A solid wooden sphere rotates in place about its central axis. The radius of the sphere is 0.65 m and its mass is 3300 kg.
A. What is the rotational inertia I of this sphere?
B. If the sphere has 13,000 J of rotational kinetic energy, what is the angular velocity ω of the sphere?

Answers

Answer 1

The rotational inertia (I) of the wooden sphere is determined using the formula I = (2/5) * m * [tex]r^2[/tex], where m is the mass of the sphere and r is its radius. The angular velocity (ω) of the sphere can be found using the formula ω = √(2K / I), where K is the rotational kinetic energy. By substituting the given values, the angular velocity of the sphere can be determined.

A. To find the rotational inertia (I) of the sphere, we can use the formula I = (2/5) * m * [tex]r^2[/tex], where m is the mass of the sphere and r is its radius. Substituting the given values, we have I = (2/5) * 3300 kg * [tex](0.65 m)^2[/tex]. Evaluating this expression   gives the value of I.

B. Given that the sphere has 13,000 J of rotational kinetic energy (K), we can use the formula K = (1/2) * I * [tex]ω^2[/tex] to find the angular velocity ω. Rearranging the formula, we have ω = √(2K / I). Plugging in the values of K and I calculated in part A, we can determine the angular velocity ω of the sphere.

To know more about rotational inertia refer to-

https://brainly.com/question/31369161

#SPJ11


Related Questions

At a certain point in space, the electric and magnetic fields of an electromagnetic wave at a certain instant are given by È = i(6×10³ V/m) B = Â(2×10¹³ T) This wave is propagating in the A. positive x-direction. B. negative x-direction. C. positive y-direction. D. negative y-direction. E. unknown direction.

Answers

The electromagnetic wave is propagating in the negative x-direction. Therefore, the answer is B. negative x-direction.

The given electric and magnetic fields of an electromagnetic wave can be represented as È = i(6×10³ V/m) and B = Â(2×10¹³ T), respectively. To determine the direction of propagation, we can examine the relationship between the electric and magnetic fields.

Since the electric field is in the i-direction (x-direction) and the magnetic field is in the Â-direction (y-direction), their cross product would yield a direction perpendicular to both fields, which is in the negative z-direction. Therefore, the electromagnetic wave is propagating in the negative x-direction.

In an electromagnetic wave, the electric and magnetic fields are perpendicular to each other and to the direction of propagation. The cross product of the electric and magnetic fields gives the direction of propagation according to the right-hand rule.

In this case, the electric field È is given as i(6×10³ V/m), where the unit vector i represents the x-direction. The magnetic field B is given as Â(2×10¹³ T), where the unit vector  represents the y-direction.

To find the direction of propagation, we take the cross product of È and B: È x B. Using the right-hand rule, we place our right hand with the index finger pointing in the direction of È (x-direction) and the middle finger pointing in the direction of B (y-direction). The thumb will then point in the direction of propagation.

Since the cross product of the i-direction and Â-direction is in the negative z-direction, the electromagnetic wave is propagating in the negative x-direction. Therefore, the answer is B. negative x-direction.

learn more about electromagnetic wave here:

brainly.com/question/29774932

#SPJ11

While Galileo did not invent the telescope, he was the first
known person to use it astronomically, beginning around 1609. Five
of his original lenses have survived (although he did work with
others).

Answers

Yes, Galileo did not invent the telescope, he was the first known person to use it astronomically, beginning around 1609  is correct.

While Galileo did not invent the telescope, he is credited with making significant improvements to the design and being the first person to use it for astronomical observations. Galileo's telescope used a convex objective lens and a concave eyepiece lens, which significantly improved the clarity and magnification of the images produced. With his improved telescope, he was able to observe the phases of Venus, the moons of Jupiter, sunspots, and the craters on the Moon, among other things. Galileo's observations provided evidence to support the heliocentric model of the solar system, which placed the Sun at the center instead of the Earth.

Learn more about "Galileo" : https://brainly.com/question/17668231

#SPJ11

Two Trucks A and B are parked near you on a road. Truck A is stationary and truck B is moving away at a constant speed of 30 km/h. Each Truck is equipped with a horn emitting a sound at a frequency of 200Hz. Both whistle at the same time. a) What frequency will you hear from each truck? b) Will there be a beat? If or what is the frequency of the beats?

Answers

a. The frequency emitted by truck A will be 200 Hz and the frequency emitted by truck B will be approximately 198.56 Hz

b. The frequency of the beats is 1.44 Hz.

a) Truck A is stationary and truck B is moving away at a constant speed of 30 km/h. Both of the trucks emit a sound of frequency 200 Hz and the speed of sound is 343 m/s, the frequency of sound will be affected by the Doppler effect.

The Doppler effect can be given by:

[tex]f'= \frac {v \pm v_0} {v\pm v_s}f[/tex]

Here, f is the frequency of the sound emitted.

v is the velocity of sound in air ($343 m/s$)

v0 is the velocity of the object emitting the sound and vs is the velocity of the sound wave relative to the stationary object

In this problem, the frequency emitted by the truck A is

[tex]f_{A} = 200[/tex]Hz

v0 = 0m/s

v = 343m/s

The frequency emitted by the truck B is [tex]f_{B} = 200[/tex] Hz

[tex]v0 = - 30km/h \\= - \frac{30 \times 1000}{3600}$ m/s \\= $-\frac{25}{3}$ ms^{-1} \\v= 343m/s[/tex]

On substituting the above values in the Doppler's equation, we get,

For truck A,

[tex]f_{A}' = \frac{v}{v\pm v_{s}}[/tex]

[tex]f_{A}' = \frac{343}{343\pm 0} Hz = 200[/tex] Hz

For truck B,[tex]f_{B}' = \frac{v}{v\pm v_{s}}[/tex]

[tex]f_{B}' = \frac{343} {343 \pm \frac {25}{3}}\text{Hz}[/tex] ≈ 198.56 Hz

Hence the frequency emitted by truck A will be 200 Hz and the frequency emitted by truck B will be approximately 198.56 Hz

b) A beat is produced when two sound waves having slightly different frequencies are superposed.

In this problem, as we see that the frequency of the wave emitted by truck A is 200 Hz and the frequency of the wave emitted by truck B is approximately 198.56 Hz, we can say that a beat will be produced.

To find the frequency of beats, we use the formula for beats:

fbeat = |f1 − f2|

Where,f1 is the frequency of the wave emitted by truck Af2 is the frequency of the wave emitted by truck B

Frequencies of the waves are given by,

f1 = 200 Hz

f2 = 198.56 Hz

fbeat = |200 − 198.56| Hz ≈ 1.44 Hz

Thus, the frequency of the beats is 1.44 Hz.

To know more about frequency, visit:

https://brainly.com/question/29739263

#SPJ11

a). You will hear a frequency of approximately 195.84 Hz from Truck B.

b). The beat frequency between the two trucks' sounds will be approximately 4.16 Hz.

a) To determine the frequency you will hear from each truck, we need to consider the Doppler effect. The Doppler effect describes how the perceived frequency of a sound wave changes when the source of the sound or the listener is in motion relative to each other.

For the stationary Truck A, there is no relative motion between you and the truck. Therefore, the frequency you hear from Truck A will be the same as its emitted frequency, which is 200 Hz.

For the moving Truck B, which is moving away from you at a constant speed of 30 km/h, the frequency you hear will be lower than its emitted frequency due to the Doppler effect. The formula for the Doppler effect when a source is moving away is given by:

f' = f * (v_sound + v_observer) / (v_sound + v_source)

where f is the emitted frequency, v_sound is the speed of sound (approximately 343 m/s), v_observer is the speed of the observer (you, assumed to be stationary), and v_source is the speed of the source (Truck B).

Converting the speed of Truck B from km/h to m/s:

v_source = 30 km/h * (1000 m/km) / (3600 s/h) = 8.33 m/s

Plugging in the values:

f' = 200 Hz * (343 m/s + 0 m/s) / (343 m/s + 8.33 m/s)

Simplifying the equation:

f' ≈ 195.84 Hz

Therefore, you will hear a frequency of approximately 195.84 Hz from Truck B.

b) Yes, there will be a beat if the frequencies of the two trucks are slightly different. The beat frequency is equal to the absolute difference between the frequencies of the two sounds.

Beat frequency = |f_A - f_B|

Substituting the values:

Beat frequency = |200 Hz - 195.84 Hz|

Simplifying:

Beat frequency ≈ 4.16 Hz

So, the beat frequency between the two trucks' sounds will be approximately 4.16 Hz.

To know more about frequency, visit:

https://brainly.com/question/29739263

#SPJ11

An object is 28 cm in front of a convex mirror with a focal length of -21 cm Part A Use ray tracing to determine the position of the image. Express your answer to two significant figures

Answers

The position of the image is 12 cm.

To determine the position of the image formed by a convex mirror using ray tracing, we can follow these steps:

Draw the incident ray: Draw a ray from the top of the object parallel to the principal axis. After reflection, this ray will appear to originate from the focal point.

Draw the central ray: Draw a ray from the top of the object that passes through the center of curvature. This ray will reflect back along the same path.

Locate the reflected rays: Locate the intersection point of the reflected rays. This point represents the position of the image.

In this case, the object distance (u) is given as 28 cm (positive because it is in front of the convex mirror), and the focal length (f) is -21 cm. Since the focal length is negative for a convex mirror, we consider it as -21 cm.

Using the ray tracing method, we can determine the position of the image:

Draw the incident ray: Draw a ray from the top of the object parallel to the principal axis. After reflection, this ray appears to come from the focal point (F).

Draw the central ray: Draw a ray from the top of the object through the center of curvature (C). This ray reflects back along the same path.

Locate the reflected rays: The reflected rays will appear to converge at a point behind the mirror. The point where they intersect is the position of the image.

The image formed by a convex mirror is always virtual, upright, and reduced in size.

Using the ray tracing method, we find that the reflected rays converge at a point behind the mirror. This point represents the position of the image. In this case, the position of the image is approximately 12 cm behind the convex mirror.

Therefore, the position of the image is approximately 12 cm.

To know more about convex mirror refer here: https://brainly.com/question/3627454#

#SPJ11

What makes something a scientific theory?

Answers

The University of California, Berkley, defines a theory as "a broad, natural explanation for a wide range of phenomena. Theories are concise, coherent, systematic, predictive, and broadly applicable, often integrating and generalizing many hypotheses." Any scientific theory must be based on a careful and rational examination of the facts.

How many kilowatt-hours are consumed by a 100 W
incandescent bulb if it is left on for an entire
24-hour day?"

Answers

The 100 W incandescent bulb consumes approximately 2.4 kWh if it is left on for an entire 24-hour day.

To calculate the kilowatt-hours (kWh) consumed by a 100 W incandescent bulb when left on for 24 hours, we can use the formula:

Energy (kWh) = Power (kW) × Time (hours)

Given:

Power of the bulb (P) = 100 WTime the bulb is left on (t) = 24 hours

First, we need to convert the power from watts to kilowatts:

Power (P) = 100 W = 100/1000 kW = 0.1 kW

Now, let's calculate the energy consumed in kilowatt-hours:

Energy (kWh) = Power (kW) × Time (hours)

Energy (kWh) = 0.1 kW × 24 hours

Energy (kWh) = 2.4 kWh

Therefore, a 100 W incandescent bulb, when left on for an entire 24-hour day, consumes approximately 2.4 kWh.

To learn more about kilowatt-hours (kWh), Visit:

https://brainly.com/question/13988193

#SPJ11

Question 17 A shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional areal of 1.0 x 10-5 m, and shear modulus of 2.5 x1010 N/m². As a result the rod is sheared through a distance of: zero 2.0 mm 2.0 cm 8.0 mm 8.0 cm

Answers

The rod is sheared through a distance of 2.0 mm as a result of the applied force.

When a shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional area of 1.0 x 10-5 m², and a shear modulus of 2.5 x 1010 N/m², the rod is sheared through a distance of 2.0 mm.

What is the Shear Modulus? The modulus of rigidity, also known as the shear modulus, relates the stress on an object to its elastic deformation. It is a measure of a material's ability to withstand deformation under shear stress without cracking. The units of shear modulus are the same as those of Young's modulus, which is N/m² in SI units.

The shear modulus is calculated by dividing the shear stress by the shear strain. The formula for shear modulus is given as; Shear Modulus = Shear Stress/Shear Strain.

How to calculate the distance through which the rod is sheared?

The formula for shearing strain is given as;

Shear Strain = Shear Stress/Shear Modulus

= F/(A*G)*L

where, F = Shear force

A = Cross-sectional area

G = Shear modulus

L = Length of the rod Using the above formula, we have;

Shear strain = 100/(1.0 x 10^-5 x 2.5 x 10^10) * 20

= 2.0 x 10^-3 m = 2.0 mm

Therefore, the rod is sheared through a distance of 2.0 mm.

When a force is applied to a material in a direction parallel to its surface, it experiences a shearing stress. The ratio of shear stress to shear strain is known as the shear modulus. The shear modulus is a measure of the stiffness of a material to shear deformation, and it is expressed in units of pressure or stress.

Shear modulus is usually measured using a torsion test, in which a metal cylinder is twisted by a torque applied to one end, and the resulting deformation is measured. The modulus of rigidity, as the shear modulus is also known, relates the stress on an object to its elastic deformation.

It is a measure of a material's ability to withstand deformation under shear stress without cracking. The shear modulus is used in the analysis of the stress and strain caused by torsional loads.

A shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional area of 1.0 x 10-5 m², and a shear modulus of 2.5 x 1010 N/m².

To know more about force visit:

https://brainly.com/question/30507236

#SPJ11

3. An object(16kg) that is moving at 12.5m/s to the West makes an elastic head-on collision with another object(14kg) that is moving to the East at 16 m/s. After the collision, the second object moves to the West with a velocity of 14.4m/s. A. Find the velocity of the first object after the collision. B. What is the kinetic energy after the collision?

Answers

The velocity of the first object after the collision is 14.1 m/s, and the kinetic energy after the collision is 1590.48 J.

To solve this problem, we can apply the principles of conservation of momentum and conservation of kinetic energy.

Let's denote the velocity of the first object (16 kg) before the collision as V1 and the velocity of the second object (14 kg) before the collision as V2. After the collision, the velocity of the first object is denoted as V1' and the velocity of the second object is denoted as V2'.

Using the conservation of momentum, we have:

(mass1 * V1) + (mass2 * V2) = (mass1 * V1') + (mass2 * V2')

Substituting the given values:

(16 kg * (-12.5 m/s)) + (14 kg * (16 m/s)) = (16 kg * V1') + (14 kg * (-14.4 m/s))

Simplifying the equation, we find:

-200 kg m/s + 224 kg m/s = 16 kg * V1' - 201.6 kg m/s

Combining like terms:

24 kg m/s = 16 kg * V1' - 201.6 kg m/s

Adding 201.6 kg m/s to both sides:

24 kg m/s + 201.6 kg m/s = 16 kg * V1'

225.6 kg m/s = 16 kg * V1'

Dividing both sides by 16 kg:

V1' = 14.1 m/s (velocity of the first object after the collision)

To calculate the kinetic energy after the collision, we use the formula:

Kinetic Energy = (1/2) * mass * velocity^2

Kinetic Energy1' = (1/2) * 16 kg * (14.1 m/s)^2

Kinetic Energy1' = 1/2 * 16 kg * 198.81 m^2/s^2

Kinetic Energy1' = 1/2 * 3180.96 J

Kinetic Energy1' = 1590.48 J

Therefore, the velocity of the first object after the collision is 14.1 m/s, and the kinetic energy after the collision is 1590.48 J.

Here you can learn more about kinetic energy

https://brainly.com/question/29179414#

#SPJ11  

What occurs in a material that has the property of piezoelectricity? a. It produces a beam of light when it enters a magnetic field. b. It bends or deforms when a voltage is applied across it. c. It amplifies sound waves. d. It emits infrared radiation

Answers

It bends or deforms when a voltage is applied across it occurs in a material that has the property of piezoelectricity. The correct answer is option B.

In a material that exhibits piezoelectricity, a unique property is observed where mechanical deformation or bending occurs when a voltage is applied across it.

When an electric field is applied to the material, the crystal structure undergoes a slight change, resulting in a physical deformation. Conversely, when mechanical stress or deformation is applied to the material, it generates an electric charge, known as the inverse piezoelectric effect.

This property makes piezoelectric materials highly useful in various applications, such as sensors, actuators, and transducers. It enables the conversion of electrical energy into mechanical motion and vice versa.

The other options listed (a, c, and d) are not associated with the property of piezoelectricity.

Therefore the correct answer is option B. It bends or deforms when a voltage is applied across it.

Learn more about voltage here:-

https://brainly.com/question/27861305

#SPJ11

Consider transmission of light (extinction coefficient = 1.96e-04 /m) through 0.5 km of air containing 0.5 µm fog droplets. The percentage transmission is:

Answers

The percentage transmission of light through 0.5 km of air containing 0.5 µm fog droplets is approximately 90.48%.

To calculate the percentage transmission of light through the given medium, we need to consider the extinction coefficient and the distance traveled by the light.

The extinction coefficient represents the rate at which light is absorbed or scattered per unit distance. In this case, the extinction coefficient is 1.96e-04 /m.

The distance traveled by the light through the medium is given as 0.5 km, which is equal to 500 meters.

To calculate the percentage transmission, we need to determine the amount of light that is transmitted through the medium compared to the initial amount of light.

The percentage transmission can be calculated using the formula:

Percentage Transmission = (Transmitted Light Intensity / Incident Light Intensity) * 100

The amount of transmitted light intensity can be calculated using the exponential decay formula:

Transmitted Light Intensity = Incident Light Intensity * e^(-extinction coefficient * distance)

Substituting the given values into the formula:

Transmitted Light Intensity = Incident Light Intensity * e^(-1.96e-04 /m * 500 m)

Now, we need to determine the incident light intensity. Since no specific value is provided, we'll assume it to be 100% or 1.

Transmitted Light Intensity = 1 * e^(-1.96e-04 /m * 500 m)

Calculating this value:

Transmitted Light Intensity ≈ 0.9048

Finally, we can calculate the percentage transmission:

Percentage Transmission = (0.9048 / 1) * 100 ≈ 90.48%

Therefore, the percentage transmission of light through 0.5 km of air containing 0.5 µm fog droplets is approximately 90.48%.

Visit here to learn more about extinction coefficient brainly.com/question/32634704
#SPJ11

A runner taking part in a 195 m dash must run around the end of a non-standard size track that has a circular arc with a radius of curvature of 26 m. If she completes the 195 m dash in 34.4 s and runs at constant speed throughout the race, what is her centripetal acceleration (in rad/s2) as she runs the curved portion of the track?

Answers

The centripetal acceleration of the runner can be calculated using the formula a = v^2 / r, where v is the velocity and r is the radius of curvature.

Given:

Distance covered by the runner on the curved portion of the track: 195 m

Radius of curvature: 26 m

Time taken to complete the race: 34.4 s

We can calculate the velocity of the runner using the formula v = d / t, where d is the distance and t is the time:

v = 195 m / 34.4 s = 5.67 m/s

Now, we can calculate the centripetal acceleration using the formula a = v^2 / r:

a = (5.67 m/s)^2 / 26 m = 1.23 m/s^2

Therefore, the centripetal acceleration of the runner as she runs the curved portion of the track is 1.23 m/s^2.

To learn more about centripetal acceleration click here.

brainly.com/question/8825608

#SPJ11

In describing his upcoming trip to the Moon, and as portrayed in the movie Apollo 13 (Universal, 1995 ), astronaut Jim Lovell said, "I'll be walking in a place where there's a 400 -degree difference between sunlight and shadow." Suppose an astronaut standing on the Moon holds a thermometer in his gloved hand.(b) Does it read any temperature? If so, what object or substance has that temperature?

Answers

According to astronaut Jim Lovell, "I'll be walking in a place where there's a 400-degree difference between sunlight and shadow.

Suppose an astronaut standing on the Moon holds a thermometer in his gloved hand. If so, what object or substance has that temperature?Astronauts on the Moon's surface will encounter extreme temperatures ranging from approximately .

However, the spacesuit has a cooling and heating system, as well as insulation materials that prevent the body from overheating or cooling too rapidly in the vacuum of space.Therefore, the thermometer in an astronaut's gloved hand would most likely read the temperature of the spacesuit material and not the extreme temperatures on the lunar surface.

To know more about sunlight visit :

https://brainly.com/question/27183506

#SPJ11

1)The table of planet data from an older book lists the mass and
density of each planet. But the mass of Pluto was unknown at the
time. Why?
a. The Hubble Telescope was not yet in orbit
b. no space pr

Answers

The reason the mass of Pluto was unknown in the table of planet data from an older book was because there was no spacecraft to study Pluto at the time.

The Hubble Telescope was not yet in orbit when the book was published. The table of planet data from an older book listed the mass and density of each planet except for Pluto. Since there was no spacecraft to study Pluto at the time, its mass was not known. However, in the year 2015, NASA’s New Horizons spacecraft flew by Pluto and collected data that helped scientists determine its mass, which is about 1.31 x 10^22 kg.

To know more about mass  , visit;

https://brainly.com/question/86444

#SPJ11

The correct option for the question is

b. No space probe had been sent to Pluto to gather data on its mass.

The table of planet data from an older book lists the mass and density of each planet. But the mass of Pluto was unknown at the time because no space probes had visited it yet.

What are space probes?

Space probes are robotic vehicles that travel beyond the earth's orbit and are used to explore space. They are usually unmanned and they collect data on the celestial objects they study, which is transmitted back to scientists on earth. Voyager 1 and Voyager 2 are examples of space probes that have explored our solar system and beyond.

To know more about density, visit:

https://brainly.com/question/29775886

#SPJ11

(a) One of the moon of Jupitec, named 10, has an orbital radius of 4,22×10 11 m and a period of 1.77 daysi, Assuming the artie is circular, caiculate the mass of Jupitel. (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07×10 9 m and a period of 7.16 days. Calculate the mass of Jupitar from this data. lig (c) Are your results to parts (a) and (b) consistent?

Answers

a) The mass of Jupiter can be calculated as 1.95×10²⁷ kg.

b) The mass of Jupiter can be calculated as 1.89×10²⁷ kg.

c) The results from parts (a) and (b) are consistent.

a) To calculate the mass of Jupiter using the data for moon 10, we can utilize Kepler's third law of planetary motion, which states that the square of the orbital period (T) is proportional to the cube of the orbital radius (R) for objects orbiting the same central body. Using this law, we can set up the equation T² = (4π²/GM)R³, where G is the gravitational constant.

Rearranging the equation to solve for the mass of Jupiter (M), we get M = (4π²R³)/(GT²). Plugging in the values for the orbital radius (4.22×10¹¹ m) and period (1.77 days, converted to seconds), we can calculate the mass of Jupiter as 1.95×10²⁷ kg.

b) Applying the same approach to calculate the mass of Jupiter using data for Ganymede, we can use the equation T² = (4π²/GM)R³. Plugging in the values for the orbital radius (1.07×10⁹ m) and period (7.16 days, converted to seconds), we can calculate the mass of Jupiter as 1.89×10²⁷ kg.

c) Comparing the results from parts (a) and (b), we can see that the masses of Jupiter calculated using the two different moons are consistent, as they are within a similar order of magnitude. This consistency suggests that the calculations are accurate and the values obtained for the mass of Jupiter are reliable.

To know more about Kepler's third law refer here:

https://brainly.com/question/30404084#

#SPJ11

The brass bar and the aluminum bar in the drawing are each attached to an immovable wall. At 26.2°C the air gap between the rods is 1.22 x 10 m. At what temperature will the gap be closed?

Answers

At approximately 298°C temperature, the air gap between the rods will be closed.

The problem states that at 26.2°C the air gap between the rods is 1.22 x 10 m and we have to find out at what temperature will the gap be closed.

Let's first find the coefficient of linear expansion for the given metals:

Alpha for brass, αbrass = 19.0 × 10⁻⁶ /°C

Alpha for aluminum, αaluminium = 23.1 × 10⁻⁶ /°C

The difference in temperature that causes the gap to close is ΔT.

Let the original length of the rods be L, and the change in the length of the aluminum rod be ΔL_aluminium and the change in the length of the brass rod be ΔL_brass.

ΔL_aluminium = L * αaluminium * ΔTΔL_brass

                        = L * αbrass * ΔTΔL_aluminium - ΔL_brass

                        = 1.22 × 10⁻³ mL * (αaluminium - αbrass) *

ΔT = 1.22 × 10⁻³ m / (23.1 × 10⁻⁶ /°C - 19.0 × 10⁻⁶ /°C)

ΔT = (1.22 × 10⁻³) / (4.1 × 10⁻⁶)°C

ΔT ≈ 298°C (approx)

Therefore, at approximately 298°C temperature, the air gap between the rods will be closed.

Learn more about temperature https://brainly.com/question/13231442

#SPJ11

A certain rod is moving in a magnetic field. The length of the rod is 1.50 m, and its speed is 3.20 m/s, whereas the field strength is 0.640 T. The magnetic field is perpendicular to the velocity of the rod, and both are perpendicular to the length-axis. What is the voltage drop across this rod, in V?

Answers

When a rod moves through a magnetic field perpendicular to both its velocity and the field, a voltage is induced across the rod. The voltage drop across the rod is 3.072 volts.

In this case, with a rod length of 1.50 m, a velocity of 3.20 m/s, and a magnetic field strength of 0.640 T, the voltage drop across the rod can be calculated using the formula V = B * L * v, where B is the magnetic field strength, L is the length of the rod, and v is the velocity of the rod.

The voltage drop across the rod is given by the equation V = B * L * v, where V is the voltage drop, B is the magnetic field strength, L is the length of the rod, and v is the velocity of the rod. In this case, the length of the rod (L) is 1.50 m, the velocity (v) is 3.20 m/s, and the magnetic field strength (B) is 0.640 T.

Plugging in these values into the equation, we have V = (0.640 T) * (1.50 m) * (3.20 m/s). Multiplying these values, we get V = 3.072 V. Therefore, the voltage drop across the rod is 3.072 volts.

Learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

Part A - What is the energy of the trydrogen atom when the electron is in the n1​=6 energy level? Express your answer numerically in electron volts. Keep 4 digits atter the decimal point. - Part B- Jump-DOWN: Express your answer numerically in electron volts. Keep 3 or 4 digits atter the deeimal point. Express your anewer numerically in electron volts. Keep 3 or 4 dieils after the decimal poing, Part C - What is the ortai (or energy state) number of Part 8 ? Enier an integer.

Answers

The energy of the hydrogen atom when the electron is in the n=6 energy level is approximately -2.178 eV.

The energy change (jump-down) when the electron transitions from n=3 to n=1 energy level is approximately 10.20 eV.

The principal quantum number (n) of Part B is 3.

In Part A, the energy of the hydrogen atom in the n=6 energy level is determined using the formula for the energy levels of hydrogen atoms, which is given by

E = -13.6/n² electron volts.

Substituting n=6 into the formula gives -13.6/6² ≈ -2.178 eV.

In Part B, the energy change during a jump-down transition is calculated using the formula

ΔE = -13.6(1/n_final² - 1/n_initial²).

Substituting n_final=1 and n_initial=3 gives

ΔE = -13.6(1/1² - 1/3²)

     ≈ 10.20 eV.

In Part C, the principal quantum number (n) of Part B is simply the value of the energy level mentioned in the problem, which is 3. It represents the specific energy state of the electron within the hydrogen atom.

To know more about the Electron, here

https://brainly.com/question/31382132

#SPJ4

The energy of the hydrogen atom when the electron is in the n₁ = 6 energy level is approximately -0.3778 electron volts.

Part A - The energy of the hydrogen atom when the electron is in the n₁ = 6 energy level can be calculated using the formula for the energy of an electron in the hydrogen atom:

Eₙ = -13.6 eV/n₁²

Substituting n₁ = 6 into the formula, we have:

Eₙ = -13.6 eV/(6)² = -13.6 eV/36 ≈ -0.3778 eV

Part B - When an electron jumps down from a higher energy level (n₂) to a lower energy level (n₁), the energy change can be calculated using the formula:

ΔE = -13.6 eV * (1/n₁² - 1/n₂²)

Since the specific values of n₁ and n₂ are not provided, we cannot calculate the energy change without that information. Please provide the energy levels involved to obtain the numerical value in electron volts.

Part C - The "orbit" or energy state number of an electron in the hydrogen atom is represented by the principal quantum number (n). The principal quantum number describes the energy level or shell in which the electron resides. It takes integer values starting from 1, where n = 1 represents the ground state.

Without further information or context, it is unclear which energy state or orbit is being referred to as "Part 8." To determine the corresponding orbit number, we would need additional details or specifications.

To learn more about Hydrogen Atom

brainly.com/question/30886690

#SPJ11

The free-fall acceleration at the surface of planet 1 Part A is 30 m/s 2 . The radius and the mass of planet 2 are twice those of planet 1 . What is g on planet 2 ? Express your answer with the appropriate units

Answers

g2 will also be 30 m/s².The free-fall acceleration (g) at the surface of a planet is determined by the gravitational force between the object and the planet. The formula for calculating the gravitational acceleration is:

g = (G * M) / r².where G is the universal gravitational constant, M is the mass of the planet, and r is the radius of the planet.In this case, we are comparing planet 2 to planet 1, where the radius and mass of planet 2 are twice that of planet 1.

Let's denote the radius of planet 1 as r1, and the mass of planet 1 as M1. Therefore, the radius and mass of planet 2 would be r2 = 2r1 and M2 = 2M1, respectively.

Using the relationship between the radii and masses of the two planets, we can determine the value of g2, the free-fall acceleration on planet 2.g2 = (G * M2) / r2².Substituting the corresponding values, we get:

g2 = (G * 2M1) / (2r1)²

Simplifying the equation, we find:g2 = (G * M1) / r1².Since G, M1, and r1 remain the same, the value of g2 on planet 2 will be the same as g1 on planet 1. Therefore, g2 will also be 30 m/s².

To know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

Need help with questions 1-5 please :)
1) An object is launched along the incline of angle 30 degrees with horizontal from its bottom level with initial velocity 6.4 m/s. It reaches height 2.3 m, comes to momentarily stop and slides back. When it comes back to initial point it has velocity 2.3 m/s. Find coefficient of friction between object and an incline.
2)A block of mass 2.2 kg sliding along horizontal rough surface is traveling at a speed 4.3 m/s when strikes a massless spring and compresses spring a distance 3.5 cm before coming to stop. If the spring has stiffness constant 750.0 N/m, find coefficient of friction between block and surface.
3) An object of mass m=2.0 kg is sliding down from incline creating angle 30 degrees with horizontal. Coefficient of kinetic friction between object and incline is 0.33. Find net work done on object over the distance d=3.0 m. Give answer in J.
4)A mass 4.6 kg is released from the uppermost point of the track (see. fig) and clears the look of radius R=1.50 m with speed 1.27 times greater than minimum speed required to maintain contact with the track. Find height H from which this object was released, give answer in meters.
5) Mass B of 7.5 kg connected to mass A of 2.0 kg through massless rope and massless and frictionless pulley is kept to height H=3.0 m from the ground and released at some moment. Find velocity of mass B just before it hits the ground. Give answer in m/s.

Answers

The evaluation of the motion of the objects using Newton's second law of motion and the principle of conservation of energy indicates that we get the following approximate values.

0.470.3112.6 J5.71 m4.69 m/sWhat is Newton's second law?

Newton's second law of motion states that the acceleration of an object in motion is directly proportional to the net force acting on the object and inversely proportional to the mass of the object.

1) The acceleration due to gravity along the incline plane = g × sin(30°)

Therefore, the acceleration due to gravity along the incline ≈ 9.81 × 0.5 = 4.905

The acceleration due to gravity along the incline ≈ 4.9 m/s²

The initial speed of the object indicates;

0² = 6.4² - 2 × a × 2.3

6.4² = 2 × a × 2.3

a = 6.4²/(2 × a × 2.3) ≈ 8.9

Therefore, the acceleration due to the plane = Acceleration - Acceleration due to gravity

acceleration due to the plane, a = -8.9 - (-4.9) = 4.0

According to Newton's second law of motion, we get;

The friction force, F = m·a, therefore, F = 4·m

Normal force, FN = m·g·cos(30°)

Therefore, FN = m × 9.8 × √3/2 = (4.9·√3)·m

Coefficient of friction, μ = Ff/FN

Therefore, Ff = (4·m)/((4.9·√3)·m) = 4/((4.9·√3)) ≈ 0.47

2) The work done by the spring, W = 0.5 × k × x²

Therefore, W = 0.5 × 750 × 0.035² ≈ 0.46 J

The initial kinetic energy of the rock, KE = 0.5·m·v²

Therefore; K.E. = 0.5 × 2.2 × 4.3² = 20.339 J

Final kinetic energy = 0 J (The block comes to a stop)

Net work = KEf - KEi

Net work = 0 J - 20.339 J = -20.339 J

Work done by friction alone, Wf = 20.339 -0.46 = 19.879 J

Work = Force × Distance

Therefore; Work done by friction, Wf = Ff × d

Ff = 19.879/d

d = 3.0, therefore; F[tex]_f[/tex] = 19.879/3.0

The normal force, F[tex]_N[/tex] ≈ 2.2 × 9.8 = 21.56

FN = 21.56 N

Static friction, [tex]\mu_k[/tex] = F[tex]_f[/tex]/F[tex]_N[/tex] = (19.879/3.0)/21.56 ≈ 0.31

3) The force of gravity acting along the inclined plane is; Fg = m·g·sin(θ)

Therefore; Fg = 2.0 × 9.8 × sin(30°) = 9.8 N

Friction force, Ff = [tex]\mu_k[/tex] × [tex]F_N[/tex]

[tex]\mu_k[/tex] = The coefficient of kinetic friction = 0.33

[tex]F_N[/tex] = m·g·cos(30°)

Therefore; [tex]F_N[/tex] = 2.0 × 9.8 × cos(30°) = 9.8 × √3 ≈ 16.97 N

[tex]F_f[/tex] = [tex]\mu_k[/tex] × [tex]F_N[/tex]

Therefore; [tex]F_f[/tex] = 0.33 × 16.97 ≈ 5.6 N

The net force is therefore; [tex]F_{net}[/tex] ≈ 9.8 - 5.6 = 4.2 N

The net work over a distance of 4.2 is therefore;

[tex]W_{net}[/tex] = [tex]F_{net}[/tex] × d = 4.2 N × 3.0 m = 12.6 J

The net work done by the object over a distance of 3.0 meters is about 12.6 Joules

4) Minimum speed v required for the object to maintain contact with the track at the top of the loop can be found using the formula;

v = √(g·R)

g = The acceleration due to gravity ≈ 9.8 m/s²

R = The radius of the loop = 1.50 m

Therefore; v = √(9.8 × 1.50) ≈ 3.83 m/s

The actual speed v' of the object at the top of the loop can be found from the relationship;

v' = 1.27 × 3.83 = 4.8641 m/s

The kinetic energy KE of the object at the top of the loop can be found from the equation;

KE = (1/2) × m × v'²

Therefore; KE = (1/2) × 4.6 × 4.8641² ≈ 54.42 J

The gravitational potential energy of the object at the top relative to the starting point H, can be found using the formula;

PE = m·g·h

Therefore; PE = 4.6 × 9.8 × 3 = 135.24 J

The total mechanical energy, E = KE + PE

Therefore; E = 54.42 + 135.24 = 189.66 J

The height H can therefore be found as follows;

The height from the point the object is released to the bottom of the loop, h = H - R

The conservation of energy indicates; E = m·g·h

h = E/(m·g)

Therefore; h = 189.66/(4.6 × 9.8) ≈ 4.21 m

h = H - R

Therefore; H = h + R = 4.21 + 1.5 = 5.71 m

The height H from which the object was released is about 5.71 meters above the height at the bottom of the loop

5) The mass of the object B before it reaches the ground is required

Let T represent the tension in the rope. The net force on the mass A therefore is; m·a = T - m·g, where;

m = Mass of A = 2.0 kg

g = The acceleration due to gravity ≈ 9.8 m/s²

The force on the object B = m'·a = m·g - T

Where; m = The mass of B = 7.5 kg

The sum of the two forces indicates that we get; 2·m·a = (7.5 - 2.0) × 9.8

Therefore; a ≈ (7.5 - 2.0) × 9.8/(2 × 7.5) ≈ 3.59

The kinematic equation; v² = u² + 2·a·s indicates that we get;

The distance the object falls from from its start from rest, H  = 3.0 m

The initial velocity, u = 0,

s = H ≈ 3.59 m

v² ≈ 0 + 2 × 3.67 × 3 ≈ 22.02

v = √(22.02) ≈ 4.69 m/s

The velocity of the mass just before it reaches the ground ≈ 4.69 m/s

Learn more Newton's second law of motion here: https://brainly.com/question/7578203

#SPJ1

Question 8 In the double slit experiment with monochromatic light, Question 21
a) wider fringes will be formed by decreasing the width of the slits. decreasing the distance between the slits. increasing the width of the slits. increasing the distance between the slits.

Answers

The correct answer is: wider fringes will be formed by increasing the distance between the slits (option d).

In the double-slit experiment with monochromatic light, the interference pattern is determined by the relative sizes and spacing of the slits. The interference pattern consists of alternating bright and dark fringes.

d) By increasing the distance between the slits:

Increasing the distance between the slits will result in wider fringes in the interference pattern. This is because a larger slit separation allows for a larger range of path length differences, leading to constructive and destructive interference occurring over a broader area.

Therefore, the correct answer is: wider fringes will be formed by increasing the distance between the slits (option d).

Learn more about double slit experiment on the given link:

https://brainly.com/question/28108126

#SPJ11

Two converging lenses are separated by a distance L = 65 [cm]. The focal length of each lens is equal to fp = f2 = 15 (cm). An object is placed at distance so = 30 (cm) to the left of Lens-1.
Calculate the image distance s'y formed by Lens-1.
If the image distance formed by Lens- 1 is s'; = 32, calculate the transverse magnification M of Lens-1. If the image distance formed by Lens- 1 is s'ı = 32, find the distance s2 between Lens-2 and the image formed by Lens-1. If the image distance formed by Lens- 1 is s'ı = 32, find the distance s2 between Lens-2 and the image formed by Lens-1.
If the distance between Lens-2 and the image formed by Lens-l is s2 = 13 [cm], calculate the final image distance s'2.

Answers

Focal length (fp = 15 cm) and distance between Lens-2 and the image formed by Lens-1 (s2 = 13 cm) into the lens formula, we can determine the final image distance s'2.

The image distance s'y formed by Lens-1 can be calculated using the lens formula and the given parameters. By substituting the values of focal length (fp = 15 cm) and object distance (so = 30 cm) into the lens formula, we can solve for s'y. The transverse magnification M of Lens-1 can be calculated by dividing the image distance formed by Lens-1 (s'y) by the object distance (so). Given that s'y = 32 cm, we can substitute these values into the formula to find the transverse magnification M. To find the distance s2 between Lens-2 and the image formed by Lens-1, we can use the lens formula once again. By substituting the given values of focal length (fp = 15 cm) and image distance formed by Lens-1 (s'y = 32 cm) into the lens formula, we can calculate s2. Lastly, to calculate the final image distance s'2, we need to use the lens formula one more time. By substituting the values of focal length (fp = 15 cm) and distance between Lens-2 and the image formed by Lens-1 (s2 = 13 cm) into the lens formula, we can determine the final image distance s'2.

To learn more about magnification , click here : https://brainly.com/question/20368024

#SPJ11

5. In order to get to its destination on time, a plane must reach a ground velocity of 580 km/h [E 42° N]. If the wind is coming from [E 8° S] with a velocity of 110 km/h, find the required air velocity. Round speed to 1 decimal place and measure of angle to the nearest degree. Include a diagram. (6 marks)

Answers

The ground velocity is given as 580 km/h [E 42° N], and the wind velocity is 110 km/h [E 8° S]. By vector subtraction, we can find the required air velocity.

To find the required air velocity, we need to subtract the wind velocity from the ground velocity.

First, we resolve the ground velocity into its eastward and northward components. Using trigonometry, we find that the eastward component is 580 km/h * cos(42°) and the northward component is 580 km/h * sin(42°).

Next, we resolve the wind velocity into its eastward and northward components. The wind is coming from [E 8° S], so the eastward component is 110 km/h * cos(8°) and the northward component is 110 km/h * sin(8°).

To find the required air velocity, we subtract the eastward and northward wind components from the corresponding ground velocity components. This gives us the eastward and northward components of the air velocity.

Finally, we combine the eastward and northward components of the air velocity using the Pythagorean theorem and find the magnitude of the air velocity.

The required air velocity is found to be approximately X km/h [Y°], where X is the magnitude rounded to 1 decimal place and Y is the angle rounded to the nearest degree.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

a) At an air show a jet flies directly toward the stands at a speed of 1180 km/h, emitting a frequency of 3810 Hz, on a day when the speed of sound is 342 m/s. What frequency in Ha) is received by the observers? Hz b) What frequency (in Hz) do they receive as the plane files directly away from them?

Answers

The observers perceive a frequency of around 3984.6 Hz when the jet flies directly toward them. As the plane flies directly away from the observers, they perceive a frequency of approximately 3655.4 Hz.

To calculate the frequency received by the observers, we need to consider the Doppler effect, which is the change in frequency of a wave due to the relative motion between the source and the observer.

f₀ = f ×  (v + v₀) / (v - vs)

where:

f₀ is the received frequency,

f is the emitted frequency,

v is the speed of sound,

v₀ is the velocity of the observer (0 in this case since they are stationary),

vs is the velocity of the source (1180 km/h converted to m/s).

Given:

f = 3810 Hz,

v = 342 m/s,

v₀= 0,

vs = 1180 km/h

   = (1180 × 1000) / 3600

    = 327.78 m/s

a) When the jet flies directly toward the stands, the observers perceive a higher frequency.

Plugging the values into the formula:

f₀= 3810 × (342 + 0) / (342 - 327.78)

f₀ ≈ 3984.6 Hz

Therefore, the observers receive a frequency of approximately 3984.6 Hz.

b) When the plane flies directly away from the observers, the perceived frequency is lower.

Given the same values as before:

f₀ = 3810 × (342 - 0) / (342 + 327.78)

f₀≈ 3655.4 Hz

Therefore, the observers receive a frequency of approximately 3655.4 Hz as the plane flies directly away from them.

Hence, the observers perceive a frequency of around 3984.6 Hz when the jet flies directly toward them. As the plane flies directly away from the observers, they perceive a frequency of approximately 3655.4 Hz.

Learn more about the Doppler Effect from the given link:

https://brainly.com/question/28106478

#SPJ11

An object 1.50 cm high is held 3.20 cm from a person's cornea, and its reflected image is measured to be 0.175 cm high. (a) What is the magnification? Х (b) Where is the image (in cm)? cm (from the corneal "mirror") (C) Find the radius of curvature (in cm) of the convex mirror formed by the cornea.

Answers

The magnification of the object is -0.1167. The image is 1.28 cm from the corneal "mirror". The radius of curvature of the convex mirror formed by the cornea is -0.1067 cm.

It is given that, Height of object, h = 1.50 cm, Distance of object from cornea, u = -3.20 cm, Height of image, h' = -0.175 cm

(a) Magnification:

Magnification is defined as the ratio of height of the image to the height of the object.

So, Magnification, m = h'/h m = -0.175/1.50 m = -0.1167

(b)

Using the mirror formula, we can find the position of the image.

The mirror formula is given as :1/v + 1/u = 1/f Where,

v is the distance of the image from the mirror.

f is the focal length of the mirror.

Since we are considering a mirror of the cornea, which is a convex mirror, the focal length will be negative.

Therefore, we can write the formula as:

1/v - 1/|u| = -1/f

1/v = -1/|u| - 1/f

v = -|u| / (|u|/f - 1)

On substituting the given values, we have:

v = 1.28 cm

So, the image is 1.28 cm from the corneal "mirror".

(c)

The radius of curvature, R of a convex mirror is related to its focal length, f as follows:R = 2f

By lens formula,

1/v + 1/u = 1/f

1/f = 1/v + 1/u

We already have the value of v and u.

So,1/f = 1/1.28 - 1/-3.20

1/f = -0.0533cmS

o, the focal length of the convex mirror is -0.0533cm.

Now, using the relation,R = 2f

R = 2 × (-0.0533)

R = -0.1067 cm

Therefore, the radius of curvature of the convex mirror formed by the cornea is -0.1067 cm.

To learn more about convex mirror: https://brainly.com/question/32811695

#SPJ11

A standard nuclear power plant generates 2.0 GW of thermal power from the fission 235U. Experiments show that, on average, 0.19 u of mass is lost in each fission of a 235U nucleus.
How many kilograms of 235U235U undergo fission each year in this power plant? in kg/yr?

Answers

To calculate the number of kilograms of 235U that undergo fission each year in the power plant, we need to determine the number of fissions per year and the mass of each fission.

First, we need to convert the thermal power generated by the power plant from gigawatts (GW) to joules per second (W). Since 1 GW is equal to 1 billion watts (1 GW = 1 × 10^9 W), the thermal power is 2.0 × 10^9 W.

Next, we can calculate the number of fissions per second by dividing the thermal power by the energy released per fission. The energy released per fission can be calculated using Einstein's mass-energy equivalence formula, E = mc^2, where E is the energy, m is the mass, and c is the speed of light.

The mass lost per fission is given as 0.19 atomic mass units (u), which can be converted to kilograms.

Finally, we can calculate the number of fissions per year by multiplying the number of fissions per second by the number of seconds in a year.

Let's perform the calculations:

Energy per fission = mass lost per fission x c^2

Energy per fission = 0.19 u x (3 x 10^8 m/s)^2

Number of fissions per second = Power / (Energy per fission)

Number of fissions per second = 2.0 x 10^9 watts / (0.19 u x (3 x 10^8 m/s)^2)

Number of fissions per year = Number of fissions per second x (365 days x 24 hours x 60 minutes x 60 seconds)

Mass of 235U undergoing fission per year = Number of fissions per year x (235 u x 1.66054 x 10^-27 kg/u)

Let's plug in the values and calculate:

Energy per fission ≈ 0.19 u x (3 x 10^8 m/s)^2 ≈ 5.13 x 10^-11 J

Number of fissions per second ≈ 2.0 x 10^9 watts / (5.13 x 10^-11 J) ≈ 3.90 x 10^19 fissions/s

Number of fissions per year ≈ 3.90 x 10^19 fissions/s x (365 days x 24 hours x 60 minutes x 60 seconds) ≈ 1.23 x 10^27 fissions/year

Mass of 235U undergoing fission per year ≈ 1.23 x 10^27 fissions/year x (235 u x 1.66054 x 10^-27 kg/u) ≈ 4.08 x 10^2 kg/year

Final answer: Approximately 408 kilograms of 235U undergo fission each year in the power plant.

To know more about fission here.

brainly.com/question/27923750

#SPJ11

13. At each instant, the ratio of the magnitude of the electric field to the magnetic field in an electromagnetic wave in a vacuum is equal to the speed of light. a. Real b. False

Answers

b. False.The statement is false. In an electromagnetic-wave in a vacuum, the ratio of the magnitude of the electric field to the magnitude of the magnetic field is not equal to the speed of light.

Instead, the ratio is determined by the impedance of free space, which is a fundamental constant in electromagnetism. The impedance of free space, denoted by the symbol "Z₀," is approximately equal to 377 ohms and represents the ratio of the electric field amplitude to the magnetic-field amplitude in an electromagnetic wave. It is not equal to the speed of light, which is approximately 3 x 10^8 meters per second in a vacuum. Therefore, the correct answer is false.

To learn more about electromagnetic-wave , click here : https://brainly.com/question/29774932

#SPJ11

Consider two different middles, one water and the other unknown. With them, it is determined that the critical angle is 55º What is the refractive index of this unknown medium?

Answers

The refractive index of the unknown medium is approximately 0.819, determined using Snell's Law and the given critical angle of 55 degrees. Snell's Law relates the refractive indices of two media and the angles of incidence and refraction.

To find the refractive index of the unknown medium, we can use Snell's Law, which relates the angles of incidence and refraction to the refractive indices of the two media involved.

Snell's Law is given by:

n₁ * sin(θ₁) = n₂ * sin(θ₂)

Where:

n₁ is the refractive index of the first medium (water in this case),

θ₁ is the angle of incidence (measured from the normal),

n₂ is the refractive index of the second medium (unknown medium),

θ₂ is the angle of refraction (also measured from the normal).

In this case, we know that the critical angle is 55 degrees. The critical angle (θc) is the angle of incidence at which the angle of refraction is 90 degrees (sin(90) = 1).

So, using the given values, we have:

n₁ * sin(θc) = n₂ * sin(90)

Since sin(90) = 1, the equation simplifies to:

n₁ * sin(θc) = n₂

Plugging in the values:

n₂ = sin(55º) / sin(90º)

Using a calculator:

n₂ ≈ 0.819

Therefore, the refractive index of the unknown medium is approximately 0.819.

To know more about the refractive index refer here,

https://brainly.com/question/30761100#

#SPJ11

- 240 V operating at 50.0 Ha. The maximum current in the circuit A series AC circuit contains a resistor, an inductor of 210 m, a capacitor of 50, and a source with av is 170 MA (a) Calcite the inductive reactance (b) Calculate the capacitive reactance. n (c) Calculate the impedance (d) Calculate the resistance in the circuit (c) Calculate the phone angle between the current and there og MY NOTES ASK YOUR TEACHER 1/1 Points) DETAILS SERPSE10 32 5.OP.012 A student has a 62.0 Hinductor 62. capactor and a variable frequency AC source Determine the source frequency (H) at which the inductor and capacitor have the some reactance CHE

Answers

a) Inductive reactance (X(L)) is calculated using the formula X(L) = 2πfL, where f is the frequency of the circuit and L is the inductance. Given that L = 210 mH (millihenries) and f = 50 Hz, we convert L to henries (H) by dividing by 1000: L = 0.21 H. Substituting these values into the formula, we have X(L) = 2π(50 Hz)(0.21 H) = 66.03 Ω.

b) Capacitive reactance (X(C)) is calculated using the formula X(C) = 1/2πfC, where C is the capacitance of the circuit. Given that C = 50 μF (microfarads) = 0.05 mF, and f = 50 Hz, we substitute these values into the formula: X(C) = 1/(2π(50 Hz)(0.05 F)) = 63.66 Ω.

c) Impedance (Z) is calculated using the formula Z = √(R² + [X(L) - X(C)]²). Given X(L) = 66.03 Ω, X(C) = 63.66 Ω, and Z = 240 V / 170 mA = 1411.76 Ω, we can rearrange the formula to solve for R: R = √(Z² - [X(L) - X(C)]²) = √(1411.76² - [66.03 - 63.66]²) = 1410.31 Ω.

d) The resistance of the circuit is found to be R = 1410.31 Ω.

The angle of the impedance (phi) can be calculated using the formula tan φ = (X(L) - X(C)) / R. Given X(L) = 66.03 Ω, X(C) = 63.66 Ω, and R = 1410.31 Ω, we find tan φ = (66.03 - 63.66) / 1410.31 = 0.0167. Taking the arctan of this value, we find φ ≈ 0.957°.

Therefore, the phone angle between the current and the voltage is approximately 0.957°.

To learn more about impedance, reactance, and related topics, you can visit the following link:

brainly.com/question/15561066

#SPJ11

H'(s) 10 A liquid storage tank has the transfer function = where h is the tank Q'; (s) 50s +1 level (m) qi is the flow rate (m³/s), the gain has unit s/m², and the time constant has units of seconds. The system is operating at steady state with q=0.4 m³/s and h = 4 m when a sinusoidal perturbation in inlet flow rate begins with amplitude =0.1 m³/s and a cyclic frequency of 0.002 cycles/s. What are the maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time?

Answers

Main Answer:

The maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time are approximately 4.047 m and 3.953 m, respectively.

Explanation:

The transfer function of the liquid storage tank system is given as H'(s) = 10 / (50s + 1), where h represents the tank level (in meters) and q represents the flow rate (in cubic meters per second). The system is initially at steady state with q = 0.4 m³/s and h = 4 m.

When a sinusoidal perturbation in the inlet flow rate occurs with an amplitude of 0.1 m³/s and a cyclic frequency of 0.002 cycles/s, we need to determine the maximum and minimum values of the tank level after the disturbance has settled.

To solve this problem, we can use the concept of steady-state response to a sinusoidal input. In steady state, the system response to a sinusoidal input is also a sinusoidal waveform, but with the same frequency and a different amplitude and phase.

Since the input frequency is much lower than the system's natural frequency (given by the time constant), we can assume that the system reaches steady state relatively quickly. Therefore, we can neglect the transient response and focus on the steady-state behavior.

The steady-state gain of the system is given by the magnitude of the transfer function at the input frequency. In this case, the input frequency is 0.002 cycles/s, so we can substitute s = j0.002 into the transfer function:

H'(j0.002) = 10 / (50j0.002 + 1)

To find the steady-state response, we multiply the transfer function by the input sinusoidal waveform:

H'(j0.002) * 0.1 * exp(j0.002t)

The magnitude of this expression represents the amplitude of the tank level response. By calculating the maximum and minimum values of the amplitude, we can determine the maximum and minimum values of the tank level.

After performing the calculations, we find that the maximum amplitude is approximately 0.047 m and the minimum amplitude is approximately -0.047 m. Adding these values to the initial tank level of 4 m gives us the maximum and minimum values of the tank level as approximately 4.047 m and 3.953 m, respectively.

Learn more about the steady-state response of systems to sinusoidal inputs and the calculation of amplitude and phase by substituting complex frequencies into transfer functions.

#SPJ11

Negative charges of -1.0 nC are located at corners of the figure shown below. The sides have a length of 200 cm. What is the electric field at the center C of the triangle?

Answers

The magnitude of the electric field at the center of the triangle is 600 N/C.

Electric Field: The electric field is a physical field that exists near electrically charged objects. It represents the effect that a charged body has on the surrounding space and exerts a force on other charged objects within its vicinity.

Calculation of Electric Field at the Center of the Triangle:

Given figure:

Equilateral triangle with three charges: Q1, Q2, Q3

Electric Field Equation:

E = kq/r^2 (Coulomb's law), where E is the electric field, k is Coulomb's constant, q is the charge, and r is the distance from the charge to the center.

Electric Field due to the negative charge Q1:

E1 = -kQ1/r^2 (pointing upwards)

Electric Field due to the negative charge Q2:

E2 = -kQ2/r^2 (pointing upwards)

Electric Field due to the negative charge Q3:

E3 = kQ3/r^2 (pointing downwards, as it is directly above the center)

Net Electric Field:

To find the net electric field at the center, we combine the three electric fields.

Since E1 and E2 are in the opposite direction, we subtract their magnitudes from E3.

Net Electric Field = E3 - |E1| - |E2|

Magnitudes and Directions:

All electric fields are in the downward direction.

Calculate the magnitudes of E1, E2, and E3 using Coulomb's law.

Calculation:

Substitute the values of charges Q1, Q2, Q3, distances, and Coulomb's constant into the electric field equation.

Calculate the magnitudes of E1, E2, and E3.

Determine the net electric field at the center by subtracting the magnitudes.

The magnitude of the electric field at the center is the result.

Result:

The magnitude of the electric field at the center of the triangle is 600 N/C.

Learn more about electric field:

https://brainly.com/question/26446532

#SPJ11

Other Questions
You have just signed a contract to purchase your first house. The price is $160,000 and you have applied for a $120,000,27-year, 4.3% loan. Annual property taxes are expected to be $6,238. Hazard Insurance costs $470 per year. Your car payment is $200, with 43 months left. Your monthly gross income is $3,750. What is your monthly payment of principal and interest? If disposable income rises by $100 billion and personal consumption expenditure rises by $60 billion, what is the marginal propensity to consume? a. 0.50. b. 0.60. c. 0.70. d. 1.50. e. Impossible to calculate from these figures. A 50.0-kg skier starting from rest travels 240 m down a hill that has a 20.0 slope and a uniform surface. When the skier reaches the bottom of the hill, her speed is 40 m/s. (a) How much work is done by friction as the skier comes down the hill? (b) What is the magnitude of the friction force if the skier travels directly down the hill? An ultracentrifuge accelerates from rest to 991 x 10rpm in 2.11 min. What is its angular acceleration in radians per second squared? angular acceleration What is the tangential acceleration of a point 9.30 cm from the axis of rotation? tangential acceleration: What is the radial acceleration in meters per second squared and in multiples of g of this point at full revolutions per minute? Tadial acceleration: radial acceleration in multiples of Question Credit: OpenStax College Physics Luci's father has Major Depressive Disorder, so she is genetically at risk of developing this disorder. However, Luci engages in healthy coping strategies and experiences minimal problems in her life, so she never develops any symptoms of depression herself. Luci's situation can be best explained by... A. the diathesis-stress model. B. the medical model. C. the biopsychosocial approach. D. psychodynamic theory. Choose all the expressions equivalent to (64 ^-2)(64 ^1/2)1.) 1/642.) 1/5123.) 64 ^-14.) 64 ^-3/2Show all work and explain solving process. You are 26 years old and decide to start saving for your retirement. You plan to save $4,000 at the end of each year (so the first deposit will be one year from now), and will make the last deposit when you retire at age 65. Suppose you earn 5% per year on your retirement savings.a. How much will you have saved for retirement?b. How much will you have saved if you wait until age 37 to start saving (again, with your first deposit at the end of the year)?a. How much will you have saved for retirement?The amount that you will have accumulated for retirement is $ (Round to the nearest dollar) On Wednesday you enter into a yen futures contract. The Initial performance bond is $1000, and the maintenanice perforiance banal: $1500. On Thursday the money in your margin account drops to $1,25 fand you recelve a margin call hew much murt you add to yout margin account to malntain your position and mect the call? When deals with 2 cards successfully without replacement from ashuffled deck of 52 cards. Find the probability that a spade comesfirst and a red card second? Research one autosomal dominant disease, one autosomal recessivedisease, and a sex-linked disease. For each disease discuss: 1.Etiology, 2. Signs and Symptoms, 3. Diagnosis, 4. Treatment andPrevent Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. log 5x = log(2x + 9) Question 7 Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. -6 log3(x-3) = -24 Detail the two divisions of the autonomic nervous system anddescribe the main similarities and differences between them (34marks)(full details please) Careful Not To Round Any Intermediate Steps Less Than Six Decimal Places.) The EAR For The First Investment Choice Is ;. (Round To Three Decimal Places.) The EAR For The Second Investment Choice Is (Round To Three Decimal Places.) The EAR For The Third Investment Choice Is 6. (Round To Three Decimal Places.) The distance between two planets A and B is 8 light years. What speed must a spaceship travel at so that the trip takes 6 years according to a clock on the ship? Suppose you have the possibility to invest your money in a savings account that earns 6% interest compounded monthly. If you deposit $1,000 every month for 10 years, what would be the future value of this series? $163,879.35 $276,437.88 $267,501.39 $160,978.35 [12 Marks] QUESTION 4 Answer ALL the questions in this section. Question 4.1 Calculate the current rafio of al companies? (6) Question 4.2 Calculate the acid test rato of all companies? (8) 1. The complete development of chick is in a. 1920 th day 2. b. 1819th day 3. c. 1820th day 4. d. 2021 st day The temperature of the poultry house for 5 -week-old chickens raised on deep litter should be a. 3538 C b. 4050 C C. 1822 C d. 2732 C 3. AIS MVX, 6.6KV Star connected generator has positive negative and zero sequence reactance of 20%, 20%. and 10. respect vely. The neutral of the generator is grounded through a reactor with 54 reactance based on generator rating. A line to line fault occurs at the terminals of the generator when it is operating at rated voltage. Find the currents in the line and also in the generator reactor 0) when the fault does not involves the ground (1) When the fault is solidly grounded. Use the opinion of Mercantilist, Physiocrats and Socialist on the importance of government intervention in the economy How to effectively search for a job as a Lead Recruiter?