An ultracentrifuge accelerates from rest to 991 x 10rpm in 2.11 min. What is its angular acceleration in radians per second squared? angular acceleration What is the tangential acceleration of a point 9.30 cm from the axis of rotation? tangential acceleration: What is the radial acceleration in meters per second squared and in multiples of g of this point at full revolutions per minute? Tadial acceleration: radial acceleration in multiples of Question Credit: OpenStax College Physics

Answers

Answer 1

a) The angular acceleration of the ultracentrifuge is approximately 0.031 radians per second squared.

b) The tangential acceleration of a point 9.30 cm from the axis of rotation is approximately 555 meters per second squared.

c) The radial acceleration of this point at full revolutions per minute is approximately 3270 meters per second squared or approximately 333 times the acceleration due to gravity (333g).

a) To find the angular acceleration, we use the formula:

angular acceleration = (final angular velocity - initial angular velocity) / time

Plugging in the given values:

final angular velocity = 991 x 10 rpm = 991 x 10 * 2π radians per minute

initial angular velocity = 0

time = 2.11 min

Converting the time to seconds and performing the calculation, we find the angular acceleration to be approximately 0.031 radians per second squared.

b) The tangential acceleration can be calculated using the formula:

tangential acceleration = radius x angular acceleration

Plugging in the given radius of 9.30 cm (converted to meters) and the calculated angular acceleration, we find the tangential acceleration to be approximately 555 meters per second squared.

c) The radial acceleration is given by the formula:

radial acceleration = tangential acceleration = radius x angular acceleration

At full revolutions per minute, the tangential acceleration is equal to the radial acceleration. Thus, the radial acceleration is approximately 555 meters per second squared.

To express the radial acceleration in multiples of g, we divide it by the acceleration due to gravity (g = 9.8 m/s²). The radial acceleration is approximately 3270 meters per second squared or approximately 333 times the acceleration due to gravity (333g).

To learn more about acceleration click here:

brainly.com/question/460763

#SPJ11


Related Questions

A spherical mirror is polished on both sides. When the concave side is used as a mirror, the magnification is +2.1. What is the magnification when the convex side is used as a mirror, the object remaining the same distance from the mirror? If the object is
inverted, then enter a negative number. Otherwise, enter a positive number.

Answers

The convex mirror side of the spherical mirror is used, the magnification is -2.1, indicating an inverted image, when the spherical mirror is polished on both side.

To find the magnification when the convex side of a spherical mirror is used, we can use the mirror formula:

1/f = 1/v - 1/u

Where:

f is the focal length of the mirror,

v is the image distance,

u is the object distance.

Given that the magnification when the concave side is used is +2.1, we know that the magnification (m) is given by:

m = -v/u

Since the object distance remains the same, we can use the magnification formula to find the magnification when the convex side is used.

Let's assume that the object distance is denoted by u and the image distance is denoted by v'.

Since the object distance (u) remains the same, we can write:

m' = -v'/u

Now, to find the magnification when the convex side is used, we need to find the image distance (v') using the mirror formula.

Since the object is inverted, the magnification should be negative. Therefore, we are looking for a negative value for m'.

Now, let's find v' using the mirror formula.

Given:

m = +2.1 (for the concave side)

m' = ? (for the convex side)

u = constant (same as before)

Since the object distance remains the same, we can equate the magnification formulas for the concave and convex sides:

m = m'

-2.1 = -v'/u

Simplifying the equation, we get:

v' = 2.1u

Now, substituting this value of v' into the magnification formula for the convex side:

m' = -v'/u

= -(2.1u)/u

= -2.1

Therefore, when the convex side of the spherical mirror is used, the magnification is -2.1, indicating an inverted image.

To know more about  convex mirror please refer:

https://brainly.com/question/7512320

#SPJ11

What is the speed of light (in m/s) in water? m/s What is the speed of light (in m/s) in carbon disulfide? m/s

Answers

The speed of light in carbon disulfide is approximately 183,846,708 m/s. The speed of light in a medium can be calculated using the equation:

v = c / n

where:

v is the speed of light in the medium,

c is the speed of light in vacuum or air (approximately 299,792,458 m/s), and

n is the refractive index of the medium.

For water:

The refractive index of water (n) is approximately 1.33.

Using the equation, we can calculate the speed of light in water:

v_water = c / n

v_water = 299,792,458 m/s / 1.33

v_water ≈ 225,079,470 m/s

Therefore, the speed of light in water is approximately 225,079,470 m/s.

For carbon disulfide:

The refractive index of carbon disulfide (n) is approximately 1.63.

Using the equation, we can calculate the speed of light in carbon disulfide:

v_carbon_disulfide = c / n

v_carbon_disulfide = 299,792,458 m/s / 1.63

v_carbon_disulfide ≈ 183,846,708 m/s

Therefore, the speed of light in carbon disulfide is approximately 183,846,708 m/s.

Learn more about speed:
https://brainly.com/question/13943409

#SPJ11

A flat coil of wire consisting of 24 turns, each with an area of ​​44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.

Answers

The magnitude of the induced current is 0.47 A.

When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.

In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.

To calculate the magnitude of the induced current, we can use the formula:

EMF = -N * d(BA)/dt

Where:

EMF is the electromotive force

N is the number of turns in the coil

d(BA)/dt is the rate of change of magnetic flux

The magnetic flux (BA) through each turn of the coil is given by:

BA = B * A

Where:

B is the magnetic field

A is the area of each turn

Substituting the given values into the formulas, we have:

EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V

Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:

EMF = I * R

Where:

I is the magnitude of the induced current

R is the total resistance of the coil

Substituting the values into the formula, we have:

-48 V = I * 0.84 ohm

Solving for I, we get:

I = -48 V / 0.84 ohm ≈ 0.47 A

Therefore, the magnitude of the induced current is approximately 0.47 A.

Learn more about induced current

brainly.com/question/31686728

#SPJ11

A spherical shell with a mass of 1.7 kg and a radius of 0.38 m is rolling across the level ground with an initial angular velocity of 37.9rad/s. It is slowing at an angular rate of 2.5rad/s2. What is its rotational kinetic energy after 5.1 s ? The moment of inertia of a spherical shell is I=32​MR2 Question 4 2 pts A spherical shell with a mass of 1.49 kg and a radius of 0.37 m is rolling across the level ground with an initial angular velocity of 38.8rad/s. It is slowing at an angular rate of 2.58rad/s2. What is its total kinetic energy after 4.1 s ? The moment of inertia of a spherical shell is I=32​MR2

Answers

For the first scenario, the rotational kinetic energy after 5.1 s is approximately 5.64 J. For the second scenario, the total kinetic energy after 4.1 s is approximately 6.55 J.

For both scenarios, we are dealing with a spherical shell. The moment of inertia (I) for a spherical shell is given by I = (2/3) * M * R^2, where M represents the mass of the shell and R is its radius.

For the first scenario:

Given:

Mass (M) = 1.7 kg

Radius (R) = 0.38 m

Initial angular velocity (ω0) = 37.9 rad/s

Angular acceleration (α) = -2.5 rad/s^2 (negative sign indicates slowing down)

Time (t) = 5.1 s

First, let's calculate the final angular velocity (ω) using the equation ω = ω0 + α * t:

ω = 37.9 rad/s + (-2.5 rad/s^2) * 5.1 s

  = 37.9 rad/s - 12.75 rad/s

  = 25.15 rad/s

Next, we can calculate the moment of inertia (I) using the given values:

I = (2/3) * M * R^2

  = (2/3) * 1.7 kg * (0.38 m)^2

  ≈ 0.5772 kg·m^2

Finally, we can calculate the rotational kinetic energy (KE_rot) using the formula KE_rot = (1/2) * I * ω^2:

KE_rot = (1/2) * 0.5772 kg·m^2 * (25.15 rad/s)^2

        ≈ 5.64 J

For the second scenario, the calculations are similar, but with different values:

Mass (M) = 1.49 kg

Radius (R) = 0.37 m

Initial angular velocity (ω0) = 38.8 rad/s

Angular acceleration (α) = -2.58 rad/s^2

Time (t) = 4.1 s

Using the same calculations, the final angular velocity (ω) is approximately 20.69 rad/s, the moment of inertia (I) is approximately 0.4736 kg·m^2, and the total kinetic energy (KE_rot) is approximately 6.55 J.

Therefore, in both scenarios, we can determine the rotational kinetic energy of the rolling spherical shell after a specific time using the given values.

To learn more about kinetic click here brainly.com/question/999862

#SPJ11

10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr

Answers

(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.

(b) The orbital period of P2 is 9.67 years.

The mass of a star can be calculated using the following formula:

M = (v^3 * T^2) / (4 * pi^2 * r^3)

here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.

In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:

M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)

We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.

r1 / r2 = 46.2 / 59.2

We can use this ratio to calculate the value of r2:

r2 = r1 * (59.2 / 46.2)

Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:

M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)

M = 5.85 x 10^30 kg

The orbital period of P2 can be calculated using the following formula:

T = (2 * pi * r) / v

where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.

In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:

T = (2 * pi * r2) / v2

T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)

T = 9.67 years

To learn more about orbital period click here: brainly.com/question/31543880

#SPJ11

Your task in physics lab is to make a microscope from two lenses. One lens has a focal length of 12 cm , the other a focal length of 2.0 cm . You plan to use the more powerful lens as the objective, and you want its image to be 16 cm from the lens, as in a standard biological microscope.a) How far should the objective lens be from the object to produce a real image 16 cm from the objective? In cm
b) What will be the magnification of your microscope?

Answers

Based on the calculation, we can conclude that the distance of the objective lens from the object should be 32 cm to produce a real image 16 cm from the objective. And the magnification of the microscope will be 0.5.

a) In cm To calculate the distance of the objective lens from the object, we will use the lens formula, which states that 1/u + 1/v = 1/f, where u is the distance of the object from the lens, v is the distance of the image from the lens, and f is the focal length of the lens.The objective lens has a focal length of 2.0 cm, and its image will be 16 cm away from it. 1/u + 1/v = 1/f1/u + 1/16 = 1/2u = 32 cm. Therefore, the objective lens should be 32 cm away from the object to produce a real image 16 cm from the objective.

b) The magnification of a microscope is defined as the ratio of the size of the image seen through the microscope to the size of the object.To calculate the magnification, we will use the formula:Magnification = v/u, where v is the distance of the image from the lens, and u is the distance of the object from the lens.Magnification = v/u = 16/32 = 0.5. Therefore, the magnification of the microscope will be 0.5, which means that the image seen through the microscope will be half the size of the object.

To know more about focal length visit:

brainly.com/question/2194024

#SPJ11

Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field

Answers

Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.

In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.

The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.

Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.

To learn more about  magnetic field

Click here brainly.com/question/19542022

#SPJ11

A fuel-powered loader raises a 950-kg load from the ground to a loading platform, which is 4 m above the ground. The loader consumes 1.07 x 10ʻ J of energy from the fuel while raising the load. a) Calculate the efficiency of the loader.
b) Draw an energy flow diagram for this situation.

Answers

Calculate the efficiency of the loader:

Efficiency = (Useful energy output / Total energy input) x 100%. Where, Useful energy output is the energy that is supplied to the load, and Total energy input is the total energy supplied by the fuel.

Here, the total energy input is 1.07 x 10ʻ J. Hence, we need to find the useful energy output.

Now, the potential energy gained by the load is given by mgh, where m is the mass of the load, g is the acceleration due to gravity and h is the height to which the load is raised.

h = 4m (as the load is raised to a height of 4 m) g = 9.8 m/s² (acceleration due to gravity)

Substituting the values we get, potential energy gained by the load = mgh= 950 kg × 9.8 m/s² × 4 m= 37240 J

Therefore, useful energy output is 37240 J

So, Efficiency = (37240/1.07x10ʻ) × 100%= 3.48% (approx)

Learn more on mechanical efficiency: https://brainly.com/question/3617034

#SPJ11

Final answer:

To calculate the efficiency of the loader, use the efficiency formula and calculate the work done on the load. The energy flow diagram would show the energy input from the fuel, the work done on the load, and the gravitational potential energy gained by the load.

Explanation:

To calculate the efficiency of the loader, we need to use the efficiency formula, which is given by the ratio of useful output energy to input energy multiplied by 100%. The useful output energy is the gravitational potential energy gained by the load, which is equal to the work done on the load.

1. Calculate the work done on the load: Work = force x distance. The force exerted by the loader is equal to the weight of the load, which is given by the mass of the load multiplied by the acceleration due to gravity.

2. Calculate the input energy: Input energy = 1.07 x 103 J (given).

3. Calculate the efficiency: Efficiency = (Useful output energy / Input energy) x 100%.

b) The energy flow diagram for this situation would show the energy input from the fuel, the work done on the load, and the gravitational potential energy gained by the load as it is raised to the loading platform.

Learn more about Efficiency of a fuel-powered loader here:

https://brainly.com/question/33397341

#SPJ2

Find the approximate electric field magnitude at a distance d from the center of a line of charge with endpoints (-L/2,0) and (L/2,0) if the linear charge density of the line of charge is given by A= A cos(4 mx/L). Assume that d>L.

Answers

The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density.

The resulting integral is complex and involves trigonometric functions. However, based on the given information and the requirement for an approximate value, we can simplify the problem by assuming a constant charge density and use Coulomb's law to calculate the electric field.

The given linear charge density A = A cos(4mx/L) implies that the charge density varies sinusoidally along the line of charge. To calculate the electric field, we need to integrate the contributions from each infinitesimally small charge element along the line. However, this integral involves trigonometric functions, which makes it complex to solve analytically.

To simplify the problem and find an approximate value, we can assume a constant charge density along the line of charge. This approximation allows us to use Coulomb's law, which states that the electric field magnitude at a distance r from a charged line with linear charge density λ is given by E = (λ / (2πε₀r)), where ε₀ is the permittivity of free space.

Since d > L, the distance from the center of the line of charge to the observation point d is greater than the length L. Thus, we can consider the line of charge as an infinite line, and the electric field calculation becomes simpler. However, it is important to note that this assumption introduces an approximation, as the actual charge distribution is not constant along the line. The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density. Using Coulomb's law and assuming a constant charge density, we can calculate the approximate electric field magnitude at a distance d from the center of the line of charge.

Learn more about assumption here: brainly.com/question/31868402

#SPJ11

A simple pendulum consists of a ball connected to one end of a thin brass wire. The period of the pendulum is 1.04 s. The temperature rises by 134 C, and the length of the wire increases. Determine the change in the period of the heated pendulum

Answers

The change in period of the heated pendulum is 0.016 s.

From the given information, the initial period of the pendulum T₀ = 1.04s

Let, ΔT be the change in period of the heated pendulum. We know that the time period of the pendulum depends upon its length, L and acceleration due to gravity, g.

Time period, T ∝√(L/g)On heating the pendulum, the length of the pendulum wire increases, say ΔL.

Then, the new length of the wire,

L₁ = L₀ + ΔL Where L₀ is the initial length of the wire.

Given that, the temperature increases by 13°C.

Let α be the coefficient of linear expansion for brass. Then, the increase in length of the wire is given by,

ΔL = L₀ α ΔT Where ΔT is the rise in temperature.

Substituting the values in the above equation, we have

ΔT = (ΔL) / (L₀ α)

ΔT = [(L₀ + ΔL) - L₀] / (L₀ α)

ΔT = ΔL / (L₀ α)

ΔT = (α ΔT ΔL) / (L₀ α)

ΔT = (ΔL / L₀) ΔT

ΔT = (1.04s / L₀) ΔT

On substituting the values, we get

1.04s / L₀ = (ΔL / L₀) ΔT

ΔT = (1.04s / ΔL) × (ΔL / L₀)

ΔT = 1.04s / L₀

ΔT = 1.04s × 3.4 × 10⁻⁵ / 0.22

ΔT = 0.016s

Hence, the change in period of the heated pendulum is 0.016 s.

Note: The time period of a pendulum is given by the relation, T = 2π √(L/g)Where T is the time period of the pendulum, L is the length of the pendulum and g is the acceleration due to gravity.

Learn more about simple pendulum https://brainly.com/question/26449711

#SPJ11

8)The electric field in a sine wave has a peak value of 32.6 mV/m. Calculate the magnitude of the Poynting vector in this case.

Answers

The Poynting vector is the power density of an electromagnetic field.

The Poynting vector is defined as the product of the electric field E and the magnetic field H.

The Poynting vector in this case can be calculated by:

S = E × H

where E is the electric field and H is the magnetic field.

E/B = c

where c is the speed of light and B is the magnetic field.

[tex]E/B = c⇒ B = E/c⇒ B = (32.6 × 10⁻³)/(3 × 10⁸) = 1.087 × 10⁻¹¹[/tex]

The magnitude of the magnetic field H is then:

B = μH

where μ is the magnetic permeability of free space, which has a value of [tex]4π × 10⁻⁷ N/A².[/tex]

[tex]1.087 × 10⁻¹¹/(4π × 10⁻⁷) = 8.690H = 5 × 10⁻⁷[/tex]

The Poynting vector is then:

[tex]S = E × H = (32.6 × 10⁻³) × (8.6905 × 10⁻⁷) = 2.832 × 10⁻⁹ W/m²[/tex]

The magnitude of the Poynting vector in this case is 2.832 × 10⁻⁹ W/m².

To know more about Poynting visit:

https://brainly.com/question/19530841

#SPJ11

How much energy in calories (to 2 significant figures) is
required to melt 7.6 grams of 0C ice ?

Answers

The specific heat capacity of water is 4.18 J/(g⋅K), and the heat of fusion of water is 6.01 kJ/mol. Therefore, in order to find the energy required to melt 7.6 grams of 0°C ice, we can use the following formula:

Q = m × (ΔHfus); Q is the energy needed (joules), m is the mass, and ΔHfus is the heat of fusion.

Converting joules to calories: 1 cal = 4.184 J. So, the energy required in calories can be found by dividing Q by 4.184.

Using the molar mass of water, we can convert the heat of fusion from joules per mole to joules per gram. Water's molar mass is 18 g/mol. Therefore, the heat of fusion of water in joules per gram is:

ΔHfus = (6.01 kJ/mol) ÷ (18.02 g/mol)

ΔHfus = 334 J/g

Substituting the values we have in the formula for Q:

Q = (7.6 g) × (334 J/g)Q = 2538.4 J

To convert from joules to calories, we divide by 4.184:Q = 2538.4 J ÷ 4.184Q = 607 cal

Therefore, the energy required to melt 7.6 grams of 0°C ice is approximately 607 calories (to 2 significant figures).

Here's another question on calories: https://brainly.com/question/28589779

#SPJ11

Problem 18.61 Part A A freezer has a coefficient of performance equal to 4.7. How much electrical energy must this freezer use to produce 1.4 kg of ice at -3 °C from water at 18 °C? Express your answer using two significant figures. av AED W = 580.46 Submit Previous Answers Request Answer X Incorrect: Try Again Provide feedback

Answers

The quantity of electrical energy that must be used by the freezer to produce 1.4 kg of ice at -3 °C from water at 18 °C is `18572.77 J` or `1.86 × 10^4 J` (to two significant figures).

The coefficient of performance (COP) of a freezer is equal to 4.7. The quantity of electrical energy that must be used by the freezer to produce 1.4 kg of ice at -3 °C from water at 18 °C is to be found. Since we are given the COP of the freezer, we can use the formula for COP to find the heat extracted from the freezing process as follows:

COP = `Q_L / W` `=> Q_L = COP × W

whereQ_L is the heat extracted from the freezer during the freezing processW is the electrical energy used by the freezerDuring the freezing process, the amount of heat extracted from water can be found using the formula,Q_L = `mc(T_f - T_i)`where,Q_L is the heat extracted from the water during the freezing processm is the mass of the water (1.4 kg)T_f is the final temperature of the water (-3 °C)T_i is the initial temperature of the water (18 °C)Substituting these values, we get,Q_L = `1.4 kg × 4186 J/(kg·K) × (-3 - 18) °C` `=> Q_L = -87348.8 J

`Negative sign shows that heat is being removed from the water and this value represents the heat removed from water by the freezer.The electrical energy used by the freezer can be found as,`W = Q_L / COP` `=> W = (-87348.8 J) / 4.7` `=> W = -18572.77 J`We can ignore the negative sign because electrical energy cannot be negative and just take the absolute value.

To know more about electrical energy:

https://brainly.com/question/16182853


#SPJ11

What is the range of a 4-MeV deuteron in gold (in um)?

Answers

The range of a 4-MeV deuteron in gold is approximately 7.5 micrometers (μm).

Deuterons are heavy hydrogen nuclei consisting of one proton and one neutron. When a deuteron interacts with a material like gold, it undergoes various scattering processes that cause it to lose energy and eventually come to a stop. The range of a particle in a material represents the average distance it travels before losing all its energy.

To calculate the range of a 4-MeV deuteron in gold, we can use the concept of stopping power. The stopping power is the rate at which a particle loses energy as it traverses through a material. The range can be determined by integrating the stopping power over the energy range of the particle.

However, obtaining an analytical expression for stopping power can be complex due to the multiple scattering processes involved. Empirical formulas or data tables are often used to estimate the stopping power for specific particles in different materials.

Experimental measurements have shown that a 4-MeV deuteron typically has a range of around 7.5 μm in gold. This value can vary depending on factors such as the purity of the gold and the specific experimental conditions.

To know more about stopping power, refer here:

https://brainly.com/question/31962952#

#SPJ11

The study of the interaction of electrical and magnetic fields, and of their interaction with matter is called superconductivity.

a. true

b. false

Answers

b. false. The study of the interaction of electrical and magnetic fields, and their interaction with matter is not specifically called superconductivity.

Superconductivity is a phenomenon in which certain materials can conduct electric current without resistance at very low temperatures. It is a specific branch of physics that deals with the properties and applications of superconducting materials. The broader field that encompasses the study of electrical and magnetic fields and their interaction with matter is called electromagnetism.

To learn more about magnetic, Click here: brainly.com/question/23881929?

#SPJ11

An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.
Choices:
a) 0.095 cu.m.
b) 0.085 cu.m.
c) 0.047 cu.m.
d) 0.058 cu.m.

Answers

The spilled volume of water from the open cylindrical tank, when rotated at 90 rpm, is approximately 0.095 cubic meters.

When the cylindrical tank is rotated, the water inside experiences centrifugal force. This force pushes the water towards the outer edges of the tank, causing it to rise and potentially spill over. To determine the spilled volume, we need to calculate the difference in height between the water level at rest and the water level when the tank is rotating at 90 rpm.

First, we calculate the circumference of the tank using the formula: circumference = 2πr, where r is the radius. Plugging in the given radius of 0.30 meters, we get a circumference of approximately 1.89 meters.

Next, we need to determine the distance traveled by a point on the water's surface when the tank completes one revolution at 90 rpm. To do this, we use the formula: distance = (circumference × rpm) / 60. Substituting the values, we find the distance traveled per minute is approximately 2.98 meters.

Since the tank has a height of 1.2 meters, the ratio of the distance traveled to the tank height is approximately 2.48. This means that the water level will rise by 2.48 times the height of the tank when rotating at 90 rpm.

Finally, we calculate the spilled volume by subtracting the initial height of the water from the increased height. The spilled volume is given by the formula: volume = πr^2(h_new - h_initial), where r is the radius and h_new and h_initial are the new and initial heights of the water, respectively.

Plugging in the values, we get: volume = π(0.3^2)(1.2 × 2.48 - 1.2) ≈ 0.095 cubic meters.Therefore, the spilled volume of water is approximately 0.095 cubic meters.

Learn more about spilled volume

brainly.com/question/11799197

#SPJ11

A 180 ohm resistor can dissipate a maximum power of .250W. Calculate the maximum current that it can carry and still meet this limitation.

Answers

As 180-ohm resistor can dissipate a maximum power of .250W The maximum current that can pass through the resistor while meeting the power limit is 0.027 A which can be obtained by the formula P = I²R

The resistance of the resistor, R = 180 Ω. The maximum power dissipated by the resistor, P = 0.250 W. We need to find the maximum current that can be passed through the resistor while maintaining the power limit. The maximum power that can be dissipated by the resistor is given by the formula;

P = I²R …………… (1)

Where; P = Power in watts, I = Current in amperes, and R = Resistance in ohms.

Rewriting the above equation, we get,

I = √(P / R) ………… (2)

Substitute the given values into the equation 2 and solve for the current,

I = √(0.250 / 180)

⇒I = 0.027 A

The maximum current that can pass through the resistor while meeting the power limit is 0.027 A.

Learn more about power: https://brainly.com/question/24858512

#SPJ11

3. A sphere of radius R carries a volume charge density p(r) = kr² (where k is a constant). Find the energy of the configuration.

Answers

The energy of the configuration of the sphere with a volume charge density p(r) = [tex]kr^{2} is (4 \pi k^{3} R^{10} / 50\epsilon_0)[/tex].

To find the energy of the configuration of a sphere with a volume charge density given by p(r) =[tex]kr^{2}[/tex], where k is a constant, we can use the energy equation for a system of charges:

U = (1/2) ∫ V ρ(r) φ(r) dV

In this case, since the charge density is given as p(r) =[tex]kr^{2}[/tex], we can express the total charge Q contained within the sphere as:

Q = ∫ V ρ(r) dV

= ∫ V k [tex]r^{2}[/tex] dV

Since the charge density is proportional to [tex]r^{2}[/tex], we can conclude that the charge within each infinitesimally thin shell of radius r and thickness dr is given by:

dq = k [tex]r^{2}[/tex] dV

=[tex]k r^{2} (4\pi r^{2} dr)[/tex]

Integrating the charge from 0 to R (the radius of the sphere), we can find the total charge Q:

Q = ∫ 0 to R k[tex]r^2[/tex] (4π[tex]r^2[/tex] dr)

= 4πk ∫ 0 to R[tex]r^4[/tex] dr

= 4πk [([tex]r^5[/tex])/5] evaluated from 0 to R

= (4πk/5) [tex]R^5[/tex]

Now that we have the total charge, we can find the electric potential φ(r) at a point r on the sphere. The electric potential due to a charged sphere at a point outside the sphere is given by:

φ(r) = (kQ / (4πε₀)) * (1 / r)

Where ε₀ is the permittivity of free space.

Substituting the value of Q, we have:

φ(r) = (k(4πk/5) [tex]R^5[/tex] / (4πε₀)) * (1 / r)

= ([tex]k^{2}[/tex] / 5ε₀)[tex]R^5[/tex] * (1 / r)

Now, we can substitute ρ(r) and φ(r) into the energy equation:

U = (1/2) ∫ [tex]V k r^{2} (k^{2} / 5\epsilon_0) R^5[/tex]* (1 / r) dV

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex]∫ V [tex]r^{2}[/tex] dV

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex] ∫ V[tex]r^{2}[/tex] (4π[tex]r^{2}[/tex] dr)

Integrating over the volume of the sphere, we get:

U = [tex](k^{3} R^5 / 10\epsilon_0)[/tex] * 4π ∫ 0 to R [tex]r^4[/tex]dr

= [tex](k^{3} R^5 / 10\epsilon_0)[/tex] * [tex]4\pi [(r^5)/5][/tex]evaluated from 0 to R

=[tex](k^{3} R^5 / 10\epsilon_0)[/tex]* 4π * [([tex]R^5[/tex])/5]

=[tex](4 \pi k^{3} R^{10} / 50\epsilon_0)[/tex]

To know more about energy equation, here

brainly.com/question/29007160

#SPJ4

Consider a conical pendulum with a bob of mass m = 93.0 kg on a string of length L = 10.0 m that makes an angle of theta = 7.00° with the vertical. (Consider +î to be towards the center of the circular path and +ĵ to be upward.)
A conical pendulum is shown. The string is of length L and a bob of mass m is attached to the end. The string makes an angle theta with the vertical. A dashed circle is present to show the horizontal circular path of the bob.
(a) Determine the horizontal and vertical components of the force exerted by the string on the pendulum.
______N î + _______N ĵ
(b) Determine the radial acceleration of the bob.
_____m/s2

Answers

(a) the components of the force are:

F_horizontal = 911.4 N * 0.1219 = 111 N î

F_vertical = 911.4 N

(b) The radial acceleration of the bob is:

a_radial = 9.919 m/s^2

To solve this problem, we'll break down the forces acting on the conical pendulum into their horizontal and vertical components.

(a) Horizontal and Vertical Components of the Force:

In a conical pendulum, the tension in the string provides the centripetal force to keep the bob moving in a circular path. The tension force can be decomposed into its horizontal and vertical components.

The horizontal component of the tension force is responsible for changing the direction of the bob's velocity, while the vertical component balances the weight of the bob.

The vertical component of the force is given by:

F_vertical = mg

where m is the mass of the bob and g is the acceleration due to gravity.

The horizontal component of the force is given by:

F_horizontal = T*sin(theta)

where T is the tension in the string and theta is the angle the string makes with the vertical.

Substituting the given values:

m = 93.0 kg

g = 9.8 m/s^2

theta = 7.00°

F_vertical = (93.0 kg)(9.8 m/s^2) = 911.4 N (upward)

F_horizontal = T*sin(theta)

Now, we need to find the tension T in the string. Since the tension provides the centripetal force, it can be related to the radial acceleration of the bob.

(b) Radial Acceleration of the Bob:

The radial acceleration of the bob is given by:

a_radial = v^2 / r

where v is the magnitude of the velocity of the bob and r is the radius of the circular path.

The magnitude of the velocity can be related to the angular velocity of the bob:

v = ω*r

where ω is the angular velocity.

For a conical pendulum, the angular velocity is related to the period of the pendulum:

ω = 2π / T_period

where T_period is the period of the pendulum.

The period of a conical pendulum is given by:

T_period = 2π*sqrt(L / g)

where L is the length of the string and g is the acceleration due to gravity.

Substituting the given values:

L = 10.0 m

g = 9.8 m/s^2

T_period = 2π*sqrt(10.0 / 9.8) = 6.313 s

Now we can calculate the angular velocity:

ω = 2π / 6.313 = 0.996 rad/s

Finally, we can calculate the radial acceleration:

a_radial = (ω*r)^2 / r = ω^2 * r

Substituting the given value of r = L = 10.0 m:

a_radial = (0.996 rad/s)^2 * 10.0 m = 9.919 m/s^2

(a) The horizontal and vertical components of the force exerted by the string on the pendulum are:

F_horizontal = T*sin(theta)

F_horizontal = T*sin(7.00°)

F_vertical = mg

Substituting the values:

F_horizontal = T*sin(7.00°) = T*(0.1219)

F_vertical = (93.0 kg)(9.8 m/s^2) = 911.4 N

Therefore, the components of the force are:

F_horizontal = 911.4 N * 0.1219 = 111 N î

F_vertical = 911.4 N

(b) The radial acceleration of the bob is:

a_radial = 9.919 m/s^2

Visit here to learn more about force brainly.com/question/13191643

#SPJ11

A uniform magnetic field B has a strength of 5.5 T and a direction of 25.0° with respect to the +x-axis. A proton (1.602e-19)is traveling through the field at an angle of -15° with respect to the +x-axis at a velocity of 1.00 ×107 m/s. What is the magnitude of the magnetic force on the proton?

Answers

The magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

Given values: B = 5.5 Tθ = 25°q = 1.602 × 10⁻¹⁹ VC = 1.00 × 10⁷ m/s Formula: The formula to calculate the magnetic force is given as;

F = qvBsinθ

Where ;F is the magnetic force on the particle q is the charge on the particle v is the velocity of the particle B is the magnetic field strengthθ is the angle between the velocity of the particle and the magnetic field strength Firstly, we need to determine the angle between the velocity vector and the magnetic field vector.

From the given data, The angle between velocity vector and x-axis;α = -15°The angle between magnetic field vector and x-axis;β = 25°The angle between the velocity vector and magnetic field vectorθ = 180° - β + αθ = 180° - 25° - 15°θ = 140° = 2.44346 rad Now, we can substitute all given values in the formula;

F = qvBsinθF

= (1.602 × 10⁻¹⁹ C) (1.00 × 10⁷ m/s) (5.5 T) sin (2.44346 rad)F

= 4.31 × 10⁻¹¹ N

Therefore, the magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.

To learn  more about magnetic force visit

https://brainly.com/question/10353944

#SPJ11

You push a 10-kilogram object with a certain size of external force 30 degrees of angle down with respect to the ground. Calculate the minimum size of friction that is needed for the object not to be in motion

Answers

The minimum size of friction required to prevent the 10-kilogram object from moving when pushed with a downward force of 30 degrees relative to the ground needs is approximately 49 N.

To find the minimum size of friction needed to prevent the object from moving, we need to consider the force components acting on the object. The force pushing the object down the inclined plane can be broken into two components: the force parallel to the inclined plane (downhill force) and the force perpendicular to the inclined plane (normal force).

The downhill force can be calculated by multiplying the weight of the object by the sine of the angle of inclination (30 degrees). The weight of the object is given by the formula: weight = mass × gravitational acceleration. Assuming the gravitational acceleration is approximately 9.8 m/s², the weight of the object is 10 kg × 9.8 m/s² = 98 N. Therefore, the downhill force is 98 N × sin(30°) ≈ 49 N.

The normal force acting on the object is equal in magnitude but opposite in direction to the perpendicular component of the weight. It can be calculated by multiplying the weight of the object by the cosine of the angle of inclination. The normal force is 98 N × cos(30°) ≈ 84.85 N.

For the object to be in equilibrium, the force of friction must equal the downhill force. Therefore, the minimum size of friction needed is approximately 49 N.

Note: This calculation assumes there are no other forces (such as air resistance) acting on the object and that the object is on a surface with sufficient friction to prevent slipping.

To learn more about force of friction click here:

brainly.com/question/30280206

#SPJ11

1. please show steps and procedure clearly
Ambulanti infolinia 1. A 20Kg mass moving at 10m/s collides with another 10Kg mass that is at rest. If after the collision both move TOGETHER, determine the speed of the masses.

Answers

Total momentum after collision is = 6.67 m/s.

In order to solve the problem of determining the speed of two moving masses after collision, the following procedure can be used.

Step 1: Calculate the momentum of the 20Kg mass before collision. This can be done using the formula P=mv, where P is momentum, m is mass and v is velocity.

P = 20Kg * 10m/s

= 200 Kg m/s.

Step 2: Calculate the momentum of the 10Kg mass before collision. Since the 10Kg mass is at rest, its momentum is 0 Kg m/s.

Step 3: Calculate the total momentum before collision. This is the sum of the momentum of both masses before collision.

Total momentum = 200 Kg m/s + 0 Kg m/s

= 200 Kg m/s.

Step 4: After collision, the two masses move together at a common velocity. Let this velocity be v. Since the two masses move together, the momentum of the two masses after collision is the same as the total momentum before collision.

Therefore, we can write: Total momentum after collision

= 200 Kg m/s

= (20Kg + 10Kg) * v.

Substituting the values, we get: 200 Kg m/s = 30Kg * v.

So, v = 200 Kg m/s / 30Kg

= 6.67 m/s.

To know more about momentum visit :

https://brainly.com/question/30677308

#SPJ11

Consider the following problems: a. A particle is moving with a speed of 400 m/s in a magnetic field of 2.20 T. What is the magnitude of the force acting on the particle? b. A wire is placed in a magnetic field of 2.10 T. If the length of the wire is 10.0 m and a 5.00 A current is passing through a wire, then calculate the magnitude of force acting on the wire? c. Consider a wire of 80.0 m length placed in a 1.70 T magnetic field. Then, calculate the current passing through the wire if a force of 50.0 N acts on the wire.

Answers

a. 176 N is the magnitude of the force acting on the particle b. The wire in the magnetic field, the magnitude of the force is 105 N. c.  The current passing through the wire under a force of 50.0 N is 0.368 A.

(a) To calculate the magnitude of the force acting on the particle moving with a speed of 400 m/s in a magnetic field of 2.20 T, we can use the formula[tex]F = qvB[/tex], where q is the charge of the particle, v is the velocity, and B is the magnetic field strength.

[tex]F = 400 *(2.20 )/5 = 176 N[/tex]

(b) For a wire placed in a magnetic field of Magnetic force 2.10 T, with a length of 10.0 m and a current of 5.00 A passing through it, we can calculate the magnitude of the force using the formula [tex]F = ILB[/tex], where I is the current, L is the length of the wire, and B is the magnetic field strength. Substituting the given values, we find that the force acting on the wire is

[tex]F = (5.00 A) * (10.0 m) *(2.10 T) = 105 N[/tex]

(c) In the case of a wire with a length of 80.0 m placed in a magnetic field of 1.70 T, and a force of 50.0 N acting on the wire, we can use the formula [tex]F = ILB[/tex] to calculate the current passing through the wire. Rearranging the formula to solve for I, we have I = F / (LB). Substituting the given values, the current passing through the wire is

[tex]I = (50.0 N) / (80.0 m * 1.70 T) = 0.36 A.[/tex]

Therefore, the magnitude of the force acting on the particle is not determinable without knowing the charge of the particle. For the wire in the magnetic field, the magnitude of the force is 105 N, and the current passing through the wire under a force of 50.0 N is 0.368 A.

Learn more about Magnetic force here

https://brainly.com/question/31253200

#SPJ11

Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options

Answers

The phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

To find the phase difference between the two waves, we need to compare the phase terms in their respective wave equations.

For wave-1, the phase term is given by:

ϕ₁ = k(x - x₀₁) - ω(t - t₀₁)

For wave-2, the phase term is given by:

ϕ₂ = k(x - x₀₂) - ω(t - t₀₂)

Substituting the given values:

x₀₂ = x₀₁ + λ/2

t₀₂ = t₀₁ - T/4

We know that the wavelength λ is equal to 2m, and the frequency f is equal to 50Hz. Therefore, the wave number k can be calculated as:

k = 2π/λ = 2π/2 = π

Similarly, the angular frequency ω can be calculated as:

ω = 2πf = 2π(50) = 100π

Substituting these values into the phase equations, we get:

ϕ₁ = π(x - x₀₁) - 100π(t - t₀₁)

ϕ₂ = π(x - (x₀₁ + λ/2)) - 100π(t - (t₀₁ - T/4))

Simplifying ϕ₂, we have:

ϕ₂ = π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)

Now we can calculate the phase difference (ϕ₂ - ϕ₁):

(ϕ₂ - ϕ₁) = [π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)] - [π(x - x₀₁) - 100π(t - t₀₁)]

          = π(λ/2 - T/4)

Substituting the values of λ = 2m and T = 1/f = 1/50Hz = 0.02s, we can calculate the phase difference:

(ϕ₂ - ϕ₁) = π(2/2 - 0.02/4) = π(1 - 0.005) = π(0.995) ≈ 3π/2

Therefore, the phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.

Know more about wave equations:

https://brainly.com/question/4692600

#SPJ4

Q C Review. A light spring has unstressed length 15.5cm . It is described by Hooke's law with spring constant. 4.30 N/m .One end of the horizontal spring is held on a fixed vertical axle, and the other end is attached to a puck of mass m that can move without friction over a horizontal surface. The puck is set into motion in a circle with a period of 1.30s .Evaluate x for (b) m=0.0700kg

Answers

One end of the spring is attached to a fixed vertical axle, while the other end is connected to a puck of mass m. The puck moves without friction on a horizontal surface in a circular motion with a period of 1.30 s.

The unstressed length of the light spring is 15.5 cm, and its spring constant is 4.30 N/m.

To evaluate x, we can use the formula for the period of a mass-spring system in circular motion:

T = 2π√(m/k)

Rearranging the equation, we can solve for x:

x = T²k / (4π²m)

Substituting the given values:

T = 1.30 s
k = 4.30 N/m
m = 0.0700 kg

x = (1.30 s)²(4.30 N/m) / (4π²)(0.0700 kg)

Calculate this expression to find the value of x.

to learn more about vertical axle

https://brainly.com/question/34191913

#SPJ11

If a proton is in an infinite box in the n=14 state and its energy is 0.55MeV, what is the wavelength of this proton (in fm)?
A hydrogen atom has an electron in the n-6 state. What is the speed of this electron in the Bohr model (in)?

Answers

The wavelength of the proton in fm is 24.4 fm, and the speed of the electron in the Bohr model is 2.19 × 10^6 m/s.In quantum mechanics, Schrodinger's equation and Bohr's model are two crucial concepts. These theories contribute greatly to our knowledge of quantum mechanics.

The Schrodinger wave equation is a mathematical equation that describes the motion of particles in a wave-like manner. Bohr's model of the atom is a model of the hydrogen atom that depicts it as a positively charged nucleus and an electron revolving around it in a circular orbit. To determine the wavelength of the proton, the following formula can be used:

λ = h/p

where, h is Planck’s constant and p is the momentum of the proton.

Momentum is the product of mass and velocity, which can be calculated as follows:

p = mv

where, m is the mass of the proton and v is its velocity. Since the proton is in the 14th state,n = 14 and the energy is 0.55 MeV, which can be converted to joules.

E = 0.55 MeV = 0.55 × 1.6 × 10^-13 J= 8.8 × 10^-14 J

The energy of the particle can be computed using the following equation:

E = (n^2h^2)/(8mL^2)

Where, L is the length of the box and m is the mass of the proton. Solving for L gives:

L = √[(n^2h^2)/(8mE)]

Substituting the values gives:

L = √[(14^2 × 6.63 × 10^-34 J s)^2/(8 × 1.67 × 10^-27 kg × 8.8 × 10^-14 J)] = 2.15 × 10^-14 m

The momentum of the proton can now be calculated:

p = mv = (1.67 × 10^-27 kg)(2.15 × 10^-14 m/s)= 3.6 × 10^-21 kg m/s

Now that the proton's momentum is known, its wavelength can be calculated:

λ = h/p = (6.63 × 10^-34 J s)/(3.6 × 10^-21 kg m/s) = 24.4 fm

Therefore, the wavelength of the proton is 24.4 fm. Next, to calculate the speed of the electron in the Bohr model, the following formula can be used: mv^2/r = kze^2/r^2

where, m is the mass of the electron, v is its velocity, r is the radius of the electron's orbit, k is Coulomb's constant, z is the number of protons in the nucleus (which is 1 for hydrogen), and e is the electron's charge.

Solving for v gives:

v = √[(kze^2)/mr]

Substituting the values and solving gives:

v = √[(9 × 10^9 Nm^2/C^2)(1.6 × 10^-19 C)^2/(9.11 × 10^-31 kg)(5.3 × 10^-11 m)] = 2.19 × 10^6 m/s

Therefore, the speed of the electron in the Bohr model is 2.19 × 10^6 m/s.

For further information on Bohrs model visit:

https://brainly.com/question/13606024

#SPJ11

What is the change in rotational energy for a uniform, solid cylinder rotating about its central axis with mass of 3.2 kg whose radius increases by a factor of 3.00? Assume the mass does not change and angular momentum is conserved.

Answers

The change in rotational energy is given by ΔE_rot = -9/4 m r^2 ω_final^2.

The rotational energy (E_rot) of a rotating object can be calculated using the formula: E_rot = (1/2) I ω^2, where I is the moment of inertia and ω is the angular velocity.

For a solid cylinder rotating about its central axis, the moment of inertia is given by: I = (1/2) m r^2

Since the mass does not change and angular momentum is conserved, we know that the product of the moment of inertia and angular velocity remains constant: I_initial ω_initial = I_final ω_final

(1/2) m r_initial^2 ω_initial = (1/2) m (3r)^2 ω_final

r_initial^2 ω_initial = 9r^2 ω_final

ω_initial = 9 ω_final

Now, we can express the change in rotational energy as: ΔE_rot = E_rot_final - E_rot_initial. Using the formula E_rot = (1/2) I ω^2, we have:

ΔE_rot = (1/2) I_final ω_final^2 - (1/2) I_initial ω_initial^2

ΔE_rot = (1/2) (1/2) m (3r)^2 ω_final^2 - (1/2) (1/2) m r_initial^2 ω_initial^2

Simplifying further, we have:

ΔE_rot = (1/8) m (9r^2 ω_final^2 - r^2 ω_initial^2)

Since ω_initial = 9 ω_final, we can substitute this relationship:

ΔE_rot = (1/8) m (9r^2 ω_final^2 - r^2 (9 ω_final)^2)

ΔE_rot = (1/8) m (9r^2 ω_final^2 - 81r^2 ω_final^2)

ΔE_rot = (1/8) m (-72r^2 ω_final^2)

ΔE_rot = -9/4 m r^2 ω_final^2

Therefore, the change in rotational energy is given by ΔE_rot = -9/4 m r^2 ω_final^2.

Let's learn more about rotational energy :

https://brainly.com/question/29975710

#SPJ11

The position of an object connected to a spring varies with time according to the expression x = (4.7 cm) sin(7.9nt). (a) Find the period of this motion. S (b) Find the frequency of the motion. Hz (c) Find the amplitude of the motion. cm (d) Find the first time after t = 0 that the object reaches the position x = 2.6 cm.

Answers

The period of oscillation is `0.796 n` and the frequency of the motion`1.26 Hz`.

Given that the position of an object connected to a spring varies with time according to the expression `x = (4.7 cm) sin(7.9nt)`.

Period of this motion

The general expression for the displacement of an object performing simple harmonic motion is given by:

x = A sin(ωt + φ)Where,

A = amplitude

ω = angular velocity

t = timeφ = phase constant

Comparing the given equation with the general expression we get,

A = 4.7 cm,

ω = 7.9 n

Thus, the period of oscillation

T = 2π/ω`= 2π/7.9n = 0.796 n`...(1)

Thus, the period of oscillation is `0.796 n`.

Frequency of the motion The frequency of oscillation is given as

f = 1/T

Thus, substituting the value of T in the above equation we get,

f = 1/0.796 n`= 1.26 n^-1 = 1.26 Hz`...(2)

Thus, the frequency of the motion is `1.26 Hz`.

Amplitude of the motion

The amplitude of oscillation is given as

A = 4.7 cm

Thus, the amplitude of oscillation is `4.7 cm`.

First time after

t = 0 that the object reaches the position

x = 2.6 cm.

The displacement equation of the object is given by

x = A sin(ωt + φ)

Comparing this with the given equation we get,

4.7 = A,

7.9n = ω

Thus, the equation of displacement becomes,

x = 4.7 sin (7.9nt)

Now, we need to find the time t when the object reaches a position of `2.6 cm`.

Thus, substituting this value in the above equation we get,

`2.6 = 4.7 sin (7.9nt)`Or,

`sin(7.9nt) = 2.6/4.7`

Solving this we get,

`7.9nt = sin^-1 (2.6/4.7)``7.9n

t = 0.6841`Or,

`t = 0.0867/n`

Thus, the first time after t=0 that the object reaches the position x=2.6 cm is `0.0867/n`

To know more about displacement visit :

brainly.com/question/11934397

#SPJ11

Question 6 6 pts A 2,210 kg car accelerates from rest to a velocity of 22 m/s in 15 seconds. The power of the engine during this acceleration is, (Answer in kw)

Answers

Answer:

The answer is 71.5 kW

Explanation:

We can use the formula for power:

Power = Force x Velocity

where Force is the net force acting on the car, and Velocity is the velocity of the car.

To find the net force, we can use Newton's second law of motion:

Force = Mass x Acceleration

where Mass is the mass of the car, and Acceleration is the acceleration of the car.

The acceleration of the car can be found using the formula:

Acceleration = (Final Velocity - Initial Velocity) / Time

Substituting the given values, we get:

Acceleration = (22 m/s - 0 m/s) / 15 s

Acceleration = 1.47 m/s^2

Substituting the given values into the formula for force, we get:

Force = 2,210 kg x 1.47 m/s^2

Force = 3,247.7 N

Finally, substituting the calculated values for force and velocity into the formula for power, we get:

Power = Force x Velocity

Power = 3,247.7 N x 22 m/s

Power = 71,450.6 W

Converting the power to kilowatts (kW), we get:

Power = 71,450.6 W / 1000

Power = 71.5 kW

Therefore, the power of the engine during the acceleration is 71.5 kW.

Match each description of property of a substance with the most appropriate of the three common states of matter. If the property may apply to more than one state of matter, match it to the choice that lists all states of matter that are appropriate. Some choices may go unused. Hint a ✓ Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. can carry a sound wave takes on the shape of the container retains its own shape and size takes on the size of the container g f a f fis included as "fluids" a. solids b. solids and gases c. liquids d. gases e. solids and liquids f. liquids and gases g. solids, liquids, and gases

Answers

Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. - a. solids ,Can carry a sound wave - c. liquids ,Takes on the shape of the container - f. liquids and gases ,Retains its own shape and size - a. solids, Takes on the size of the container - g. solids, liquids, and gases,The property of being a fluid is included as "fluids" - f. liquids and gases

Matching the descriptions with the appropriate states of matter:

Atoms and molecules in it are significantly attracted to neighboring atoms and molecules: a. solids

Can carry a sound wave: c. liquids

Takes on the shape of the container: f. liquids and gases

Retains its own shape and size: a. solids

Takes on the size of the container: g. solids, liquids, and gases

The property of being a fluid is included as "fluids": f. liquids and gases

The descriptions of properties of substances are matched with the most appropriate states of matter as follows:

Solids are characterized by significant attraction between atoms and molecules, retaining their own shape and size.

Liquids can carry a sound wave, take on the shape of the container, and are included in the category of fluids.

Gases take on the size of the container and are also included in the category of fluids.

Solids are characterized by significant attractions between atoms and molecules, and they retain their own shape and size. Liquids can carry sound waves, take on the size of the container, and are included in the category of fluids. Gases take on the shape of the container. Both solids and liquids can take on the size of the container.

To know more about sound wave, visit:

https://brainly.com/question/1173066

#SPJ11

Other Questions
ELISA Tutorial 1: How a Direct, Indirect, and Sandwich ELISA WorksWhen is an ELISA done?In the video, what might the specific protein be sought to be?What is an antibody?What is a direct ELISA?What is an indirect ELISA?When might it be useful to use this ELISA instead of a direct ELISA?What is a Sandwich ELISA?What makes an ELISA sensitive? 3. What does Dr. Putnam identify as the most striking change that occurs when an individual is shifting personalities?Blood flow changesDisorganized heart rateChanges in tone of voiceThe tension levels in their facial muscles Five balls are selected at random without replacement from an un containing four white balls and six blue bals. Find the probability of the given event. (Round your answer to three decimale) The resistive force that occurs when the two surfaces do side across each other is known as _____ What is the most we should pay for a bond with a par value of $1000, coupon rate of 8.7% paid annually, and a remaining life of 9 years? The yield to maturity is 7.4%. Assume annual discounting. Which one of the following statements is correct concerning the organizational structure of a corporation? Multiple Choice The vice president of finance reports to the chairperson of the board. The treasurer reports to the chief executive officer. The chief operations officer reports to the vice president of production. The controller reports to the president. The chief operations officer reports to the chief executive officer. Glycolysis takes place in: The rough ER The cytosol The mitochondria The lysosome The smooth ER DOO The neurotransmitter and receptor combination found at the neuromuscular junction is norepinephrine/beta adrenergic receptor acetylcholine/beta adrenergic receptor 10000 acetylcholine/muscarinic receptor acetylcholine/nicotinic receptor An amino acid enters the Kreb's cycle as an intermediate (part way through instead of as acetyl-CoA), giving 2 NADH, 1 FADH, and 1 ATP. How much ATP is generated in total by this amino acid? 9 ATP 12 ATP 3 ATP 6 ATP 1 ATP The Nat/K* pump moves: Na into and 1 H* out of the cell 2 Nat into and 3 K* out of the cell 3 Nat out of and 2 K* into the cell 1 Na out of and 1 K* into the cell 2 Nat out of and 2 K* into the cell The alpha adrenergic receptors have the greatest affinity for which of the following neurotransmitters dopamine serotonin GABA norepinephrine Explain Patriarchy, biradrisystem and dowry in the social fabric of Punjab1300 to 1500 words In order to cross the galaxy quickly, a spaceship leaves Earth traveling at 0.9999992c. After 19 minutes a radio message is sent from Earth tothe spacecraft.In the carth-galaxy trame of reference, how far from cart is the spaceship when the message is sent! In directive listening, the least effective question begins with the word: A) Who B) Why C) What D) How. Question 4 Identify an example of receptive listening. A) With a concerned facial expression, listener nods to show understanding. B) That job sounds great, but mine really pays well and has fantastic benefits. C) " You must have been crazy to let her treat you like that. D) "I think you should just leave him." Let f : R R be a function that satisfies the followingproperty:for all x R, f(x) > 0 and for all x, y R,|f(x) 2 f(y) 2 | |x y|.Prove that f is continuous. Which substance is an organic molecule made during photosynthesis. What is a likely result of a mis-match between the research question and instrument?Success with IRBData that fails to answer the research questionA successfully implemented instrumentA research-based approval of an instrument indicate whether each of the following statements applies to microeconomics or macroeconomics: a. the unemployment rate in the united states was 3.7 percent in december 2018: Create a T-Chart on Indigenous Business Environment. 2. On the Left Hand side use the Heading, "Indigenous Business Issues/Challenges" 3. On the Right Hand side use the Heading, "How Are These Issues/Challenges Being Resolved Today..." 4 lise the below 1. Create a T-Chart on Indigenous Business Environment. 2. On the Left Hand side use the Heading, "Indigenous Business Issues/Challenges" 3. On the Right Hand side use the Heading. "How Are These Issues/Challenges Being Resolved Today..." S Instructions: 1. Create a T-Chart on Indigenous Business Environment. 2. On the Left Hand side use the Heading, "Indigenous Business Issues/Challenges" 3. On the Right Hand side use the Heading, "How Are These Issues/Challenges Being Resolved Today..." 4. Use the below links fro Economic Development Canada (EDC) to help with your research. 5. Submit your document here when complete. *NOTE: you are not limited to the below links, those are there to help get you started....please feel free to add to your own research any way you wish. Heading 1 Heading 2 www The Posted Thu Jul 7, 2022 at 10:08 am Building trust with Canada's Indigenous... How Indigenous businesses are taking on the world Q3. You are given 100 mole of a fuel gas of the following composition, on a mole basis, 20% methane (CH4), 5% ethane (C2H), and the remainder CO2. The atomic weight for each element is as follows: C= 12,0 = 16 and H= 1 For this mixture calculate: a. The mass composition b. Average Molecular Weight by the three equations Problem 4: Capital Budgeting (30 points) A friend of yours identified a need for a gourmet cookie shop in Arlington and he wants to open one very soon. He is very talented in the kitchen and bakes amazing cookies; but, when it comes to finance, he is not really that bright. He thinks that you will be the icing on the cookie if you join him on this project. He already has spent $15,000 on marketing research to come up with the following projections about the project. The project requires an initial investment of $60,000 for equipment and other related expenses. This initial investment will be depreciated down to a book value of $15,000 over 5 years, after which you will not continue operating the bakery. The average price of a cookie will be $4, and the marketing company estimates that you are going to sell 20,000 cookies for the first year; 25,000 for the second; 40,000 for the third; 50,000 for the fourth, and 60,000 for the last year. The net working capital requirement for each year is estimated to be 5% of the following year's revenues. Each cookie will cost $1 to make, and other fixed costs will run $10,000 per year for each year. The equipment will have a salvage value of $20,000 at the end of the fifth year. In an effort to estimate an appropriate discount rate for this project, you have determined that your operations are going to be similar to Crumble Cookies Inc. After some research you have identified that Crumble Cookies Inc. Has an equity beta of 1. 6 and a debt to value ratio of 40%. You on the other hand would finance the project more conservatively with only 20% debt and expect to be able to raise debt at the risk-free rate. A a) Given that the expected return on the market portfolio is 8%, the risk-free rate is 3%, and the tax rate is 25%, what would be the NPV of this project? (25 points) b) What would the NPV be if you decided to keep operating the bakery after year 5 and kept generating the same cash flow for each year thereafter forever? (Ignore the salvage value in this part) (5 points) What is distributive justice? How is the principle of distributive justice formulated for medical care? An excerpt taken from your text states, "Throughout the history of the developed world, the concept that health care is a privilege that should be allocated according to ability to pay has competed with the idea that health care is a right and should be distributed according to need." (155) n-interlaced latterspleaseZeeman Effect Q1) from equation 5.6 and 5.7 find that the minimum magnetic field needed for the Zeeman effect to be observed can be calculated from 02) What is the minimum magnetic field needed Imagine you are going to join a youth conference. You want to learn the details of the three-day long seminars in London. Ask for information; important dates, daily tours to historical places, what does the hotel price include? FORMAL EMAIL