Strength of materials was concern with relation between load and stress. The slope of stress-strain called the modulus of elasticity. The unit of deformation has the same unit as length L. true false

Answers

Answer 1

The statement "The unit of deformation has the same unit as length L" is true in Strength of Materials. Strength of Materials is concerned with the relationship between load and stress.

The slope of the stress-strain curve is called the modulus of elasticity, which measures a material's stiffness, or how much it resists deformation when subjected to a force.When a load is applied to a material, it causes a stress to develop, which is the force per unit area. If the load is increased, the stress also increases, and the material will eventually reach a point where it can no longer withstand the load and will deform or fail.

Deformation is the change in length, angle, or shape of a material due to an applied load. The unit of deformation is the same as the unit of length, which is typically meters or millimeters. This means that if a material is subjected to a load and experiences a deformation of 2 mm.

To know more about modulus visit:

https://brainly.com/question/30756002

#SPJ11


Related Questions

The power input to the rotor of a 600 V, 50 Hz, 6 pole, 3 phase induction motor is 70 kW. The rotor electromotive force is observed to make 150 complete alterations per minute. Calculate: i. Frequency of the rotor electromotive force in Hertz. ii. Slip. iii. Stator speed. iv. Rotor speed. v. Total copper loss in rotor.
vi. Mechanical power developed.

Answers

Given:Voltage, V = 600 VFrequency, f = 50 HzPoles, p = 6Power input, P = 70 kWSpeed of rotor, N = 150 rpmTo calculate:i. Frequency of the rotor electromotive force in Hertz.ii. Slip.iii. Stator speed.iv. Rotor speed.v. Total copper loss in rotor.vi. Mechanical power developed.i.

Frequency of the rotor electromotive force in Hertz.Number of cycles per second (frequencies) = N / 60N = 150 rpmNumber of cycles per second (frequencies) = N / 60= 150 / 60= 2.5 HzTherefore, the frequency of the rotor electromotive force is 2.5 Hz.ii. Slip, S.The formula for slip is:S = (Ns - Nr) / Ns Where Ns = synchronous speed and Nr = rotor speed.

We know that,p = 6f = 50 HzNs = 120 f / p= 120 x 50 / 6= 1000 rpmWe can calculate the rotor speed, Nr from the following formula:Nr = (1 - S) x NsGiven, N = 150 rpm Therefore, slip, S = (Ns - N) / Ns= (1000 - 150) / 1000= 0.85iii. Stator speed.We know that stator speed is,Synchronous speed = 1000 rpmTherefore, the stator speed is 1000 rpm.iv. Rotor speed.

To know more about electromotive visit:

https://brainly.com/question/13753346

#SPJ11

Vehicle dynamics Explain "with reason" the effects of the states described below on the vehicle's characteristics A) Applying the rear brake effort on the front wheels more than rear wheels (weight distribution must be taken into account) B) Load transfer from inner wheels to outer wheels C) Driving on the front wheels during cornering behavior D) To be fitted as a spare wheel on the front right wheel, cornering stiffness is lower than other tires

Answers

There are several reasons that would create the effects of the states described below on the vehicle's characteristics. These are all explained below

How to describe the effects of the states

A) Applying more rear brake effort on the front wheels:

- Increases weight transfer to the front, improving front wheel braking.- May reduce stability and lead to oversteer if the rear wheels lose grip.

B) Load transfer from inner to outer wheels during cornering:

- Increases grip on outer wheels, improving cornering ability and stability.- May reduce grip on inner wheels, potentially causing understeer.

C) Driving a front-wheel-drive vehicle during cornering:

- Can cause torque steer, pulling the vehicle to one side.- May exhibit understeer tendencies and reduced maneuverability.

D) Fitting a spare wheel with lower cornering stiffness on the front right wheel:

Low cornering stiffness affects tire grip during cornering.Can create an imbalance and reduce traction on the front right wheel. May result in understeer or reduced cornering ability.

Read more on Vehicle dynamics here https://brainly.com/question/31540536

#SPJ4

Starting from rest, the angular acceleration of the disk is defined by a = (6t3 + 5) rad/s², where t is in seconds. Determine the magnitudes of the velocity and acceleration of point A on the disk when t = 3 s.

Answers

To determine the magnitudes of the velocity and acceleration of point A on the disk when t = 3 s, we need to integrate the given angular acceleration function to obtain the angular velocity and then differentiate the angular velocity to find the angular acceleration.

Finally, we can use the relationship between angular and linear quantities to calculate the linear velocity and acceleration at point A.

Given: Angular acceleration (α) = 6t^3 + 5 rad/s², where t = 3 s

Integrating α with respect to time, we get the angular velocity (ω):

ω = ∫α dt = ∫(6t^3 + 5) dt

ω = 2t^4 + 5t + C

To determine the constant of integration (C), we can use the fact that the angular velocity is zero when the disk starts from rest:

ω(t=0) = 0

0 = 2(0)^4 + 5(0) + C

C = 0

Therefore, the angular velocity function becomes:

ω = 2t^4 + 5t

Now, differentiating ω with respect to time, we get the angular acceleration (α'):

α' = dω/dt = d/dt(2t^4 + 5t)

α' = 8t^3 + 5

Substituting t = 3 s into the equations, we can calculate the magnitudes of velocity and acceleration at point A on the disk.

Velocity at point A:

v = r * ω

where r is the radius of point A on the disk

Acceleration at point A:

a = r * α'

where r is the radius of point A on the disk

Since the problem does not provide information about the radius of point A, we cannot determine the exact magnitudes of velocity and acceleration at this point without that additional information.

For more information on angular acceleration  visit https://brainly.com/question/30237820

#SPJ11

What is the density of superheated steam at a temperature of 823 degrees celsius and 9000 kPa?

Answers

To determine the density of superheated steam at a specific temperature and pressure, we can use steam tables or steam property calculators. Unfortunately, I don't have access to real-time steam property data.

However, you can use a steam table or online steam property calculator to find the density of superheated steam at 823 degrees Celsius and 9000 kPa. These resources provide comprehensive data for different steam conditions, including temperature, pressure, and density.

You can search for "steam property calculator" or "steam table" online, and you'll find reliable sources that can provide the density of superheated steam at your specified conditions.

To know more about steam, visit

https://brainly.com/question/15447025

#SPJ11

Environmental impact of pump hydro station. question: 1. What gains are there from using this form of the hydro pump station compared to more traditional forms (if applicable) 2. What are the interpendencies of this pump hydro station with the environment?. 3. We tend to focus on negative impacts, but also report on positive impacts.

Answers

Pumped hydro storage is one of the most reliable forms of energy storage. The hydroelectric power station functions by pumping water to a higher elevation during times of low demand for power and then releasing the stored water to generate electricity during times of peak demand.

The environmental impact of the pump hydro station is significant. Pumped hydro storage is regarded as one of the most environmentally benign forms of energy storage. It has a relatively low environmental impact compared to other types of energy storage. The environmental impact of a pump hydro station is mostly focused on the dam, which has a significant effect on the environment.

When a dam is built, the surrounding ecosystem is disturbed, and local plant and animal life are affected. The reservoir may have a significant effect on water resources, particularly downstream of the dam. Pumped hydro storage has several advantages over traditional forms of energy storage. Pumped hydro storage is more efficient and flexible than other types of energy storage.

It is also regarded as more dependable and provides a higher level of energy security. Furthermore, the benefits of pumped hydro storage extend beyond energy storage, as the power stations can also be used to stabilize the electrical grid and improve the efficiency of renewable energy sources. Pumped hydro storage has a few disadvantages, including the significant environmental impact of the dam construction. The primary environmental effect of pumped hydro storage is the dam's effect on the surrounding ecosystem and water resources.

While it has a low environmental impact compared to other forms of energy storage, the dam may significantly alter the surrounding ecosystem. Additionally, during periods of drought, the reservoir may not be able to supply adequate water resources, which may impact the surrounding environment. Positive impacts include hydro station’s ability to provide reliable power during peak demand, stabilization of the electrical grid, and the improvement of renewable energy source efficiency.

To know more about hydro station visit:

https://brainly.com/question/33219560

#SPJ11

You throw a ball vertically upward with a velocity of 10 m/s from a
window located 20 m above the ground. Knowing that the acceleration of
the ball is constant and equal to 9.81 m/s2
downward, determine (a) the
velocity v and elevation y of the ball above the ground at any time t,
(b) the highest elevation reached by the ball and the corresponding value
of t, (c) the time when the ball hits the ground and the corresponding
velocity.

Answers

The highest elevation reached by the ball is approximately 25.1 m at t = 1.02 s, and it hits the ground at t = 2.04 s with a velocity of approximately -9.81 m/s.

The velocity v and elevation y of the ball above the ground at any time t can be calculated using the following equations:

v = 10 - 9.81t y = 20 + 10t - 4.905t²

The highest elevation reached by the ball is 25.1 m and it occurs at t = 1.02 s. The time when the ball hits the ground is t = 2.04 s and its velocity is -9.81 m/s.

Hence, v = 10 - 9.81(2.04) = -20.1 m/s and y = 20 + 10(2.04) - 4.905(2.04)² = 0 m.

The velocity v and elevation y of the ball above the ground at any time t can be calculated using the following equations:

v = 10 - 9.81t y = 20 + 10t - 4.905t²

where v is the velocity of the ball in meters per second (m/s), y is its elevation in meters (m), t is time in seconds (s), and g is acceleration due to gravity in meters per second squared (m/s²).

To calculate the highest elevation reached by the ball, we need to find the maximum value of y. We can do this by finding the vertex of the parabolic equation for y:

y = -4.905t² + 10t + 20

The vertex of this parabola occurs at t = -b/2a, where a = -4.905 and b = 10:

t = -10 / (2 * (-4.905)) = 1.02 s

Substituting this value of t into the equation for y gives us:

y = -4.905(1.02)² + 10(1.02) + 20 ≈ 25.1 m

Therefore, the highest elevation reached by the ball is approximately 25.1 m and it occurs at t = 1.02 s.

To find the time when the ball hits the ground, we need to solve for t when y = 0:

0 = -4.905t² + 10t + 20

Using the quadratic formula, we get:

t = (-b ± sqrt(b^2 - 4ac)) / (2a)

where a = -4.905, b = 10, and c = 20:

t = (-10 ± √(10² - 4(-4.905)(20))) / (2(-4.905)) ≈ {1.02 s, 2.04 s}

Since we are only interested in positive values of t, we can discard the negative solution and conclude that the time when the ball hits the ground is approximately t = 2.04 s.

Finally, we can find the velocity of the ball when it hits the ground by substituting t = 2.04 s into the equation for v:

v = 10 - 9.81(2.04) ≈ -9.81 m/s

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

D. Find W and dw for the following values; Z=45º, X=10, Y=100 if each has an associated error of 10%; (i) W=Y-10X (ii) = X2 [cos (22)+sin? (22)] (ii) W=Y In X iv) W=Y log X

Answers

Given the following values, `[tex]Z = 45°, X = 10, Y = 100`[/tex]with an associated error of `10%`. Let's calculate `W` and `dw`.The formula to calculate the error is `[tex]dw = |∂W/∂X| dx + |∂W/∂Y| dy + |∂W/∂Z| dz`.[/tex]

Where, `dx`, `dy`, and `dz` are the respective errors in `X`, `Y`, and `Z`.

[tex]W = Y - 10X`[/tex] Substitute the given values of `X` and `Y` into the formula to get `W = 100 - 10(10) = 0`.Differentiating `W` with respect to `X`, we get: `∂W/∂X = -10`Differentiating `W` with respect to `Y`, we get: [tex]`∂W/∂Y = 1`[/tex]

Substitute the values of `dx = 0.1X`, `dy = 0.1Y` and `dz = 0.1Z` in the error equation. [tex]`dw = |-10(0.1)(10)| + |1(0.1)(100)| + |0| = 1`[/tex]. The value of `W` is `0` and the error in `W` is `1`. [tex]`W = X^2 [cos (22) + sin^2 (22)]`[/tex]Substitute the given value of `X` in the formula to get[tex]`W = 10^2[cos (22) + sin^2(22)] = 965.72`.[/tex]

To know more about calculate visit:

https://brainly.com/question/30781060

#SPJ11

Assuming initial rest conditions, find solutions to the model equations given by:
q1+ a2q1 = P1(t)
q2+b2q2= P2(t)
where P(t)= 17 and P2(t) = 12. Note that =w, and b = w2 (this is done to ease algebraic entry below).
find q1 and q2 as functions of a,b and t and enter in the appropriate boxes below. Help with algebraic entry can be found by clicking on the blue question marks.
q1(t)=
q2(t) =

Answers

q1(t) = (17/ω) * sin(ωt)

q2(t) = (12/ω) * sin(ωt)

Explanation:

The given model equations are:

q1 + a2q1 = P1(t)

q2 + b2q2 = P2(t)

Where P(t) = 17 and P2(t) = 12. We are required to find q1 and q2 as functions of a, b, and t using initial rest conditions. Here, the initial rest conditions mean that initially, both q1 and q2 are zero, i.e., q1(0) = 0 and q2(0) = 0 are known.

Using Laplace transforms, we can get the solution of the given equations. The Laplace transform of q1 + a2q1 = P1(t) can be given as:

L(q1) + a2L(q1) = L(P1(t))

L(q1) (1 + a2) = L(P1(t))

q1(t) = L⁻¹(L(P1(t))/(1 + a2))

Similarly, the Laplace transform of q2 + b2q2 = P2(t) can be given as:

L(q2) + b2L(q2) = L(P2(t))

L(q2) (1 + b2) = L(P2(t))

q2(t) = L⁻¹(L(P2(t))/(1 + b2))

Substituting the given values, we get:

q1(t) = L⁻¹(L(17)/(1 + ω2))

q1(t) = 17/ω * L⁻¹(1/(s2 + ω2))

q1(t) = (17/ω) * sin(ωt)

q2(t) = L⁻¹(L(12)/(1 + ω2))

q2(t) = 12/ω * L⁻¹(1/(s2 + ω2))

q2(t) = (12/ω) * sin(ωt)

Hence, the solutions to the given model equations are:

q1(t) = (17/ω) * sin(ωt)

q2(t) = (12/ω) * sin(ωt)

To know more about  Laplace transforms here:

https://brainly.com/question/30759963

#SPJ11

A round bar 100 mm in diameter 500 mm long is chucked in a lathe and supported on the opposite side with a live centre. 300 mm of this bars diameter is to be reduced to 95 mm in a single pass with a cutting speed of 140 m/min and a feed of 0.25mm/rev. Calculate the metal removal rate of this cutting operation. A. 87500 mm³/min B. 124000 mm³/min C. 136000 mm³/min D. 148000 mm³/min E. 175000 mm³/min

Answers

The metal removal rate of this cutting operation is option A. 87500 mm³/min.

To determine the metal removal rate for a cutting operation of a round bar, the formula to be used is:

$MRR = vfz$

Where: v is the cutting speed in meters per minute

z is the feed rate in millimeters per revolution

f is the chip load (the amount of material removed per tooth of the cutting tool) in millimeters per revolution.

To calculate the metal removal rate (MRR) of this cutting operation, the following formula will be used:$MRR = vfz$

The feed rate (z) is given as 0.25 mm/rev.

Cutting speed (v) = 140m/min$f =\frac{D-d}{2} =\frac{100-95}{2} =2.5 mm/rev$

Where D is the original diameter and d is the final diameter. Since the reduction of 300 mm length of the bar is to 95 mm, then the total metal to be removed = $2.5mm \times 300mm =750mm³

$Converting this to millimeters cube per minute

$MRR = vfz$$MRR = (140m/min)(0.25mm/rev)(2.5 mm/rev)

$$MRR = 8.75mm³/min = 87500 mm³/min$

To know more about the operation, visit:

https://brainly.com/question/29780075

#SPJ11

Design a controller for the unstable plant G(s) = 1/ s(20s+10) such that the resulting) unity-feedback control system meet all of the following control objectives. The answer should give the transfer function of the controller and the values or ranges of value for the controller coefficients (Kp, Kd, and/or Ki). For example, if P controller is used, then only the value or range of value for Kp is needed. the closed-loop system's steady-state error to a unit-ramp input is no greater than 0.1;

Answers

The transfer function for the plant, G(s) = 1/s(20s+10) can be written in state-space form as shown below:

X' = AX + BUY = CX

Where X' is the derivative of the state vector X, U is the input, and Y is the output of the system.A = [-1/20]B = [1/20]C = [1 0]We will use the pole placement technique to design the controller to meet the following control objectives:

the closed-loop system's steady-state error to a unit-ramp input is no greater than 0.1The desired characteristic equation of the closed-loop system is given as:S(S+20) + KdS + Kp = 0Since the plant is unstable, we will add a pole at the origin to stabilize the system. The desired characteristic equation with a pole at the origin is:S(S+20)(S+a) + KdS + Kp = 0where 'a' is the additional pole to be added at the origin.The closed-loop transfer function of the system is given as:

Gc(s) = (Kd S + Kp) / [S(S+20)(S+a) + KdS + Kp]

To meet the steady-state error requirement, we will use an integral controller. Thus the transfer function of the controller is given as:

C(s) = Ki/S

And the closed-loop transfer function with the controller is given as:

Gc(s) = (Kd S + Kp + Ki/S) / [S(S+20)(S+a) + KdS + Kp]

For the steady-state error to be less than or equal to 0.1, the error constant should be less than or equal to 1/10.Kv = lim S->0 (S*G(s)*C(s)) = 1/20Kp = 1/10Ki >= 2.5Kd >= 2.5Thus the transfer function for the controller is:

C(s) = (2.5 S + Ki)/S

To know more about pole placement visit :

https://brainly.com/question/30888799

#SPJ11

For bit1 [1 0 1 0 1 01110001] and bit2-[11100011 10011]; find the bitwise AND, bitwise OR, and bitwise XOR of these strings.

Answers

The Bitwise AND, OR and XOR of bit1 and bit2 are 1 0 1 0 1 00010001, 1 1 1 0 1 11110011, and 0 1 0 0 0 10100010 respectively.

Given bit1 as [1 0 1 0 1 01110001] and bit2 as [11100011 10011]Bitwise AND ( & ) operation between bit1 and bit2:

For bitwise AND operation, we consider 1 only if both the bits in the operands are 1. Otherwise, we consider the value of 0.

For our given problem, we perform the AND operation as follows:

Bitwise AND result between bit1 and bit2 is 1 0 1 0 1 00010001Bitwise OR ( | ) operation between bit1 and bit2:

For bitwise OR operation, we consider 1 in the result if either of the bits in the operands is 1. We consider 0 only if both the bits in the operands are 0.

For our given problem, we perform the OR operation as follows:

Bitwise OR result between bit1 and bit2 is 1 1 1 0 1 11110011Bitwise XOR ( ^ ) operation between bit1 and bit2:

For bitwise XOR operation, we consider 1 in the result if the bits in the operands are different. We consider 0 if the bits in the operands are the same.

For our given problem, we perform the XOR operation as follows:

Bitwise XOR result between bit1 and bit2 is 0 1 0 0 0 10100010

Thus, the Bitwise AND, OR and XOR of bit1 and bit2 are 1 0 1 0 1 00010001, 1 1 1 0 1 11110011, and 0 1 0 0 0 10100010 respectively.

To know more about Bitwise visit:

https://brainly.com/question/30904426

#SPJ11

If the allowable deflection of a warehouse is L/180, how much is a 15' beam allowed to deflect? 0.0833 inches o 1 inch 1.5 inches 1 foot a What is the equation for the max deflection at the end of a cantilever beam with a uniform distributed load over the entire beam? -5wL44/384E1 -PL^3/48EI -PL^3/3EI O-WL4/8E1

Answers

If the allowable deflection of a warehouse is L/180, we need to determine the maximum deflection of a 15' beam. The options for the deflection equation of a cantilever beam with a uniform distributed load are provided as: -5wL^4/384E1, -PL^3/48EI, -PL^3/3EI, and -WL^4/8E1.

To calculate the maximum deflection at the end of a cantilever beam with a uniform distributed load over the entire beam, we can use the deflection equation for a cantilever beam. The correct equation for the maximum deflection is -PL^3/3EI, where P is the applied load, L is the length of the beam, E is the modulus of elasticity of the material, and I is the moment of inertia of the beam's cross-sectional shape. However, it should be noted that the given options in the question do not include the correct equation. Therefore, none of the provided options (-5wL^4/384E1, -PL^3/48EI, -PL^3/3EI, -WL^4/8E1) represent the correct equation for the maximum deflection at the end of a cantilever beam with a uniform distributed load.

Learn more about maximum deflection here:

https://brainly.com/question/32774334

#SPJ11

The mechanical ventilation system of a workshop may cause a nuisance to nearby
residents. The fan adopted in the ventilation system is the lowest sound power output
available from the market. Suggest a noise treatment method to minimize the nuisance
and state the considerations in your selection.

Answers

The noise treatment method to minimize the nuisance in the ventilation system is to install an Acoustic Lagging. The Acoustic Lagging is an effective solution for the problem of sound pollution in mechanical installations.

The best noise treatment method for the workshop mechanical ventilation system. The selection of a noise treatment method requires a few considerations such as the reduction of noise to a safe level, whether the method is affordable, the effectiveness of the method and, if it is suitable for the specific environment.

The following are the considerations in the selection of noise treatment methods, Effectiveness,  Ensure that the chosen method reduces noise levels to more than 100 DB without fail and effectively, especially in environments with significant noise levels.

To know more about treatment visit:

https://brainly.com/question/31799002

#SPJ11

A sampling plan is desired to have a producer's risk of 0.05 at AQL=1% and a consumer's risk of 0.10 at LQL=5% nonconforming. Find the single sampling plan that meets the consumer's stipulation and comes as close as possible to meeting the producer's stipulation.

Answers

The sampling plan is desired to have a producer's risk of 0.05 at AQL=1% and a consumer risk of 0.10 at LQL=5% nonconforming.

We are supposed to find the single sampling plan that meets the consumer's stipulation and comes as close as possible to meeting the producer's stipulation. The producer's risk is the probability that the sample from the lot will be rejected.

Given that the lot quality is good  The consumer risk is the probability that the sample from the lot will be accepted, given that the lot quality is bad (i.e., the lot quality is worse than the limiting quality level, LQL).The lot tolerance percent defective (LTPD) is calculated as which is midway between   and  .Now, we need to find a single sampling plan that meets the consumer's stipulation of a consumer risk of .

To know more about sampling visit:

https://brainly.com/question/31890671

#SPJ11

A steel spring with squared and ground ends has a wire diameter of d=0.04 inch, and mean diameter of D=0.32 inches. What is the maximum static load (force) that the spring can withstand before going beyond the allowable shear strength of 80 ksi?
a) 4.29 lbf b) 5.36 lbf c) 7.03 lbf d) Other: ____ If the above spring has a shear modulus of 10,000 ksi and 8 active coils, what is the maximum deflection allowed?
a) 1.137 in b).822 lbf c) 0.439 in d) Other: ____

Answers

a) The maximum static load that the spring can withstand before going beyond the allowable shear strength is 4.29 lbf.The maximum deflection allowed for the spring is 0.439 in.

To calculate the maximum static load, we can use the formula for shear stress in a spring, which is equal to the shear strength of the material multiplied by the cross-sectional area of the wire. By substituting the given values into the formula, we can calculate the maximum static load.The maximum deflection of a spring can be calculated using Hooke's law for springs, which states that the deflection is proportional to the applied load and inversely proportional to the spring constant. By substituting the given values into the formula, we can calculate the maximum deflection allowed.

To know more about spring click the link below:

brainly.com/question/13153760

#SPJ11

b) Describe the symbol for Control Valve as state below; i. 2/2 DCV ii. 3/2 Normally Open DCV III. 5/2 DCV Check valve with spring 4/2 DCV

Answers

The spring in the valve controls the flow of fluid through the valve.4/2 DCV: This is a four-way, two-position valve with two inlet and two outlets, and is used to control the flow of fluid through a hydraulic circuit.

Control valves are components of a hydraulic system used to regulate the flow of fluids through pipes, ensuring that the correct amount of liquid or gas flows through the pipeline. The symbols for different types of control valves are usually used in hydraulic diagrams to indicate their functions and position. The symbols for the different control valves are as follows:i. 2/2 DCV: This control valve is two-way, two-position, and is commonly used to open or shut off a flow of fluid

3/2 Normally Open DCV: This is a three-way, two-position control valve that is typically used to control the flow of a fluid in a hydraulic circuit. It has one inlet and two outlets and is always open in one position. iii. 5/2 DCV Check valve with spring: This is a five-way, two-position valve that has one inlet and two outlets, with a check valve on one outlet.

To know more about Valve control visit-

https://brainly.com/question/32670164

#SPJ11

1. (2 points each) Reduce the following Boolean Functions into their simplest form. Show step-by-step solution. A. F=[(X ′
Y) ′ +(YZ ′ ) ′ +(XZ) ′ ] B. F=[(AC ′ )+(AB ′ C)] ′ [(AB+C) ′ +(BC)] ′ +A ′ BC 2. (3 points each) I. Show step-by-step solution to express the following Boolean Functions as a sum of minterms. II. Draw the Truth Table. III. Express the function using summation ( ( ) notation. A. F=A+BC ′ +B ′ C+A ′ BC B. F=X ′ +XZ+Y ′ Z+Z

Answers

The simplified form of Boolean function F is F = X' + Y' + Z'.

The simplified form of Boolean function F is F = AC + A'BC.

A. F = [(X'Y)' + (YZ)' + (XZ)']'

Step 1: De Morgan's Law

F = [(X' + Y') + (Y' + Z') + (X' + Z')]

Step 2: Boolean function

F = X' + Y' + Z'

B. F = [(AC') + (AB'C)]'[(AB + C)' + (BC)]' + A'BC

Step 1: De Morgan's Law

F = (AC')'(AB'C')'[(AB + C)' + (BC)]' + A'BC

Step 2: Double Complement Law

F = AC + AB'C [(AB + C)' + (BC)]' + A'BC

Step 3: Distributive Law

F = AC + AB'C AB' + C'' + A'BC

Step 4: De Morgan's Law

F = AC + AB'C [AB' + C'](B + C')' + A'BC

Step 5: Double Complement Law

F = AC + AB'C [AB' + C'](B' + C) + A'BC

Step 6: Distributive Law

F = AC + AB'C [AB'B' + AB'C + C'B' + C'C] + A'BC

Step 7: Simplification

F = AC + AB'C [0 + AB'C + 0 + C] + A'BC

Step 8: Identity Law

F = AC + AB'C [AB'C + C] + A'BC

Step 9: Distributive Law

F = AC + AB'CAB'C + AB'CC + A'BC

Step 10: Simplification

F = AC + 0 + 0 + A'BC

Know more about Boolean function here:

brainly.com/question/27885599

#SPJ4

What is specific enthalpy of vaporization of liquid-vapor mixture at 6 bar? At 6 bar, hg = 2756.8 kJ/kg, hf = 670.56 kJ/kg

Answers

The specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar is approximately 2086.24 kJ/kg.

What is the specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar?

The specific enthalpy of vaporization (Δh) of a liquid-vapor mixture at 6 bar can be calculated by subtracting the specific enthalpy of the liquid phase (hf) from the specific enthalpy of the vapor phase (hg).

Given:

hg = 2756.8 kJ/kg

hf = 670.56 kJ/kg

Δh = hg - hf

Δh = 2756.8 kJ/kg - 670.56 kJ/kg

Δh ≈ 2086.24 kJ/kg

Therefore, the specific enthalpy of vaporization of the liquid-vapor mixture at 6 bar is approximately 2086.24 kJ/kg.

Learn more about vapor mixture

brainly.com/question/30652627

#SPJ11

Assignment 6: A new program in genetics engineering at Gentex will require RM10 million in capital. The cheif financial officer (CFO) has estimated the following amounts of capital at the indicated rates per year. Stock sales RM5 million at 13.7% per year Use of retained earnings RM2 million at 8.9% per year Debt financing throung bonds RM3 million at 7.5% per year Retain earning =2 millions Historically, Gentex has financed projects using a D-E mix of 40% from debt sources costing 7.5% per year and 60% from equity sources stated above with return rate 10% year. Questions; a. Compare the historical and current WACC value. b. Determine the MARR if a return rate of 5% per year is required. Hints a. WACC history is 9.00% b. MARR for additional 5% extra return is 15.88% Show a complete calculation steps.

Answers

The historical weighted average cost of capital (WACC) can be calculated using the D-E mix and the respective costs of debt and equity:15.00%

WACC_historical = (D/D+E) * cost_of_debt + (E/D+E) * cost_of_equity

Given that the D-E mix is 40% debt and 60% equity, the cost of debt is 7.5% per year, and the cost of equity is 10% per year, the historical WACC can be calculated as follows:

WACC_historical = (0.4 * 7.5%) + (0.6 * 10%)

The minimum acceptable rate of return (MARR) can be determined by adding the required return rate (5% per year) to the historical WACC:

MARR = WACC_historical + Required Return Rate

Using the historical WACC of 9.00%, the MARR for a return rate of 5% per year can be calculated as follows:

MARR = 9.00% + 5%

To show the complete calculation steps:

a. WACC_historical = (0.4 * 7.5%) + (0.6 * 10%)

WACC_historical = 3.00% + 6.00%

WACC_historical = 9.00%

b. MARR = 9.00% + 5%

MARR = 14.00% + 1.00%

MARR = 15.00%

To know more about capital click the link below:

brainly.com/question/31699448

#SPJ11

A cable is made of two strands of different materials, A and B, and cross-sections, as follows: For material A, K = 60,000 psi, n = 0.5, Ao = 0.6 in²; for material B, K = 30,000 psi, n = 0.5, Ao = 0.3 in².

Answers

A cable that is made of two strands of different materials A and B with cross-sections is given. For material A, K = 60,000 psi, n = 0.5, Ao = 0.6 in²; for material B, K = 30,000 psi, n = 0.5, Ao = 0.3 in².The strain in the cable is the same, irrespective of the material of the cable. Hence, to calculate the stress, use the stress-strain relationship σ = Kε^n

The material A has a cross-sectional area of 0.6 in² while material B has 0.3 in² cross-sectional area. The cross-sectional areas are not the same. To calculate the stress in each material, we need to use the equation σ = F/A. This can be calculated if we know the force applied and the cross-sectional area of the material. The strain is given as ε = 0.003. Hence, to calculate the stress, use the stress-strain relationship σ = Kε^n. After calculating the stress, we can then calculate the force in each material by using the equation F = σA. By applying the same strain to both materials, we can find the corresponding stresses and forces.

Therefore, the strain in the cable is the same, irrespective of the material of the cable. Hence, to calculate the stress, use the stress-strain relationship σ = Kε^n. After calculating the stress, we can then calculate the force in each material by using the equation F = σA.

To know more about strain visit:
https://brainly.com/question/32006951
#SPJ11

2. Write the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. Only write in the steps you feel are necessary to accomplish the task. Draw a double line through the ones you feel are NOT relevant to placing of and orienting the PRZ. 1 Select Origin type to be used 2 Select Origin tab 3 Create features 4 Create Stock 5 Rename Operations and Operations 6 Refine and Reorganize Operations 7 Generate tool paths 8 Generate an operation plan 9 Edit mill part Setup definition 10 Create a new mill part setup 11 Select Axis Tab to Reorient the Axis

Answers

The steps explained here will help in properly locating and orienting the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined.

The following are the steps necessary, in proper numbered sequence, to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined:

1. Select Origin type to be used

2. Select Origin tab

3. Create features

4. Create Stock

5. Rename Operations and Operations

6. Refine and Reorganize Operations

7. Generate tool paths

8. Generate an operation plan

9. Edit mill part Setup definition

10. Create a new mill part setup

11. Select Axis Tab to Reorient the Axis

Explanation:The above steps are necessary to properly locate and orient the origin of a milled part (PRZ) on your solid model once your "Mill Part Setup" and "Stock" has been defined. For placing and orienting the PRZ, the following steps are relevant:

1. Select Origin type to be used: The origin type should be selected in the beginning.

2. Select Origin tab: After the origin type has been selected, the next step is to select the Origin tab.

3. Create features: Features should be created according to the requirements.

4. Create Stock: Stock should be created according to the requirements.

5. Rename Operations and Operations: Operations and operations should be renamed as per the requirements.

6. Refine and Reorganize Operations: The operations should be refined and reorganized.

7. Generate tool paths: Tool paths should be generated for the milled part.

8. Generate an operation plan: An operation plan should be generated according to the requirements.

9. Edit mill part Setup definition: The mill part setup definition should be edited according to the requirements.

10. Create a new mill part setup: A new mill part setup should be created as per the requirements.

11. Select Axis Tab to Reorient the Axis: The axis tab should be selected to reorient the axis.

To know more about Stock visit:

brainly.com/question/31940696

#SPJ11

An air-standard dual cycle has a compression ratio of 9. At the beginning of compression, p1 = 100 kPa, T1 = 300 K, and V1 = 14 L. The total amount of energy added by heat transfer is 22.7 kJ. The ratio of the constant-volume heat addition to total heat addition is zero. Determine: (a) the temperatures at the end of each heat addition process, in K. (b) the net work per unit of mass of air, in kJ/kg. (c) the percent thermal efficiency. (d) the mean effective pressure, in kPa.

Answers

(a) T3 = 1354 K, T5 = 835 K

(b) 135.2 kJ/kg

(c) 59.1%

(d) 740.3 kPa.

Given data:

Compression ratio r = 9Pressure at the beginning of compression, p1 = 100 kPa Temperature at the beginning of compression,

T1 = 300 KV1 = 14 LHeat added to the cycle, qin = 22.7 kJ/kg

Ratio of the constant-volume heat addition to the total heat addition,

rc = 0First, we need to find the temperatures at the end of each heat addition process.

To find the temperature at the end of the combustion process, use the formula:

qin = cv (T3 - T2)cv = R/(gamma - 1)T3 = T2 + qin/cvT3 = 300 + (22.7 × 1000)/(1.005 × 8.314)T3 = 1354 K

Now, the temperature at the end of heat rejection can be calculated as:

T5 = T4 - (rc x cv x T4) / cpT5 = 1354 - (0 x (1.005 x 8.314) x 1354) / (1.005 x 8.314)T5 = 835 K

(b)To find the net work done, use the formula:

Wnet = qin - qoutWnet = cp (T3 - T2) - cp (T4 - T5)Wnet = 1.005 (1354 - 300) - 1.005 (965.3 - 835)

Wnet = 135.2 kJ/kg

(c) Thermal efficiency is given by the formula:

eta = Wnet / qineta = 135.2 / 22.7eta = 59.1%

(d) Mean effective pressure is given by the formula:

MEP = Wnet / VmMEP = 135.2 / (0.005 m³)MEP = 27,040 kPa

The specific volume V2 can be calculated using the relation V2 = V1/r = 1.56 L/kg

The specific volume at state 3 can be calculated asV3 = V2 = 0.173 L/kg

The specific volume at state 4 can be calculated asV4 = V1 x r = 126 L/kg

The specific volume at state 5 can be calculated asV5 = V4 = 126 L/kg

The final answer for   (a) is T3 = 1354 K, T5 = 835 K, for (b) it is 135.2 kJ/kg, for (c) it is 59.1%, and for (d) it is 740.3 kPa.

To learn more about  Thermal efficiency

https://brainly.com/question/13039990

#SPJ11

As the viscosity of fluids increases the boundary layer
thickness does what? Remains the same? Increases? Decreases?
Explain your reasoning and show any relevant mathematical
expressions.

Answers

As the viscosity of fluids increases, the boundary layer thickness increases. This can be explained by the fundamental principles of fluid dynamics, particularly the concept of boundary layer formation.

In fluid flow over a solid surface, a boundary layer is formed due to the presence of viscosity. The boundary layer is a thin region near the surface where the velocity of the fluid is influenced by the shear forces between adjacent layers of fluid. The thickness of the boundary layer is a measure of the extent of this influence.

Mathematically, the boundary layer thickness (δ) can be approximated using the Blasius solution for laminar boundary layers as:

δ ≈ 5.0 * (ν * x / U)^(1/2)

where:

δ = boundary layer thickness

ν = kinematic viscosity of the fluid

x = distance from the leading edge of the surface

U = free stream velocity

From the equation, it is evident that the boundary layer thickness (δ) is directly proportional to the square root of the kinematic viscosity (ν) of the fluid. As the viscosity increases, the boundary layer thickness also increases.

This behavior can be understood by considering that a higher viscosity fluid resists the shearing motion between adjacent layers of fluid more strongly, leading to a thicker boundary layer. The increased viscosity results in slower velocity gradients and a slower transition from the no-slip condition at the surface to the free stream velocity.

Therefore, as the viscosity of fluids increases, the boundary layer thickness increases.

To know more about viscosity, click here:

https://brainly.com/question/30640823

#SPJ11

The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. Select one: a True b False

Answers

The given statement is true, i.e., the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor

The properties of a saturated liquid are the same, whether it exists alone or in a mixture with saturated vapor. This statement is true. The properties of saturated liquids and their vapor counterparts, according to thermodynamic principles, are solely determined by pressure. As a result, the liquid and vapor phases of a pure substance will have identical specific volumes and enthalpies at a given pressure.

Saturated liquid refers to a state in which a liquid exists at the temperature and pressure where it coexists with its vapor phase. The liquid is said to be saturated because any increase in its temperature or pressure will lead to the vaporization of some liquid. The saturated liquid state is utilized in thermodynamic analyses, particularly in the determination of thermodynamic properties such as specific heat and entropy.The properties of a saturated liquid are determined by the material's pressure, temperature, and phase.

Any improvement in the pressure and temperature of a pure substance's liquid phase will lead to its vaporization. As a result, the specific volume of a pure substance's liquid and vapor phases will be identical at a specified pressure. Similarly, the enthalpies of the liquid and vapor phases of a pure substance will be the same at a specified pressure. Furthermore, if a liquid is saturated, its properties can be determined by its pressure alone, which eliminates the need for temperature measurements.The statement, "the properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor," is accurate. The saturation pressure of a pure substance's vapor phase is determined by its temperature. As a result, the vapor and liquid phases of a pure substance are in thermodynamic equilibrium, and their properties are determined by the same pressure value. As a result, any alteration in the liquid-vapor mixture's composition will have no effect on the liquid's properties. It's also worth noting that the temperature of a saturated liquid-vapor mixture will not be uniform. The liquid-vapor equilibrium line, which separates the two-phase area from the single-phase area, is defined by the boiling curve.

The properties of a saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. This is true because the properties of both the liquid and vapor phases of a pure substance are determined by the same pressure value. Any modification in the liquid-vapor mixture's composition has no effect on the liquid's properties.

To know more about enthalpies visit:

brainly.com/question/29145818

#SPJ11

List out the methods to improve the efficiency of the Rankine cycle

Answers

The Rankine cycle is an ideal cycle that includes a heat engine which is used to convert heat into work. This cycle is used to drive a steam turbine.

The efficiency of the Rankine cycle is affected by a variety of factors, including the quality of the boiler, the temperature of the working fluid, and the efficiency of the turbine. Here are some methods that can be used to improve the efficiency of the Rankine cycle:

1. Superheating the Steam: Superheating the steam increases the temperature and pressure of the steam that is leaving the boiler, which increases the work done by the turbine. This results in an increase in the overall efficiency of the Rankine cycle.2. Regenerative Feed Heating: Regenerative feed heating involves heating the feed water before it enters the boiler using the waste heat from the turbine exhaust. This reduces the amount of heat that is lost from the cycle and increases its overall efficiency.


To know more about  work visit:

brainly.com/question/31349436

#SPJ11

Solve this problem in MRAS method
{ X = Ax + Bu
{ Xₘ= Aₘxₘ + Bₘr
{ u = Mr - Lx
{ Aₘ=is Hurwitz

Answers

To solve the problem using the Model Reference Adaptive System (MRAS) method, we need to design an adaptive controller that adjusts the parameters of the system to minimize the error between the output of the plant and the desired reference model.

The problem is stated as follows:

{

X = Ax + Bu

Xₘ = Aₘxₘ + Bₘr

u = Mr - Lx

Aₘ is Hurwitz

To apply the MRAS method, we'll design an adaptive controller that updates the parameter L based on the error between the plant output X and the reference model output Xₘ.

Let's define the error e as the difference between X and Xₘ:

e = X - Xₘ

Substituting the expressions for X and Xₘ, we have:

e = Ax + Bu - Aₘxₘ - Bₘr

To apply the MRAS method, we'll use an adaptive law to update the parameter L. The adaptive law is given by:

dL/dt = -εe*xₘᵀ

Where ε is a positive adaptation gain.

We can rewrite the equation for the error as:

e = (A - Aₘ)x + (B - Bₘ)r

Using the equation for u, we can substitute for x:

e = (A - Aₘ)(u + Lx) + (B - Bₘ)r

Expanding the equation, we have:

e = (A - Aₘ)Lx + (A - Aₘ)u + (B - Bₘ)r

Now, taking the derivative of the error with respect to time, we have:

de/dt = (A - Aₘ)L(dx/dt) + (A - Aₘ)(du/dt) + (B - Bₘ)(dr/dt)

Since dx/dt = Ax + Bu and du/dt = Mr - Lx, we can substitute these expressions:

de/dt = (A - Aₘ)L(Ax + Bu) + (A - Aₘ)(Mr - Lx) + (B - Bₘ)(dr/dt)

Simplifying the equation, we have:

de/dt = (A - Aₘ)LAx + (A - Aₘ)B + (A - Aₘ)Mr - (A - Aₘ)L²x - (A - Aₘ)LBx + (B - Bₘ)(dr/dt)

Since we want to update L based on the error e, we set de/dt = 0. This leads to the following equation:

0 = (A - Aₘ)LAx + (A - Aₘ)B + (A - Aₘ)Mr - (A - Aₘ)L²x - (A - Aₘ)LBx + (B - Bₘ)(dr/dt)

Simplifying further, we get:

0 = [(A - Aₘ)LA - (A - Aₘ)L² - (A - Aₘ)LB]x + (A - Aₘ)B + (A - Aₘ)Mr + (B - Bₘ)(dr/dt)

Since this equation holds for all x, we can equate the coefficients of x and the constant terms to zero:

(A - Aₘ)LA - (A - Aₘ)L² - (A - Aₘ)LB = 0  -- (1)

(A - Aₘ)B + (A - Aₘ)Mr + (B - Bₘ)(dr/dt) = 0

To know more about Model Reference Adaptive System visit:

brainly.com/question/8536180

#SPJ11

Oil is supplied at the flow rate of 13660 mm' to a 60 mm diameter hydrodynamic bearing
rotating at 6000 rpm. The bearing radia clearance is 30 um and its length is 30 mm. The beaning is linder a load of 1.80 kN.
determine temperature rise through the bearing?

Answers

The hydrodynamic bearing is a device used to support a rotating shaft in which a film of lubricant moves dynamically between the shaft and the bearing surface, separating them to reduce friction and wear.

Step-by-step solution:

Given parameters are, oil flow rate = 13660 mm3/s

= 1.366 x 10-5 m3/s Bearing diameter

= 60 mm Bearing length

= 30 mm Bearing radial clearance

= 30 µm = 30 x 10-6 m Bearing load

= 1.80 kN

= 1800 N

Rotating speed of bearing = 6000 rpm

= 6000/60 = 100 rps

= ω Bearing radius = R

= d/2 = 60/2 = 30 mm

= 30 x 10-3 m

Now, the oil film thickness = h

= 0.78 R (for well-lubricated bearings)

= 0.78 x 30 x 10-3 = 23.4 µm

= 23.4 x 10-6 m The shear stress at the bearing surface is given by the following equation:

τ = 3 μ Q/2 π h3 μ is the dynamic viscosity of the oil, and Q is the oil flow rate.

Thus, μ = τ 2π h3 / 3 Q  = 1.245 x 10-3 Pa.s

Heat = Q μ C P (T2 - T1)  

C = 2070 J/kg-K (for oil) P = 880 kg/m3 (for oil) Let T2 be the temperature rise through the bearing. So, Heat = Q μ C P T2

W = 2 π h L σ b = 2 π h L (P/A) (from Hertzian contact stress theory) σb is the bearing stress,Thus, σb = 2 W / (π h L) (P/A) = 4 W / (π d2) A = π dL

Thus, σb = 4 W / (π d L) The bearing temperature rise is given by the following equation:

T2 = W h / (π d L P C) [μ(σb - P)] T2 = 0.499°C.

To know more about hydrodynamic visit:

https://brainly.com/question/10281749

#SPJ11

A body in uniaxial tension has a maximum principal stress of 20 MPa. If the body's stress state is represented by a Mohr circle, what is the circle's radius? a 20 MPa bb 5 MPa c 2 MPa d 10 MPa

Answers

The radius of the Mohr circle represents half of the difference between the maximum and minimum principal stresses. 10 MPa is the correct answer

The radius of a Mohr circle represents the magnitude of the maximum shear stress. In uniaxial tension, the maximum shear stress is equal to half of the difference between the maximum and minimum principal stresses. Since the maximum principal stress is given as 20 MPa, the minimum principal stress in uniaxial tension is zero.

In this case, the maximum principal stress is given as 20 MPa. Since the stress state is uniaxial tension, the minimum principal stress is zero.

Therefore, the radius of the Mohr circle is:

Radius = (σ₁ - σ₃) / 2

Since σ₃ = 0, the radius simplifies to:

Radius = σ₁ / 2

Substituting the given value of σ₁ = 20 MPa, we have:

Radius = 20 MPa / 2 = 10 MPa

Therefore, the radius of the Mohr circle representing the body's stress state is 10 MPa.

Option (d) 10 MPa is the correct answer.

To know more about  Mohr circle visit:

https://brainly.com/question/31642831

#SPJ11

If a double-line-to-line fault occurs across "b" and "c" to ground, and Ea = 200 V20⁰, Zs = 0.06 2+j 0.15 , Zn = 0 and Z₁ = 0.05 2+j 0.2 02, find: a) the sequence current la1 then find lao and laz b) fault current If c) the sequence voltages Vai, Vaz and Vao d) sketch the sequence network for the line-to-line fault.

Answers

A line-to-line-to-ground fault is a type of fault in which a short circuit occurs between any two phases (line-to-line) as well as the earth or ground. As a result, the fault current increases, and the system's voltage decreases.

The line-to-line fault can be transformed into sequence network components, which will help to solve for fault current, voltage, and sequence current. For a three-phase system, the sequence network is shown below. Sequence network of a three-phase system. The fault current can be obtained by using the following formula; [tex]If =\frac{E_a}{Z_s + Z_1}[/tex][tex]Z_

s = 0.06 + j 0.15[/tex][tex]Z_1

= 0.05 + j 0.202[/tex][tex]If

=\frac{E_a}{Z_s + Z_1}[/tex][tex]

If =\frac{200}{0.06 + j 0.15+ 0.05 + j 0.202}[/tex][tex]

If =\frac{200}{0.11 + j 0.352}[/tex][tex

]If = 413.22∠72.5°[/tex]a)

Sequence current la1Sequence current formula is given below;[tex]I_{a1} = If[/tex][tex]I_{a1}

= 413.22∠72.5°[/tex] For la0, la0 is equal to (2/3) If, and la2 is equal to (1/3)

Sketch the sequence network for the line-to-line fault. The sequence network for the line-to-line fault is as shown below. Sequence network for line-to-line fault.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

Using an allowable shearing stress of 8,000 psi, design a solid steel shaft to transmit 14 hp at a speed of 1800 rpm Note(1) : Power =2 t f T where fis frequency (Cycles/second) and Tis torque (in-lb). Note(2): 1hp=550 ft-lb =6600 in-lb

Answers

The diameter of the solid steel shaft to transmit 14 hp at a speed of 1800 rpm is 0.479 inches. The shaft must have a diameter of at least 0.479 inches to withstand the shearing stress of 8,000 psi.

Solid steel shaft to transmit 14 hp at a speed of 1800 rpm:

The formula for finding the horsepower (hp) of a machine is given by;

Power (P) = Torque (T) x Angular velocity (ω)Angular velocity (ω) = (2 x π x N)/60,

where N is the speed of the shaft in rpmT = hp x 550 / NTo design a solid steel shaft to transmit 14 hp at a speed of 1800 rpm:

Step 1: Find the torqueT = hp x 550 / NT = 14 hp x 550 / 1800 rpm = 4.29 in-lb

Step 2: Find the diameter of the shaft by using torsional equation

T = τ_max * (π/16)d^3τ_max = 8,000

psiτ_max = (2 * 4.29 in-lb) / (π * d^3/16)8000

psi = (2 * 4.29 in-lb) / (π * d^3/16)d = 0.479 inches

To know more about shearing stress visit:

https://brainly.com/question/13385447

#SPJ11

Other Questions
True/False: Cantilever beams are always in equilibrium, whether you form the equilibrium equations or not Which of the following example is decomposition reaction? (a) Evaporation of water (b) Exposure of photographic film in the presence of light (c) Heating sulphur in the presence of oxygen (d) Dissolving salt in water y varies inversely as . If = 6 then y = 4. Find y when * = 7. 200 ThereWrite a function describing the relationship of the given variables. W varies inversely with the square of 2 and when 12 = 3, W Lines k,m, and n are equally spaced parallel lines. Let ABCD be a parallelogram of area 5 square units. (a) What is the area of the parallelogram ABEF? (b) What is the area of the parallelogram ABGH ? (c) If AB=2 units of length, what is the distance between the parallel lines? (a) The area of the parallelogram ABEF is 8quare units (Type an integer or a decimal.) An oval track is made by erecting semicircles on each end of a 42 m by 84 m rectangle. Find the length of the track and the area enclosed by the track. Use 3.14 for . The length of the track is m. (Round to the nearest whole number.) Find the area of the shaded region. Use 3.14 m 2(Round the final answer to the nearest hundredth as needed. Round all intermediate values to the nearest hundredth as needed.) Balance the combustion reaction in order to answer the question. Use lowest whole-number coefficients. combustion reaction: CH + O - CO,+H,O A conbustion reaction occurs between 5.5 mol O her shoulders were straight her head thrown back her eyes half closed at the scene, came vaguely into them her lips move silently form in the words goodbye goodbye, what methods of characterization does Steinbeck used to describe elisa? Explain Canadas growing aBachment to the USA.write an essay in 400-500 words AR encodes for an androgen receptor. It is needed for cells to respond to androgen hormones and is located on X chromosome. The recessive nonsense mutation leads to complete androgen insensitivity syndrome leading to the body's loss of ability to use androgens. Consider this scenario; If a male (XY) is born with the nonsense mutation form of AR, (assume functional copy of SRY on their Y), with regard to sexual determination, would this individual express more female or male phenotypic characteristics and why?Next, in a pedigree with this trait, what would be unusual about the pedigree and the affected individuals considering that this is an x-linked trait and is recessive? The ratio of the area of AWXY to the area of AWZY is 3:4 in the given figure. If thearea of AWXZ is 112 cm? and WY = 16 cm, find the lengths of XY and YZ. Question 5 [20 marks] Given the following magnetic field H(x, t) = 0.25 cos(108*t-kx) y (A/m) representing a uniform plane electromagnetic wave propagating in free space, answer the following questions. a. [2 marks] Find the direction of wave propagation. b. [3 marks] The wavenumber (k). c. [3 marks] The wavelength of the wave (). d. [3 marks] The period of the wave (T). e. [4 marks] The time t, it takes the wave to travel the distance /8. f. (5 marks] Sketch the wave at time t. Pete's coffee uses 3,936 coffee filters per month at their store. The filters cost $2.84 per filter with an order cost of $236 per order. Interest per year is 0.24 per year. Pete's can also produce the filters at a location 100 miles away at 33,280 per year. Therefore they will not be using as they produce. How many orders are expected each year?- Pete's coffee uses 2,118 coffee filters per month at their store. The filters cost $7.41 per filter with an order cost of $394 per order. Interest per year is 0.21. Pete's can also produce the filters at a location 100 miles away at 30,385 produced per year.What the optimal order quantity? 1.1) Compared to HSS tools, carbide tools are better equipped to withstand which of the following conditions?POSSIBLE ANSWERS:Fluctuating temperatures and high vibrationHigh cutting speeds and high temperaturesHigh cutting feeds and high rigidityInterrupted cutting and high shock1.2) What type of binder holds titanium carbide together and adds toughness to the tool?POSSIBLE ANSWERS:ChromiumCobaltSulfurVandium1.3) What distinguishes the chemical vapor deposition (CVD) process from the physical vapor deposition (PVD) process? Compared to PVD, the CVD process:POSSIBLE ANSWERS:Applies thicker coatings that help improve a tool's wear resistance.Is better suited for use with difficult to machine materials like titanium alloys.Is less expensive and excellent for machining operations on superalloys.Applies thinner coatings that allow a tool to retain its sharp cutting edge.1.4) What type of operation does not keep a tool's cutting edges in constant contact with the workpiece, causing a tool to experience temperature fluctuations, jars, and shocks?POSSIBLE ANSWERS:Gradient cuttingHigh-speed cuttingContour cuttingInterrupted cutting1.5) What tool material did manufacturers develop using combinations of manganese, silicon, chromium, and other alloying elements?POSSIBLE ANSWERS:Stainless steelsHigh-speed steelsCarbon tool steelsPlain carbon steels Obtain the thermal velocity of electrons in silicon crystal(vth), mean free time, and mean free path by calculation. Indicatethe procedure. 27.Which of the following species lived at the same time as modern Homo sapiens? Homo habilis Homo floresiensis O Homo rudolfensis Australopithecus afarensis Q1: (30 Marks) An NMOS transistor has K = 200 A/V. What is the value of Kn if W= 60 m, L=3 m? If W=3 m, L=0.15 m? If W = 10 m, L=0.25 m? How you start is a good indicator of how you finish. WIIFM Rapport Halo Effect The Approach Question 2 (10 points) Saved 4) Listen The Approach includes all except the following: Professional Introduction Uncovering the buying process Pre-Commitment Stating purpose of sales call Question 3 (10 points) 4) Listen Saved Asking S.P.I.N. questions in sequence is not important as long as you ask all the questions. True False Custom ProcessesQuestion: Synthesize the implications of thecurrent Russo-Ukrainian War on International Trade for developingcountries. Compare the functions of the nervous and endocrine systems inmaintaining homeostasis (IN SIMPLEST FORM) A permanent negative productivity shock (e.g. a new government regulation) will result inan increase in user cost and decrease in the desired level of capital. no change in user cost and decrease in the desired level of capital. a decrease in user cost and the desired level of capital. an increase in user cost and the desired level of capital. Uber in 2018 6 This case was prepared by Charles W. L. Hill ofthe School of Business, University of Washington, Seattle give theSWOT Analysis