/C x sin(θ) x cos(θ)

ρ = 1.225 kg/m³

We can rearrange the equation for Cp to solve for sin(θ) and cos(θ):

sin(θ) = Cp / (2 x Co/C x cos(θ))

cos(θ) = √(1 - sin²(θ))

Substituting the given values, we get:

Co/C = 0.01

CLD = 0.8

sin(θ) = 0.4

cos(θ) = 0.9165

Solving for Cp, we get:

Cp = 2 x Co/C x sin(θ) x cos(θ) = 0.0733

Now, we can use the power equation to solve for the swept area of the rotor:

P = 0.5 x ρ x A x V³ x Cp

Assuming a wind speed of 7 m/s and a power output of 100 W, we get:

A = P / (0.5 x ρ x V³ x Cp) = 0.833 m²

Finally, we can calculate the rotor diameter:

R = √(A / π) = 0.514 m

D = 2 x R = 1.028 m

Therefore, the rotor diameter is approximately 1.028 m.

Learn more about the equation visit:

brainly.com/question/28871326

#SPJ4

Steam enters an adiabatic turbine at 4000 kPa and 500 oC steadily, and leaves it with a
quality factor of 1.0 at 75 kPa. The inlet velocity is 200 m/s and the inlet diameter is
50.0 mm. The diameter of the outlet is 250 mm.
(a) What is the mass flow rate entering the turbine?
(b) What is the rate of change in kinetic energy of the steam going from the inlet to the
outlet?

Answers

The mass flow rate entering the turbine is approximately 13.09 kg/s. The rate of change in kinetic energy of the steam going from the inlet to the outlet is approximately -297.13 kW.

(a) To calculate the mass flow rate, we can use the mass flow rate equation:

m_dot = rho * A * V

Given:

- Inlet pressure (P1) = 4000 kPa

- Inlet temperature (T1) = 500 °C

- Inlet velocity (V1) = 200 m/s

- Inlet diameter (d1) = 50.0 mm

- Outlet diameter (d2) = 250 mm

First, let's convert the temperatures to Kelvin:

T1 = 500 + 273.15 = 773.15 K

Next, we need to calculate the specific volume of the steam at the inlet and outlet using steam tables. From the tables, we find:

Specific volume at P1 and T1 (v1) ≈ 0.1758 m^3/kg

Now, we can calculate the cross-sectional area of the inlet and outlet:

A1 = (π * d1^2) / 4

  = (π * (0.050)^2) / 4

  ≈ 0.0019635 m^2

A2 = (π * d2^2) / 4

  = (π * (0.250)^2) / 4

  ≈ 0.0490874 m^2

Finally, we can calculate the mass flow rate:

m_dot = rho * A1 * V1

     = (1 / v1) * A1 * V1

     ≈ (1 / 0.1758) * 0.0019635 * 200

     ≈ 13.09 kg/s

(b) The rate of change in kinetic energy can be calculated using the equation:

ΔKE = (1 / 2) * m_dot * (V2^2 - V1^2)

Given:

- Outlet velocity (V2) is not provided directly, but we know the steam leaves with a quality factor of 1.0. In this case, the outlet state can be assumed to be saturated vapor at the given outlet pressure.

Using steam tables, we can find the specific volume at the outlet pressure (P2 = 75 kPa) and saturated vapor conditions:

Specific volume at P2 and saturated vapor (v2) ≈ 0.6992 m^3/kg

Now, we can calculate the rate of change in kinetic energy:

ΔKE = (1 / 2) * 13.09 * ((0.6992)^2 - (0.1758)^2)

    ≈ -297.13 kW (negative value indicates a decrease in kinetic energy)

The mass flow rate entering the turbine is approximately 13.09 kg/s. The rate of change in kinetic energy of the steam going from the inlet to the outlet is approximately -297.13 kW, indicating a decrease in kinetic energy.

To know more about mass flow rate, visit:-

https://brainly.com/question/23946677

#SPJ11

Q2. Multiple Access methods allow many users to share the limited available channels to provide the successful Communications services. a) Compare the performances the multiple access schemes TDMA, FDMA and CDMA/(Write any two for each of the multiple access techniques.) (3 Marks) b) List any two applications for each of these multiple access methods and provide your reflection on how this multiple access schemes could outfit to the stated applications. (6 Marks)

Answers

Multiple Access methods are utilized to enable multiple users to share limited available channels for successful communication services.

a) Performance comparison of multiple access schemes:

Time Division Multiple Access (TDMA):

Efficiently divides the available channel into time slots, allowing multiple users to share the same frequency.

Advantages: Provides high capacity, low latency, and good voice quality. Allows for flexible allocation of time slots based on user demand.

Disadvantages: Synchronization among users is crucial. Inefficiency may occur when some time slots are not fully utilized.

Frequency Division Multiple Access (FDMA):

Divides the available frequency spectrum into separate frequency bands, allocating a unique frequency to each user.

Advantages: Allows simultaneous communication between multiple users. Provides dedicated frequency bands, minimizing interference.

Disadvantages: Inefficient use of frequency spectrum when some users require more bandwidth than others. Difficult to accommodate variable data rates.

Code Division Multiple Access (CDMA):

Assigns a unique code to each user, enabling simultaneous transmission over the same frequency band.

Advantages: Efficient utilization of available bandwidth. Provides better resistance to interference and greater capacity.

Disadvantages: Requires complex coding and decoding techniques. Near-far problem can occur if users are at significantly different distances from the base station.

b) Applications and suitability of multiple access methods:

TDMA:

Application 1: Cellular networks - TDMA allows multiple users to share the same frequency band by allocating different time slots. It suits cellular networks well as it supports voice and data communication with relatively low latency and good quality.

Application 2: Satellite communication - TDMA enables multiple users to access a satellite transponder by dividing time slots. This method allows efficient utilization of satellite resources and supports communication between different locations.

FDMA:

Application 1: Broadcast radio and television - FDMA is suitable for broadcasting applications where different radio or TV stations are allocated separate frequency bands. Each station can transmit independently without interference.

Application 2: Wi-Fi networks - FDMA is used in Wi-Fi networks to divide the available frequency spectrum into channels. Each Wi-Fi channel allows a separate communication link, enabling multiple devices to connect simultaneously.

CDMA:

Application 1: 3G and 4G cellular networks - CDMA is employed in these networks to support simultaneous communication between multiple users by assigning unique codes. It provides efficient utilization of the available bandwidth and accommodates high-speed data transmission.

Application 2: Wireless LANs - CDMA-based technologies like WCDMA and CDMA2000 are used in wireless LANs to enable multiple users to access the network simultaneously. CDMA allows for increased capacity and better resistance to interference in dense wireless environments.

Reflection:

Each multiple access method has its strengths and weaknesses, making them suitable for different applications. TDMA is well-suited for cellular and satellite communication, providing efficient use of resources. FDMA works effectively in broadcast and Wi-Fi networks, allowing independent transmissions.

CDMA is advantageous in cellular networks and wireless LANs, offering efficient bandwidth utilization and simultaneous user communication. By selecting the appropriate multiple access method, the specific requirements of each application can be met, leading to optimized performance and improved user experience.

Know more about Multiple Access methods here:

https://brainly.com/question/32091753

#SPJ11

1. A 400 ton ship has two identical rectangular hydrofoils, fore and aft, 10 m² lifting surface area, each. Chord length is 2.0 m. Both have symmetric hydrofoil profiles, with 5.73 degrees (0.1 radians) with the horizontal. Find the velocity of the vessel that is required to develop the lift force so that the entire ship is out of water ("foilborne"). For seawater, p= 1025 kg/m.
i need help please the course is hydromachnic

Answers

To determine the velocity of the vessel that is required to develop the lift force so that the entire ship is out of water ("foilborne"), it is necessary to use the lift force formula that is given as follows;Lift force formula.

L= 1/2pv²SC where;L= Lift Forcep= density of fluid (sea water)p= 1025 kg/m³S= Surface area of the hydrofoilC= Coefficient of liftv= velocity of the shipNow, the problem gives;Two identical rectangular hydrofoils, fore and aft, 10 m² lifting surface area, eachChord length is 2.0 mBoth have symmetric hydrofoil profiles, with 5.73 degrees (0.1 radians) with the horizontal.From the above information, the surface area of the two hydrofoils = 2(10) = 20 m²and the angle of attack = 0.1 radians = 5.73 degrees.

We can also obtain the coefficient of lift, (C) by the use of a hydrofoil lift coefficient curve for a given angle of attack. For 5.73 degrees, the coefficient of lift, C ≈ 0.6.Substituting all the values in the lift formula;L= [tex]1/2pv²SCTherefore; L = 1/2 × 1025 × v² × 20 × 0.6L = 615v²[/tex]When the entire ship is out of water, the weight of the ship is equal to the lift force generated by the hydrofoils.

Therefore, we can use the weight of the ship to calculate the required velocity of the vessel.Weight of the ship = 400 tonnes = 400000 kg.

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11

I have found a research study online with regards to PCM or Phase changing Material, and I can't understand and visualize what PCM is or this composite PCM. Can someone pls help explain and help me understand what these two composite PCMs are and if you could show images of a PCM it is really helpful. I haven't seen one yet and nor was it shown to us in school due to online class. pls help me understand what PCM is the conclusion below is just a part of a sample study our teacher gave to help us understand though it was really quite confusing, Plss help
. Conclusions
Two composite PCMs of SAT/EG and SAT/GO/EG were prepared in this article. Their thermophysical characteristic and solar-absorbing performance were investigated. Test results indicated that GO showed little effect on the thermal properties and solar absorption performance of composite PCM. However, it can significantly improve the shape stability of composite PCM. The higher the density is, the larger the volumetric heat storage capacity. When the density increased to 1 g/ cm3 , SAT/EG showed severe leakage while SAT/GO/EG can still keep the shape stability. A novel solar water heating system was designed using SAT/GO/EG (1 g/cm3 ) as the solar-absorbing substance and thermal storage media simultaneously. Under the real solar radiation, the PCM gave a high solar-absorbing efficiency of 63.7%. During a heat exchange process, the temperature of 10 L water can increase from 25 °C to 38.2 °C within 25 min. The energy conversion efficiency from solar radiation into heat absorbed by water is as high as 54.5%, which indicates that the novel system exhibits great application effects, and the composite PCM of SAT/GO/EG is very promising in designing this novel water heating system.

Answers

PCM stands for Phase Changing Material, which is a material that can absorb or release a large amount of heat energy when it undergoes a phase change.

A composite PCM, on the other hand, is a mixture of two or more PCMs that exhibit improved thermophysical properties and can be used for various applications. In the research study mentioned in the question, two composite PCMs were investigated: SAT/EG and SAT/GO/EG. SAT stands for stearic acid, EG for ethylene glycol, and GO for graphene oxide.

These composite PCMs were tested for their thermophysical characteristics and solar-absorbing performance. The results showed that GO had little effect on the thermal properties and solar absorption performance of composite PCM, but it significantly improved the shape stability of the composite PCM.

To know more about PCM  visit:-

https://brainly.com/question/32700586

#SPJ11

An organization is granted the network ID 122.0.0.0/9, determine: the subnet mask in binary and in decimal, number of subnets, number of hosts per subnet, all subnets' IDs, the first host, the last host, and the broadcast address in every subnet.

Answers

Given, an organization is granted the network ID 122.0.0.0/9.Based on the given network ID, the first nine bits of the IP address is used for network ID and the remaining 23 bits is used for host ID.

The network ID in binary is 01111010.0.0.0 (first 9 bits of 122 = 01111010) and the subnet mask in binary is 11111111.10000000.00000000.00000000.

In decimal, the network ID is 122.0.0.0 and the subnet mask is 255.128.0.0.

Number of subnets:Since the subnet mask is /9, the number of bits available for subnetting is 32 - 9 = 23.

The number of subnets possible is 2^23 = 8,388,608.

Number of hosts per subnet:Since the number of bits available for host ID is 23, the number of hosts per subnet is 2^23 - 2 = 8,388,606.

This is because two addresses are reserved, one for the network address and the other for the broadcast address.

All subnets' IDs:Since there are 8,388,608 subnets possible, it is impossible to list all the subnet IDs. However, the first subnet ID is 122.0.0.0 and the last subnet ID is 122.127.0.0. The subsequent subnet IDs are obtained by adding 128 to the third octet of the previous subnet ID. The first host, the last host, and the broadcast address in every subnet:The first host in a subnet is obtained by adding 1 to the subnet ID.

The first host in the first subnet is 122.0.0.1. The last host in a subnet is obtained by setting all the bits of the host ID to 1, except the last bit which is set to 0. Therefore, the last host in the first subnet is 122.0.127.254. The broadcast address is obtained by setting all the bits of the host ID to 1. The broadcast address in the first subnet is 122.0.127.255.

To know more about  IP address visit:

https://brainly.com/question/31171474

#SPJ11

There is a steady laminar flow of water with a velocity of 20 cm/s from a plane surface with a width of 80 cm and a length of 150 cm, which makes an angle of 60 °C with the horizontal. Take a differential volume element on a A-thickness film layer and establish the balance of forces and derive the velocity relation, the average velocity. Find the film thickness. Draw the velocity and shear stress profile by drawing the shape.

Answers

The film flow is considered when there is a flow of liquid in contact with the solid surface and the layer of liquid in contact with the surface has a smaller thickness. The forces acting on the liquid film layer are gravity, pressure, and viscous forces.

In the problem, there is a steady laminar flow of water with a velocity of 20 cm/s from a plane surface with a width of 80 cm and a length of 150 cm, which makes an angle of 60°C with the horizontal. Take a differential volume element on an A-thickness film layer and establish the balance of forces and derive the velocity relation, the average velocity.The pressure force acting on the differential film layer can be given as,F_p = PAThe viscous force acting on the film layer can be given as,

[tex]F_v = τA = μ\frac{u}{δ}A[/tex]

From force balance,

[tex]ρgδAcos⁡60° = PA + μ\frac{u}{δ}A[/tex]

Here, u = velocity of the water film layerThe average velocity of the film layer can be given as, V = Q/A = uδ, where Q = volumetric flow rateThe relation between velocity and film thickness can be given as,

[tex]δ = \frac{μV}{ρgcos⁡60°}[/tex]

The film thickness can be calculated as,

[tex]δ = \frac{μV}{ρgcos⁡60°}= \frac{10^{-3}×(20)}{10^3×9.81×cos⁡60°}= 0.073 cm[/tex]

The shear stress profile can be drawn as,

[tex]τ = μ\frac{du}{dy}[/tex]

The velocity profile can be drawn as,

[tex]u(y) = \frac{3}{2}V\frac{y}{δ}\left( 1-\frac{y}{2δ} \right)[/tex]

The velocity and shear stress profiles are shown in the attached figure.  Therefore, the film thickness is 0.073 cm.

To know more about solid surface visit :

https://brainly.com/question/12286680

#SPJ11

composite structures are built by placing fibres in different orientations to carry multi- axial loading effectively. The influence of multidirectional fibre placement in a laminate on the mechanisms of fatigue damage is vital. Name and briefly explain the two methods of laminates

Answers

Composite structures are built by placing fibres in different orientations to carry multi-axial loading effectively. The two methods of laminates are:

Unidirectional laminate: This type of laminate has fibers placed in one direction which gives the highest strength and stiffness in that direction. However, it has low strength and stiffness in other directions. This type of laminate is useful in applications such as racing cars, aircraft wings, etc. to make them lightweight.

Bidirectional laminate:This type of laminate has fibers placed in two directions, either 0 and 90 degrees or +45 and -45 degrees. It has good strength in two directions and lower strength in the third direction. This type of laminate is useful in applications such as pressure vessels, boat hulls, etc.

To know more about Composite structures visit:

https://brainly.com/question/29485186

#SPJ11

A steam pipe, 56 m in length and 0.051 m in outer diameter, is horizontally placed in the surrounding air at 10°C. The surface temperature of the pipe is measured to be at 144°C. In addition, the emissivity of the outer surface of the pipe is estimated to be 0.73 due to the oxidization of the surface. Determine the rate of heat loss in [w] from the steam pipe, assuming the temperature of the surrounding surfaces to be 10°C. (The tolerance of your answer is 6%.)

Answers

Given,Length of the steam pipe, l = 56 mOuter diameter of the pipe, d = 0.051 mTemperature of the air surrounding the pipe, T_surr = 10°CTemperature of the steam pipe, T_pipe = 144°CEmissivity of the outer surface of the pipe, ε = 0.73We need to find the rate.

Heat lost by the steam pipeRate of heat loss can be determined by the formula,Q = (Ts - T∞)×A×σ×ε ..........(1)where Ts = surface temperature of the pipe.

Temperature of the surrounding surfaceA = Surface area of the pipeσ = Stefan-Boltzmann constant ε = emissivity of the pipe's surface.

To know more about steam visit:

https://brainly.com/question/15447025

#SPJ11

Rocket Lab, the New Zealand-based medium-lift launch provider, is preparing to recover the 1 " stage of their Fletran rocket for reuse. They won't land it back at the pad like SpaceX does, though; instead, they plan to snag the parachuting booster with a mid-air helicopter retricval. Assume the booster weighs 350 kg and that the retrieval system tow cable hangs vertically and can be modeled as a SDOF spring and damper fixed to a "ground" (the mach more massive Furcopter EC145), a) If the retrieval is successful and the booster's mass is suddenly applied to the tow cable, what is the minimum stiffness value, k, required to ensure the resulting "stretch" of the cable does not exceed ∣y∣max=0.50 m measured from the unstretched length? Figure 2 - Electron 1st stage mid-air retrieval b) For safety teasons, it's necessary to prevent any oscillation in the retrieval system. What is the minimum damping constant, c, required to ensure this safety feature.

Answers

Rocket Lab, a New Zealand-based medium-lift launch provider, is preparing to recover the first stage of their Fletran rocket for reuse. They plan to snag the parachuting booster with a mid-air helicopter retrieval instead of landing it back at the pad like SpaceX does.

Suppose the booster weighs 350 kg and that the retrieval system tow cable hangs vertically and can be modeled as a SDOF spring and damper fixed to a "ground" (the much more massive Furcopter EC145).

a) The minimum stiffness value, k, required to ensure the resulting "stretch" of the cable does not exceed |y|max = 0.50 m measured from the unstretched length will be determined. The maximum oscillation amplitude should be half a meter or less, according to the problem statement.  

Fmax=k(y max)  Fmax=k(0.5)

Fmax=0.5k

If we know the weight of the booster and the maximum force that the cable must bear, we can calculate the minimum stiffness required. F = m*g F = 350*9.81 F = 3433.5N k > 3433.5N/0.5k > 6867 N/m

The minimum stiffness value required is 6867 N/m.b) We need to determine the minimum damping constant, c, required to ensure this safety feature since it is necessary to avoid any oscillation in the retrieval system for safety reasons.  The damping force is proportional to the velocity of the mass and is expressed as follows:

F damping = -c v F damping = -c vmax, where vmax is the maximum velocity of the mass. If we assume that the parachute's speed is 5m/s at the instant of cable retrieval, the maximum velocity of the booster will be 5 m/s. F damping = k y - c v c=v (k y-c v)/k We must ensure that no oscillation is present in the system; therefore, the damping ratio must be at least 1. c = 2 ξ k m c = 2 (1) √(350*9.81/6867) c = 14.3 Ns/m

The minimum damping constant required is 14.3 Ns/m.

Rocket Lab is a New Zealand-based medium-lift launch provider that is about to launch its Fletran rocket's first stage for reuse. They aim to catch the parachuting booster with a mid-air helicopter retrieval instead of landing it back on the pad like SpaceX. A Single Degree of Freedom (SDOF) spring and damper mounted on the Furcopter EC145 "ground" will support the retrieval system tow cable hanging vertically. In this problem, we calculated the minimum stiffness and damping values required for this retrieval system. We utilized F = m*g to find the minimum stiffness required. The maximum oscillation amplitude of the cable could be half a meter or less, according to the problem statement. As a result, the minimum stiffness required is 6867 N/m. We then calculated the minimum damping constant required to prevent any oscillation in the retrieval system, assuming a speed of 5 m/s at the instant of cable retrieval. We used the formula c = 2 ξ k m to calculate this, and the minimum damping constant required is 14.3 Ns/m.

Rocket Lab is all set to recover the first stage of their Fletran rocket for reuse by catching the parachuting booster with a mid-air helicopter retrieval instead of landing it back on the pad like SpaceX. The minimum stiffness and damping values required for this retrieval system were calculated in this problem. The minimum stiffness required is 6867 N/m, and the minimum damping constant required is 14.3 Ns/m to prevent any oscillation in the retrieval system.

Learn more about stiffness here:

brainly.com/question/31172851

#SPJ11

A chromel-constantan thermocouple measuring the temperature of a fluid is connected by mistake with copper-constantan extension leads (such that the two constantan wires are connected together and the copper extension lead wire is connected to the chromel thermocouple wire. If the fluid temperature was actually 250 °C and the junction between the thermocouple and extension leads was at 90 °C, what emf would be measured at the open ends of the extension leads if the reference junction is maintained at 0 °C? What fluid temperature would be deduced from this (assuming that the connection error was not known about)?

Answers

The emf measured at the open ends of the extension leads is 8.56 mV. The thermocouple measures the temperature of the copper-constantan junction, which is 90 °C. So, if the connection error was not known about, the fluid temperature would be incorrectly deduced to be 90 °C.

The solution to the given problem is as follows:

The temperature of the fluid is 250 °C.

The junction between the thermocouple and extension leads was at 90 °C.

EMF measured at the open ends of the extension leads can be calculated as follows:

EMF = α1 x T1 - α2 x T2

Where,α1 = Seebeck coefficient of chromel-constantan

α2 = Seebeck coefficient of copper-constantan

T1 = Temperature of the chromel-constantan junction

= 250°C + 273 K

= 523 K (as the fluid temperature is 250 °C)

T2 = Temperature of the copper-constantan junction

= 90°C + 273 K

= 363 K

EMF = 40 x 10^-6 x (523 - 273) - 22 x 10^-6 x (363 - 273)

= 8.56 mV

The emf measured at the open ends of the extension leads is 8.56 mV.

If the two constantan wires are connected together and the copper extension lead wire is connected to the chromel thermocouple wire, then the thermocouple measures the temperature of the copper-constantan junction, which is 90 °C. So, if the connection error was not known about, the fluid temperature would be incorrectly deduced to be 90 °C.

To know more about thermocouple measures visit:

https://brainly.com/question/31783475

#SPJ11

2.(Sums of Random Variables) (25 pts) (Expected Completion Time: 15 min) 1. (20pts) True or False. No need to justify. (i) The sum of the first two prime numbers is equal to 3, (ii) Let X, be a Bernoulli random variable with parameter p and X₂ an exponential random variable with parameter λ. Then, E[X1 + X2] = P+ 1/λ
(iii) Consider three random variable X1, X2, and X3. Suppose that X1 and X2 are indepen- dent. Then V(X1 + X2 + X3) = V(X1) + V(X2) + V(X2) + 2Cov(X2, X3) + 2Cov(X1, X3) (2) (iv) Let X be the average of n i.i.d. random variables. Then, V(X) is decreasing as we increase n.

Answers

False. The first two prime numbers are 2 and 3, and their sum is 5, not 3.

(ii) False. The expected value of the sum of two random variables is equal to the sum of their individual expected values. Therefore, E[X1 + X2] = E[X1] + E[X2]. In this case, E[X1] = p and E[X2] = 1/λ, so E[X1 + X2] = p + 1/λ, not P + 1/λ.

(iii) False. The correct formula for the variance of the sum of three random variables is V(X1 + X2 + X3) = V(X1) + V(X2) + V(X3) + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3). The formula in the statement includes an extra term 2Cov(X2, X3) and is incorrect.

(iv) True. The variance of the average of n i.i.d. random variables is equal to the variance of a single random variable divided by n. As n increases, the variance of the average decreases because the individual observations are averaged out, leading to less variability in the average value.

Learn more about prime numbers here:

brainly.com/question/30210177

#SPJ4

Parking system (combinational logic circuits) Design a simple parking system that has at least 4 parking spots. Your system should keep track of all free spaces in the parking system, then tell the user where to park. If all free spaces are taken, then no new cars are allowed to enter. Design procedure: 1. Determine the required number of inputs and outputs. 2. Derive the truth table for each of the outputs based on their relationships to the input. 3. Simplify the Boolean expression for each output. Use Karnaugh Maps or Boolean algebra. 4. Draw a logic diagram that represents the simplified Boolean expression. 5. Verify the design by simulating the circuit. Compare the predicted behavior with the simulated, theoretical, and practical results.

Answers

To design a simple parking system with at least 4 parking spots using combinational logic circuits, follow the steps below:

By following these steps, you can design a simple parking system using combinational logic circuits that can track free spaces and determine whether new cars are allowed to enter the parking area.

1. Determine the required number of inputs and outputs:

  - Inputs: Number of cars in each parking spot

  - Outputs: Free/occupied status of each parking spot, entrance permission signal

2. Derive the truth table for each output based on their relationships to the inputs:

  - The output for each parking spot will be "Free" (F) if there is no car present in that spot and "Occupied" (O) if a car is present.

  - The entrance permission signal will be "Allowed" (A) if there is at least one free spot and "Not Allowed" (N) if all spots are occupied.

3. Simplify the Boolean expression for each output:

  - Use Karnaugh Maps or Boolean algebra to simplify the Boolean expressions based on the truth table.

4. Draw a logic diagram that represents the simplified Boolean expressions:

  - Represent the combinational logic circuits using logic gates such as AND, OR, and NOT gates.

  - Connect the inputs and outputs based on the simplified Boolean expressions.

5. Verify the design by simulating the circuit:

  - Use a circuit simulation (e.g., digital logic simulator) to simulate the behavior of the designed parking system.

  - Compare the predicted behavior with the simulated, theoretical, and practical results to ensure they align.

To know more about Circuit simulation  visit-

https://brainly.com/question/33331421

#SPJ11

A partially loaded ship has a displacement of 12,500 tonnes, KM = 7.2m and KG = 6.5m. The vessel is currently listed 3 degrees to starboard and will have a displacement of 13,500 tonnes when fully loaded. There is space available in holds on both sides of the vessel, which have centres of gravity 7m port and 5m starboard of the centreline respectively. Assuming that KM and KG do not change, determine how you would load the remaining cargo to complete the loading with the ship in its upright position.

Answers

To load the remaining cargo in such a way that the center of gravity (KG) of the ship is below the metacenter (KM) to avoid capsizing, we have to use the steps mentioned below.

To complete the loading with the ship in its upright position, we need to understand the cargo loading process. For that, we have to ensure that the center of gravity (KG) of the ship is below the metacenter (KM) to avoid capsizing. Given data:

Displacement of ship, D = 12,500 tonnesKG = 6.5mKM = 7.2m

Displacement of ship when fully loaded, D1 = 13,500 tonnesSpace available in holds:7m port 5m starboard

The ship is listed 3 degrees to starboard.How to load the remaining cargo?

Step 1: First, we have to find the initial GM value. To do that, we can use the formula: GM = KM - KG

Step 2: Next, we have to find the final GM value when the ship is fully loaded. For that, we can use the formula: GM1 = KM - KG1

Step 3: The difference between the initial and final GM value gives us the required GM increase. GM increase = GM1 - GM

Step 4: Using the formula: GM increase = (M x x)/D, where M = moment, x = distance, D = displacement, we can calculate the moment required to increase the GM value. This moment has to be created by loading the remaining cargo.

Step 5: We need to distribute the cargo in such a way that the center of gravity of the cargo creates the required moment to increase the GM value. Since the ship is listed to starboard, we have to load the cargo to port to bring the ship to an upright position. To calculate the required moment, we can use the formula: Moment = GM increase x D

Step 6: Once we know the moment required, we can distribute the cargo in a way that the center of gravity of the cargo creates the required moment. To do that, we can use the formula: x = (Moment x D1)/(W x d), where W = weight of the cargo, d = distance between the center of gravity of the cargo and the centerline. By using the above steps, the remaining cargo can be loaded to complete the loading with the ship in its upright position.

To know more about center of gravity visit:

brainly.com/question/20662235

#SPJ11

Explain the differences (advantage and disadvantage) of the electro-hydraulic vs pure hydraulic.(at least 3)

Answers

Electro-hydraulic and pure hydraulic systems are two types of hydraulic systems that are used in various industrial applications. Electro-hydraulic and pure hydraulic systems are used to convert mechanical energy into hydraulic.

Electro-hydraulic systems use a combination of hydraulic fluid and electricity to power industrial machinery. These systems are used to convert mechanical energy into hydraulic energy and electrical energy.

The advantage of electro-hydraulic systems is that they are more efficient than pure hydraulic systems. This is because electro-hydraulic systems are able to use electrical energy to supplement hydraulic energy.

To know more about hydraulic visit:

https://brainly.com/question/85728

#SPJ11

Determine the convolution product between the following signals A. {[x1(t)=o(t+c)-o(t-c) {[x₂ (t)=t[o(t)-o(t-b)] B. {[x₁(t) = o(t)-o(t-c) {x₂ (t)=t[o(t+b)-o(t-b)] C. {x₁(t)=o(t+c)-o(t) {x₂ (t)=(b-t) [o(t)-o(t-b)] D. {x, (t)=o(t+c)-o(t-c) {x₂ (t)=(b+t)[o(t+b)-o(t-b)]

Answers

We are to determine the convolution product between the given signals. In order to do that, we will perform convolution between the two signals, which is expressed as:f(t) = x₁(t) * x₂(t)where * denotes the convolution operation, and f(t) is the convolution product.

Now, we can solve each given signal separately and find the corresponding convolution product.A. {x₁(t) = o(t+c) - o(t-c)  {x₂(t) = t[o(t) - o(t-b)]Here, x₁(t) is an odd function, and x₂(t) is an even function. Therefore, their product will be an odd function.

Using convolution theorem, we have:f(t) = x₁(t) * x₂(t) = (1/2) [x₁(t + τ) x₂(τ) + x₁(t - τ) x₂(τ)]Since x₁(t) is nonzero only in the interval (-c, c), we have:x₁(t + τ) ≠ 0 for -c - τ < t < c - τ, andx₁(t - τ) ≠ 0 for -c + τ < t < c + τ.

To know more about determine visit:

https://brainly.com/question/29898039

#SPJ11

Buckling: linear and nonlinear analysis Our objective is to study the buckling behavior of a simply supported beam. The material is steel with E=2.10^11 Pa, v = 0.28, the length is 0.5 m and the cross section is of 50 mm height and 10 mm width. Using beam elements (B21) 1. Perform linear buckling analysis using the "*buckle" command in ABAQUS to find the
value of axial load at which the beam looses stability. Calculate the first three buckling loads, compare with the theoretical values and sketch the corresponding mode shapes. Refine the mesh if the predicted values don't agree well with the theoretical values. Write the first few mode shapes to the results file. 2. Use the file from (1) to add imperfections to the beam. Use 0.05 of first three modes. Calculate the critical buckling load. Does the amplitude of the imperfection affect the buckling load? 3. For the imperfect beam (2), plot load vs maximum deflection. Repeat the imperfection magnitudes of 0.01 and 0.1. Is this structure imperfection sensitive?

Answers

Linear buckling analysis is performed to find out the value of axial load at which the beam loses stability. The material is steel, the length is 0.5 m, and the cross-section is of 50 mm height and 10 mm width.

The first three buckling loads, compare with the theoretical values, and sketch the corresponding mode shapes are calculated. The following are the first few mode shapes to the results file.1. Perform linear buckling analysis using the "*buckle" command in ABAQUS to find the value of axial load at which the beam looses stability.

Calculate the first three buckling loads, compare with the theoretical values and sketch the corresponding mode shapes. Refine the mesh if the predicted values don't agree well with the theoretical values. Write the first few mode shapes to the results file.

To know more about Linear buckling visit:

https://brainly.com/question/33309897

#SPJ11

When torque is increased in a transmission, how does this affect the transmission output speed? A) Decreased speed B) Increased speed C) The speed stays the same D) None of these

Answers

When torque is increased in a transmission, it does not directly affect the transmission output speed. Therefore, the correct answer is C) The speed stays the same.


Torque is a rotational force that causes an object to rotate around an axis. In a transmission system, torque is transferred from the input to the output, allowing for power transmission and speed control. The torque multiplication or reduction happens through gear ratios in the transmission.


Increasing the torque input does not inherently change the speed output because the gear ratios determine the relationship between torque and speed. The speed of the transmission output will depend on the specific gear ratio selected and the power requirements of the system. Therefore, increasing torque alone does not directly result in a change in transmission output speed.

Learn more about torque here : brainly.com/question/30338175

#SPJ11

A lathe can be modeled as an electric motor mounted on a steel table. The table plus the motor have a mass of 90 kg. The rotating parts of the lathe have a mass of 7 kg at a distance 0.2 m from the center. The damping ratio of the system is measured to be 0.1 and its natural frequency is 8 Hz. Calculate the amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz.

Answers

The amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz is 1.015 × 10⁻⁶ m.

Mass of the table plus motor = 90 kg

Mass of rotating parts = 7 kg

Distance of rotating parts from the center of the lathe = 0.2 m

Damping ratio of the system = 0.1

Natural frequency of the system = 8 Hz Frequency of the motor = 40 Hz

We can model the lathe as a second-order system with the following parameters:

Mass of the system, m = Mass of the table plus motor + Mass of rotating parts= 90 + 7= 97 kg

Natural frequency of the system, ωn = 2πf = 2π × 8 = 50.24 rad/s

Damping ratio of the system, ζ = 0.1

Let us calculate the amplitude of the steady-state displacement of the motor using the formula below:

Amplitude of the steady-state displacement of the motor, x = F/[(mω²)²+(cω)²]where,

F = force excitation = 1

ω = angular frequency = 2πf = 2π × 40 = 251.33 rad/s

m = mass of the system = 97 kg

c = damping coefficient

ωn = natural frequency of the system = 50.24 rad/s

ζ = damping ratio of the system = 0.1

Substituting the given values in the formula, we get

x = F/[(mω²)²+(cω)²]= 1/[(97 × 251.33²)² + (2 × 0.1 × 97 × 251.33)²]= 1/[(98.5 × 10⁶) + (6.1 × 10⁵)]≈ 1.015 × 10⁻⁶ m

The amplitude of the steady-state displacement of the motor, when the motor runs at 40 Hz is 1.015 × 10⁻⁶ m.

To know more about amplitude visit:

https://brainly.com/question/9525052

#SPJ11

QUESTION 1 Which of the followings is true? The sinc square function is the Fourier transform of A. unit rectangular pulse shifted to a frequency. B. unit triangular pulse shifted to a frequency. C. unit rectangular pulse. D. unit triangular pulse. QUESTION 2 Which of the followings is true? For wideband FM, the referral of Bessel function of the first kind suggests that A. Fourier series coefficients can be given in closed form. B. Bessel function is fast oscillating. C. the modulation index may be undefined. D. the message is sinusoidal.

Answers

Option A is the correct answerThe Fourier Transform of the sinc square function is the unit rectangular pulse shifted to frequency.The Fourier Transform of the sinc square function is the unit rectangular pulse shifted to frequency.

In general, a rectangular function that is shifted in frequency will not have a rectangular shape in the time domain.2. Option D is the correct answer. Therefore, the message signal must be sinusoidal for the Bessel function to appear in the frequency spectrum and for the FM signal to have constant envelope.

Explanation:
1. The Fourier Transform of the sinc square function is the unit rectangular pulse shifted to frequency, which is Option A. The Fourier Transform of the sinc square function is the unit rectangular pulse shifted to frequency. In general, a rectangular function that is shifted in frequency will not have a rectangular shape in the time domain.2.

Therefore, the message signal must be sinusoidal for the Bessel function to appear in the frequency spectrum and for the FM signal to have constant envelope.

To know more about frequency visit:

https://brainly.com/question/33270290

#SPJ11

Other Questions
The development of a glacial period requires:cool summers so that snow doesn't melt and ice sheets canbuild.cold autumnsextra cold winters so there is more snow.cold springs An organic oil having a density of 892 kg/m3 is flowing through the pipingarrangement shown in the figure below at a rate of 1.388 x 10-3 m3/s enteringpipe 1.The flow divides equally in each of pipes 3. The steel pipes have the followinginternal diameters: Pipe 1 = 52.5 mm, Pipe 3 = 40.9 mm.Calculate the following using SI units.(a) The total mass flow rate m in pipe 1 and pipes 3.(b) The average velocity v in 1 and 3(c) The flux G in pipe 1. Question 5: (a) It is proposed to use artillery to deliver SO2 to the stratosphere (20 km height). Shells will be fired vertically at an initial velocity of 800 m/s. Once they reach their maximum altitude, they will release their payload of SO2, then fall to the ground. Calculate the maximum altitude reached by the shells, showing whether the aim of the project has been met [15 marks) The following data are provided with regard to each shell: Mass with payload: 2000 kg Diameter: 0.5 m Drag coefficient 0.5 Assume air to be of constant density =0.8 kg/m. (b) For the following: i. Ocean Acidification ii. Biodiesel iii. Accelerated Weathering In the context of Engineering Design and the Natural Environment, what do you understand by the term? Write a concise paragraph explaining the meaning in each case, including chemical equations where appropriate. [6 marks each] Question 2 You hold a 18 year bond that is callable in 4 years. The call premium is one semi-annual coupon payment, and the coupon rate is0.13. The current YTM is 0.07. What is the yield to call? O-0.0043 O-0.0042 O-0.0041 9 pt O-0.0044 O-0.0039 Question 2 1 pts Alcohol is metabolized most like which other nutrient? O Fat O Protein O Glucose Starch Question 3 1 pts Alcohol metabolism is dependent on what enzyme to breakdown blood alcohol? Alcohol Dehydrogenase Acetate Lipase Acetaldehyde Question 4 1 pts Drinking large amounts of alcohol for many years will take its toll on many of the body's organs, which organ may develop cirrhosis due to alcohol consumption Liver Stomach O Pancreas O Heart Design a metabolic pathway that integrates all of the following:All carbohydrate metabolic pathwaysTCA CycleBe sure to include all steps, intermediates, enzymes, coenzymes (e.g. NADH), vitamin cofactors, and energy produced/used. Strength of materials was concern with relation between load and stress. The slope of stress-strain called the modulus of elasticity. The unit of deformation has the same unit as length L. true false Determine the inverse Z-Transform of the following signals. a. x(z) = 2 + 2z/(z - 5) - 3z (z - 0.2)b. x(z) = 4z/(6z -5 + 1) D 2 .118 A designer, wanting to achieve a stable gain of 100 V/V with a 3-dB frequency above 5MHz, considers her choice of amplifier topologies. What unity-gain frequency would a single operational amplifier require to satisfy her need? Unfortunately, the best available amplifier has an f t of 50MHz. How many such amplifiers connected in a cascade of identical noninverting stages would she need to achieve her goal? What is the 3-dB frequency of each stage? What is the overall 3-dB frequency? 1. Explain what is the process of apoptosis, what is itsimportance and what is the role of caspases in this2. Describe the different types of cell junctions. PLEASE SHOW WORK PLEASE !!!! need helpQuestion 7 Calculate the pH of 0.81 M Mg(OH). Show your work to earn points. Use the editor to format your answer Question 8 Calculate the pH of 0.27 M solution of the pyridine (CsHsN; K=1.7 x 10%) What evidence indicates that humans with aneuploid karyotypes occur at conception but are usually inviable? EdisWhat does it mean for a double helix of DNA to be antiparallel and complementary? The objectives these and those should be used only with what? How would you figure the following problem?Jim Rognowski wants to invest some money now to buy a new tractor in the future. If he wants to have $275,000 available in 7 years, how much does he need to invest now in a CD paying 4.25% interest compound monthly? Find the standard matricies A and A for T=T2T1 and T=T1T2 if T1:R2R3,T(x,y)=(x+2y,yx,2x3y)T2:R3R2,T(x,y,z)=(xy,zx) A circular duct has a diameter of 0.74 m, determine its equivalent width and height of rectangularduct with aspect ratio of 5 in m.A) 0.222 x1.11B) 2.22 x0.444C) 0.444 x 2.22D) 1.11 x0.222 Describe Obesity , Obesity in Canada. Its causes ,effects and its solutions . Write it in about 1000-1200 words . Don't copy anything from internet and write it in your own words.Copying from internet marked as plagirized content. Thank you (iii) What would be the effect on the retention time and order of eluting if the \( C_{18} \) column is substituted with a -CN column? [3 marks] Design Problem:Let us assume you are working on a composite design and manufacturing company, and you are asked to design a structural support, made of unidirectional fiber reinforced epoxy composite, having 10 ft long and round cross section.The design constraints are the following:1. If a force of 500 ls applied, it should stretch to no more than 0.1 in.2. The stress acting on the support need to be < the yield strength of the epoxy material, which is 12,000 psi.3. If the fibers break, the support need to stretch an additional amount but may not fracture in a catastrophic manner.Assume the epoxy material costs ~ 0.80/b and has a Young's modulus of 500,000 psi and a density of 0.0451 b/in3. write at least 200 words on human body regions and why do wedivide the human body into different regions?