A solid insulating sphere has a radius of 0.15 m. shells have a common center. A -1.6 x 10^-6 C charge is spread uniformly over the volume of the sphere. Use Gauss's law to find the magnitude and direction of the electric field at a distance of 0.50 m from the center of the sphere.

Answers

Answer 1

Using Gauss's law, we can determine that the magnitude of the electric field at a distance of 0.50 m from the center of the solid insulating sphere with a uniformly distributed charge of -1.6 x[tex]10^-^6[/tex]C is given by E = (-1.6 x[tex]10^-^6[/tex] C) / (4πε₀(0.50 m)²). The direction of the electric field will be radially outward from the center of the sphere.

To find the magnitude and direction of the electric field at a distance of 0.50 m from the center of the solid insulating sphere, we can apply Gauss's law.

Gauss's law states that the electric flux through a closed surface is equal to the total charge enclosed divided by the permittivity of free space (ε₀).

In this case, we have a uniformly charged solid sphere, so we can consider a Gaussian surface in the form of a sphere with a radius of 0.50 m centered at the center of the sphere.

The charge enclosed within this Gaussian surface is the total charge of the sphere. Given that the charge is spread uniformly over the volume of the sphere and has a magnitude of -1.6 x[tex]10^-^6[/tex] C, we can calculate the charge density (ρ) using the formula:

ρ = Q / V

where Q is the total charge and V is the volume of the sphere. Since the charge is spread uniformly, the charge density is constant.

To find the electric field, we need to calculate the electric flux (Φ) through the Gaussian surface and divide it by the surface area of the Gaussian surface (A).

Φ = E * A

Using Gauss's law, we have:

Φ = [tex]Q_e_n_c_l_o_s_e_d[/tex] / ε₀

Substituting the values, we get:

E * A = Q / ε₀

To find the electric field at a distance of 0.50 m from the center of the sphere, we need to determine the area of the Gaussian surface (A). Since the Gaussian surface is a sphere, the surface area is given by:

A = 4πr²

where r is the radius of the Gaussian surface.

Substituting this into the equation, we have:

E * 4πr² = Q / ε₀

Solving for E, we get:

E = Q / (4πε₀r²)

Now we can substitute the known values:

E = (-1.6 x [tex]10^-^6[/tex] C) / (4πε₀(0.50 m)²)

where ε₀ is the permittivity of free space, approximately equal to 8.854 x [tex]10^-^1^2[/tex] C²/(N·m²).

Evaluating this expression, we can find the magnitude and direction of the electric field at a distance of 0.50 m from the center of the sphere.

For more such information on: Gauss's law

https://brainly.com/question/14773637

#SPJ8


Related Questions

assume that a particular loudspeaker emits sound waves equally in all directions; a total of 1.0 watt of power is in the sound waves.

Answers

The intensity level at a point 20 m from the loudspeaker is approximately 97.8 dB.

To calculate the intensity at a point 10 m from the loudspeaker, we can use the equation:

I = P / (4πr^2),

where I is the intensity, P is the power, and r is the distance from the source.

Given that the power P is 1.0 watt and the distance r is 10 m, we can substitute these values into the equation:

I = 1.0 / (4π(10^2)),

I ≈ 0.00796 W/m².

Therefore, the intensity at a point 10 m from the loudspeaker is approximately 0.00796 W/m².

To calculate the intensity level in decibels (dB) at a point 20 m from the loudspeaker, we can use the formula:

L = 10 log10(I / I0),

where L is the intensity level, I is the intensity, and I0 is the reference intensity, which is typically set to the threshold of hearing, 10^(-12) W/m².

Given that the intensity I is 0.00796 W/m², and I0 is 10^(-12) W/m², we can substitute these values into the equation:

L = 10 log10(0.00796 / (10^(-12))),

L ≈ 97.8 dB.

Learn more about intensity levels at https://brainly.com/question/4431819

#SPJ11

The complete question is:

Assume that a particular loudspeaker emits sound waves equally in all directions; a total of 1.0 watt of power is in the sound waves. What is the intensity at a point 10 m from this source ( in W/m²) ? What is the intensity level 20 m from this source (in dB )?

a car is traveling on a straight road at a constant 25 m/s , which is faster than the speed limit. just as the car passes a police motorcycle that is stopped at the side of the road, the motorcycle accelerates forward in pursuit. the motorcycle passes the car 14.5 s after starting from rest. what is the acceleration of the motorcycle (assumed to be constant)?

Answers

To find the acceleration of the motorcycle, we can use the equation of motion:

\[d = ut + \frac{1}{2}at^2\]

where:

d = distance traveled

u = initial velocity

t = time

a = acceleration

In this case, the car is traveling at a constant speed of 25 m/s, so the initial velocity of the motorcycle (u) is also 25 m/s. The motorcycle starts from rest, so its initial velocity is 0 m/s. The time taken by the motorcycle to pass the car is given as 14.5 s.

Let's assume that the distance traveled by the motorcycle is the same as the distance traveled by the car during this time.

So we have:

Distance traveled by the car = Distance traveled by the motorcycle

Using the equation of motion for both the car and motorcycle:

Car:

d = 25 m/s × 14.5 s

Motorcycle:

d = 0 + (1/2) × a × (14.5 s)^2

Setting the two distances equal to each other:

25 m/s × 14.5 s = (1/2) × a × (14.5 s)^2

Simplifying and solving for acceleration (a):

a = (2 × 25 m/s) / (14.5 s)

a ≈ 3.45 m/s^2

Therefore, the acceleration of the motorcycle is approximately 3.45 m/s^2.

To know more about acceleration follow

brainly.com/question/13423793

#SPJ11

Determine the main dimensions for a 3000 kVA, 6.6 kV, 50Hz, 3-phase, 187.5 RPM 3-phase star connected alternator. The average air gap flux density is 0.6 Wb/m2 and the ampere conductors per meter is 34000. Maximum permissible peripheral speed at runaway speed is 60m/s.

Answers

The stator core length: Stator core length (Lc) = Ampere conductors per meter / (π × Ds) Lc = 34000 / (π × 1.7634 m)

Lc ≈ 6101.65 m

To determine the main dimensions for the given alternator, we can use the following steps:

Step 1: Calculate the line current:

Line current (IL) = Apparent power (S) / (√3 × Line voltage)

IL = 3000 kVA / (√3 × 6.6 kV)

IL ≈ 246.36 A

Step 2: Calculate the rotor speed:

Rotor speed (N) = Frequency (f) × 60 / Number of poles

N = 50 Hz × 60 / 2

N = 1500 RPM

Step 3: Calculate the rotor diameter:

Rotor diameter (D) = Peripheral speed (V) / (π × N / 60)

D = 60 m/s / (π × 187.5 / 60)

D ≈ 0.963 m

Step 4: Calculate the rotor circumference:

Rotor circumference (C) = π × D

C ≈ π × 0.963 m

C ≈ 3.028 m

Step 5: Calculate the air gap diameter:

Air gap diameter (Da) = Rotor diameter + (2 × Air gap clearance)

Assuming a typical air gap clearance of 0.2 mm (0.0002 m):

Da = 0.963 m + (2 × 0.0002 m)

Da ≈ 0.9634 m

Step 6: Calculate the stator diameter:

Stator diameter (Ds) = Da + (2 × Average air gap flux density)

Ds = 0.9634 m + (2 × 0.6 Wb/m2)

Ds ≈ 1.7634 m

Step 7: Calculate the stator circumference:

Stator circumference (Cs) = π × Ds

Cs ≈ π × 1.7634 m

Cs ≈ 5.54 m

Step 8: Calculate the stator core length:

Stator core length (Lc) = Ampere conductors per meter / (π × Ds)

Lc = 34000 / (π × 1.7634 m)

Lc ≈ 6101.65 m

The main dimensions for the given alternator are as follows:

Rotor diameter (D): Approximately 0.963 meters

Air gap diameter (Da): Approximately 0.9634 meters

Stator diameter (Ds): Approximately 1.7634 meters

Stator core length (Lc): Approximately 6101.65 meters

Stator circumference (Cs): Approximately 5.54 meters

Note: These calculations are based on the given parameters and assumptions. Actual alternator designs may involve additional considerations and engineering factors.

To know more about Stator refer here:
https://brainly.com/question/32404968#

#SPJ11

what are the advantages of using a pulley?multiple choice question.it reduces the time needed to complete the work to half what it was.it reduces the work that needs to be done to half what it was.it reduces the required force to half what it was.

Answers

The correct answer is: it reduces the required force to half what it was.

One of the advantages of using a pulley is that it allows for a mechanical advantage, meaning that it reduces the amount of force needed to lift or move an object. By distributing the load across multiple ropes or strands, a pulley system can effectively decrease the force required to perform a task.

The mechanical advantage of a pulley is determined by the number of supporting ropes or strands. In an ideal scenario with a frictionless and weightless pulley, a single movable pulley can reduce the required force by half. This means that for a given load, you only need to apply half the force compared to lifting the load directly.

However, it's important to note that while a pulley reduces the required force, it does not reduce the actual work done. The work is still the same, but the pulley allows for the force to be applied over a longer distance, making it feel easier to perform the task.

So, the correct statement from the given options is that a pulley reduces the required force to half what it was.

Learn more about force here :-

https://brainly.com/question/13191643

#SPJ11

When converting the concentration what is the appropriate number of significant figures? 1 significant figure 3 significant figures 4 significant figures 2 significant figures

Answers

None of the given options are correct. When converting concentration, the appropriate number of significant figures depends on the precision of the original measurement and the least precise value involved in the conversion. Here's a general guideline:

1. Determine the least precise value involved in the conversion. This is usually the value with the fewest significant figures. 2. The result of the conversion should have the same number of significant figures as the least precise value.

For example, let's say you have a concentration measurement of 3.42 mol/L and you want to convert it to millimoles per liter (mmol/L). The conversion factor is 1 mol = 1000 mmol.

Since the original concentration measurement has three significant figures (3.42), the result of the conversion should also have three significant figures. Therefore, the appropriate number of significant figures in this case is 3.

In general, when converting concentrations, it's important to maintain the appropriate number of significant figures to avoid introducing unnecessary precision or inaccuracies into the final result.

To know more about Significant figures visit-

brainly.com/question/14804345

#SPJ11

Which of these was the most definitive proof that the planets orbit the Sun? Epicycles The moons of Jupiter Retrograde Motion The phases of Venus The mountains on the Moon

Answers

The most definitive proof that the planets orbit the Sun was the observation of retrograde motion.

Retrograde motion refers to the apparent backward motion of planets in the night sky as observed from Earth. In the geocentric model proposed by Ptolemy, the explanation for retrograde motion involved complex epicycles, which were additional circles within the orbits of planets. This model attempted to explain the irregular motion of planets without challenging the idea that Earth was at the center of the solar system.

However, it was the heliocentric model proposed by Nicolaus Copernicus that provided a simpler and more accurate explanation for retrograde motion. In the heliocentric model, planets move in orbits around the Sun, and retrograde motion occurs when Earth, in its own orbit, overtakes and passes by an outer planet.

The observation of retrograde motion was a key piece of evidence that supported the heliocentric model. It demonstrated that the motion of planets could be explained by their orbits around the Sun, rather than complex epicycles in a geocentric model. Thus, retrograde motion provided definitive proof that the planets orbit the Sun, supporting the heliocentric model.

To know more about retrograde motion click here:

https://brainly.com/question/30455713

#SPJ11

two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Initially ball A is moving upward along the y axis at 2.0m/s, and ball B is moving to the right along the x axis with speed 3.7m/s. After the collision (assumed elastic), the second ball is moving along the positive y axis. (Figure 1)

Answers

The magnitude of the velocity of ball B along the y-axis after the collision (v'_{By}) is approximately 0.864 m/s.

To analyze the collision between the two billiard balls, we can use the principle of conservation of momentum and kinetic energy.

Let's assign some variables to the given values:

Initial velocity of ball A along the y-axis (before collision): v_{Ay} = 2.0 m/s (upward direction)

Initial velocity of ball B along the x-axis (before collision): v_{Bx} = 3.7 m/s (rightward direction)

Since the collision is elastic, both momentum and kinetic energy will be conserved.

Conservation of momentum: The total momentum before the collision is equal to the total momentum after the collision.

Momentum is a vector quantity, so we need to consider both the magnitude and direction of the momentum.

Before the collision:

Momentum of ball A along the y-axis: p_{Ay} = m * v_{Ay} (upward direction)

Momentum of ball B along the x-axis: p_{Bx} = m * v_{Bx} (rightward direction)

After the collision:

Momentum of ball A along the y-axis: p'{Ay} = 0 (since the ball is not moving along the y-axis anymore)

Momentum of ball B along the y-axis: p'{By} = m * v'_{By} (upward direction)

Using the conservation of momentum, we can write the equation as:

p_{Ay} + p_{Bx} = p'{Ay} + p'{By}

m * v_{Ay} + m * v_{Bx} = 0 + m * v'_{By}

Simplifying the equation:

2.0m + 3.7m = v'{By}m

5.7m = v'{By}m

Therefore, the magnitude of the velocity of ball B along the y-axis after the collision (v'_{By}) is equal to 5.7 m/s.

Now let's consider the kinetic energy before and after the collision.

Kinetic energy is given by the formula: KE = (1/2) * m * v², where m is the mass and v is the velocity.

Before the collision:

Kinetic energy of ball A: KE_{A} = (1/2) * m * v_{Ay}²

Kinetic energy of ball B: KE_{B} = (1/2) * m * v_{Bx}²

After the collision:

Kinetic energy of ball A: KE'{A} = 0 (since the ball is not moving)

Kinetic energy of ball B: KE'{B} = (1/2) * m * v'_{By}²

Using the conservation of kinetic energy, we can write the equation as:

KE_{A} + KE_{B} = KE'{A} + KE'{B}

(1/2) * m * v_{Ay}² + (1/2) * m * v_{Bx}² = 0 + (1/2) * m * v'_{By}²

Substituting the given values:

(1/2) * 2.0m * (2.0 m/s)² + (1/2) * 3.7m * (3.7 m/s)² = (1/2) * 5.7m * v'_{By}²

Simplifying the equation:

2.0 m²/s² + 13.645 m²/s² = 2.85 m²/s² + 2.85 m²/s² + 5.7 m * v'_{By}²

Rearranging the terms:

15.645 m²/s² = 11.4 m²/s² + 5.7 m * v'_{By}²

Subtracting 11.4 m²/s² from both sides:

4.245 m²/s² = 5.7 m * v'_{By}²

Dividing both sides by 5.7 m:

0.745 m/s² = v'_{By}²

Taking the square root of both sides:

v'_{By} = √(0.745 m/s^2) ≈ 0.864 m/s

Therefore, the magnitude of the velocity of ball B along the y-axis after the collision (v'_{By}) is approximately 0.864 m/s.

know more about momentum here

https://brainly.com/question/904448#

#SPJ11

Why is the following situation impossible? The perpendicular distance of a lightbulb from a large plane mirror is twice the perpendicular distance of a person from the mirror. Light from the lightbulb reaches the person by two paths:(2) it travels directly to the person without reflecting off the mirror. The total distance traveled by the light in the first case is 3.10 times the distance traveled by the light in the second case.

Answers

The given information states that the total distance traveled by the light in the first case is 3.10 times the distance traveled in the second case. This would mean that '2x' is 3.10 times '4x', which is not possible. Therefore, the given situation contradicts the principles of reflection, making it impossible.

The given situation is impossible because it violates the principles of reflection and the law of reflection. According to the law of reflection, the angle of incidence is equal to the angle of reflection. In the case of a plane mirror, the incident light rays bounce off the mirror surface at the same angle they hit it.

In the given scenario, the perpendicular distance of the lightbulb from the mirror is twice the perpendicular distance of the person from the mirror. Let's assume the perpendicular distance of the person from the mirror is 'x'. According to the given information, the perpendicular distance of the lightbulb from the mirror would be '2x'.

Now, when light from the lightbulb reaches the person directly without reflecting off the mirror, it travels the distance '2x'. In the second case, the light reflects off the mirror and then reaches the person. The total distance traveled by the light in this case would be '4x' (since it travels the distance to the mirror and then back to the person).

However, the given information states that the total distance traveled by the light in the first case is 3.10 times the distance traveled in the second case. This would mean that '2x' is 3.10 times '4x', which is not possible. Therefore, the given situation contradicts the principles of reflection, making it impossible.

Learn more about reflection

https://brainly.com/question/29788343

#SPJ11

As noted in the passage, our solar system orbits the center of the Milky Way galaxy in about 200 million years. If there were no dark matter in our galaxy, this period would be a.) shorter. b.) the same. c.) longer.

Answers

Our solar system orbits the center of the Milky Way galaxy in about 200 million years .If there were no dark matter in our galaxy, the period of our solar system's orbit around the center of the Milky Way would be shorter.So option a is correct.

Dark matter is a hypothetical form of matter that is believed to exist based on its gravitational effects. It is thought to make up a significant portion of the total mass in the universe, including our galaxy. The presence of dark matter affects the dynamics of galaxies, including their rotation curves.

In the case of our solar system's orbit around the center of the Milky Way, the gravitational pull from dark matter contributes to the overall gravitational field, influencing the orbital dynamics. This additional gravitational force from dark matter allows stars and other objects in our galaxy to maintain stable orbits around the galactic center.

If there were no dark matter, the overall gravitational pull in our galaxy would be weaker, resulting in a lower gravitational force acting on our solar system. With a weaker gravitational force, the orbital speed of our solar system would decrease, and the period of the orbit would be shorter.

Therefore option a is correct.

To learn more about Dark matter visit: https://brainly.com/question/1275563

#SPJ11

For a sphere of radius 2 m, filled with a uniform charge density of 3 Coulombs/cubic meter, set up an integral for the electric field at the point (10m, 30 degrees, 30 degrees) --do not need to solve it. There is an example in Chapter 4 the book that will help. Use Gauss's Law to get an answer for the electric field at the same point (10m, 30 degrees, 30 degrees) in problem 2 Use Gauss's Law to get an answer for the electric field at (10cm, 30 degrees, 30 degrees) --This is inside the sphere For an electric potential V = rho z^2 cos phi, calculate the electrostatic potential energy within the region defined by 1< rho <2, -1 < z < 1, and 0 < phio < pi. (This means, integrate 1/2 epsilon E^2 over the volume. First you have to calculate E from the negative gradient of V)

Answers

To calculate the electric field at the point (10m, 30 degrees, 30 degrees) for a sphere of radius 2m filled with a uniform charge density of 3 Coulombs/cubic meter, we can set up the integral as follows:

∫(E⋅dA) = ∫(ρ/ε₀) dV

To calculate the electric field at a given point, we can use Gauss's Law, which states that the electric flux through a closed surface is equal to the total charge enclosed divided by the permittivity of free space (ε₀). In this case, we consider a sphere of radius 2m with a uniform charge density of 3 Coulombs/cubic meter.

To set up the integral, we consider an infinitesimal volume element dV within the sphere and its corresponding surface element dA. The left-hand side of the equation represents the integral of the electric field dotted with the surface area vector, while the right-hand side represents the charge enclosed within the infinitesimal volume divided by ε₀.

By integrating both sides of the equation over the appropriate volume, we can determine the electric field at the desired point.

Learn more about electric field

brainly.com/question/30544719

#SPJ11

For the 2-pole machine shown below, assume that the rotor speed is constant, i.e. Om = Wmt + 80, is = Is cos(wet), and in = 1, cos(Wert+B). Find out under which conditions the average of the developed torque is non-zero?

Answers

The average of the developed torque in the 2-pole machine will be non-zero when the product of Is and cos(Ωet + B) is not equal to zero.

In the given scenario, the developed torque can be represented by the equation:

Td = k × Is × in × sin(Ωmt - Ωet)

where Td is the developed torque, k is a constant, Is is the stator current, in is the rotor current, Ωmt is the rotor speed, and Ωet is the electrical angular velocity.

To find the conditions under which the average of the developed torque is non-zero, we need to consider the expression for Td over a complete cycle. Taking the average of the torque equation over one electrical cycle yields:

Td_avg = (1/T) ∫[0 to T] k × Is × in × sin(Ωmt - Ωet) dt

where T is the time period of one electrical cycle.

To determine the conditions for a non-zero average torque, we need to examine the integral expression. The sine function will contribute to a non-zero average if it does not integrate to zero over the given range. This occurs when the argument of the sine function does not have a constant phase shift of π (180 degrees).

Therefore, for the average of the developed torque to be non-zero, the product of Is and cos(Ωet + B) should not be equal to zero. This implies that the stator current Is and the cosine term should have a non-zero product. The specific conditions for non-zero average torque depend on the values of Is and B in the given expression.

To know more about stator current refer here:

https://brainly.com/question/32006247#

#SPJ11

Which of the following lines exists in a p-V diagram for water? O all of the mentioned O saturated liquid lines O saturated vapor line saturated solid line

Answers

In a p-V (pressure-volume) diagram for water, the line that exists is the saturated liquid line. This line represents the boundary between the liquid and vapor phases of water at equilibrium. It indicates the conditions at which water exists as a saturated liquid.

The saturated vapor line, on the other hand, represents the boundary between the liquid and vapor phases of water when it exists as a saturated vapor. The saturated solid line is not applicable in a p-V diagram for water, as water does not have a stable solid phase at standard atmospheric conditions.

 To  learn  more  about vapour click on:brainly.com/question/29640317

#SPJ11

Helium-neon laser light (λ=632.8nm) is sent through a 0.300-mm-wide single slit. What is the width of the central maximum on a screen 1.00m from the slit?

Answers

The width of the central maximum on the screen is approximately 2.1093 meters.

To find the width of the central maximum on a screen, we can use the equation for the width of the central maximum in a single slit diffraction pattern:

w = (λ * D) / a

where:
- w is the width of the central maximum
- λ is the wavelength of the light (632.8 nm)
- D is the distance from the slit to the screen (1.00 m)
- a is the width of the slit (0.300 mm)

First, we need to convert the units to be consistent. Convert the wavelength from nanometers to meters by dividing by 1,000,000:
λ = 632.8 nm / 1,000,000 = 0.0006328 m

Next, convert the width of the slit from millimeters to meters by dividing by 1000:
a = 0.300 mm / 1000 = 0.0003 m

Now we can substitute these values into the equation:
w = (0.0006328 m * 1.00 m) / 0.0003 m

Simplifying the equation:
w = 2.1093 m

To learn more about central maximum

https://brainly.com/question/32544172

#SPJ11

determine the magnitude of the acceleration of the mass for f1 = 25.0 n, f2 = 20.0 n, and m = 15.0 kg.

Answers

the magnitude of the acceleration of the mass is 3.0 m/s².To determine the magnitude of the acceleration of the mass, we need to use Newton's second law of motion, which states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration (F = ma). In this case, the net force can be calculated by summing the given forces: F_net = f1 + f2 = 25.0 N + 20.0 N = 45.0 N.


Then, using the mass of the object (m = 15.0 kg), we can rearrange the equation to solve for the acceleration: a = F_net / m = 45.0 N / 15.0 kg = 3.0 m/s². Therefore, the magnitude of the acceleration of the mass is 3.0 m/s².

to learn more about magnitude click here:brainly.com/question/28714281

#SPJ11

A 9V radio consumes a current of 0.455A:
(a) What is the power supplied by the battery?
(b) Calculate the equivalent resistance of the radio.
(c) If the radio works for 6 hours, how much energy is consumed?

Answers

The energy consumed by the radio when it works for 6 hours is 88368 J.

(a) Power supplied by the battery

The formula for calculating power is given by

                                       P= IV

where I = 0.455A, and V = 9V.P = 0.455A × 9VP= 4.095W

The power supplied by the battery is 4.095W.

(b) Equivalent resistance of the radio

The formula for calculating the equivalent resistance of the radio is given by

                                       R = V/I

       Where I = 0.455A,

  and V = 9V.R = 9V / 0.455AR

                  = 19.78Ω.

The equivalent resistance of the radio is 19.78Ω.

(c) Energy consumed If the radio works for 6 hours, the energy consumed is given by the formula

                  E = PtWhere P = 4.095W, and t = 6 hours.1 hour = 3600 s

Therefore 6 hours = 3600 s/h × 6h = 21600 sE = 4.095W × 21600 sE = 88368 J

Therefore the energy consumed by the radio when it works for 6 hours is 88368 J.

Learn more about resistance

brainly.com/question/29427458

#SPJ11

A current of I = 25 A is drawn from a 100-V Li-ion battery for 30 seconds. By how much is the chemical energy reduced? The battery is highly efficient. Li-ion batteries have 99 percent charge efficiency.

Answers

The chemical energy of the Li-ion battery is reduced by approximately 74.25 kilojoules (kJ) when a current of 25 A is drawn for 30 seconds, considering the 99% charge efficiency of the battery.

To determine the reduction in chemical energy of the Li-ion battery, we can use the formula:

Energy = Voltage × Charge

Given:

Current (I) = 25 A

Voltage (V) = 100 V

Time (t) = 30 seconds

Charge efficiency = 99%

First, we need to calculate the total charge drawn from the battery:

Charge = Current × Time

Charge = 25 A × 30 s

Charge = 750 Coulombs

Since the battery has a charge efficiency of 99%, only 99% of the total charge drawn contributes to the chemical energy reduction. Therefore, we need to multiply the calculated charge by the efficiency factor:

Effective Charge = Charge × Efficiency

Effective Charge = 750 C × 0.99

Effective Charge = 742.5 Coulombs

Next, we can calculate the reduction in chemical energy:

Energy Reduction = Voltage × Effective Charge

Energy Reduction = 100 V × 742.5 C

Energy Reduction = 74,250 Joules (or 74.25 kJ)

Therefore, the chemical energy of the Li-ion battery is reduced by approximately 74.25 kilojoules (kJ) when a current of 25 A is drawn for 30 seconds, considering the 99% charge efficiency of the battery.

Learn more about current:

https://brainly.com/question/1100341

#SPJ11

Using the information below, estimate the number of electrons in a 2 kg chunk of copper that has been charged to +10 mC. Atomic Number of Copper = 29 Molar Mass of Copper = 55.8 g/mol Electron Mass = 9.11 times 10-31 kg Proton Mass = 1.67 times 10-27 kg Elementary Charge = 1.602 times 10-19 C Coulomb's Constant (k) = 8.99 times 109 Nmm/CC Avagadro's Number = 6.02 times 1023 atoms/mole

Answers

The estimated number of electrons in a 2 kg chunk of copper charged to +10 mC is approximately 6.01 times 10²⁴ electrons.

To estimate the number of electrons in the copper chunk, we need to calculate the number of copper atoms and then multiply it by the number of electrons per copper atom.

- Molar Mass of Copper (M) = 55.8 g/mol

- Avogadro's Number (Nₐ) = 6.02 times 10²³ atoms/mol

- Elementary Charge (e) = 1.602 times 10⁻¹⁹ C

First, we calculate the number of moles of copper in the chunk:

Number of moles = Mass / Molar Mass = 2 kg / 55.8 g/mol = 35.9 mol

Next, we calculate the number of copper atoms:

Number of copper atoms = Number of moles × Avogadro's Number = 35.9 mol × 6.02 times 10²³ atoms/mol = 2.16 times 10²⁵ atoms

Since copper has 29 protons and is electrically neutral, it also has 29 electrons per atom. Therefore, the number of electrons in the copper chunk is the same as the number of copper atoms.

Finally, we multiply the number of copper atoms by the number of electrons per atom:

Number of electrons = Number of copper atoms = 2.16 times 10²⁵ atoms ≈ 6.01 times 10²⁴ electrons

learn more about molar mass here:

https://brainly.com/question/22997914

#SPJ11

the warren field calendar in is thought to be the oldest calendar in the world, at over 10,000 years old. the built temples and structures that aligned with certain constellations. the developed the world's first star catalog. during the golden age of astronomy, the made many contributions to the calculations of the movements of the planets. the was a famous greek invention designed to predict the positions of astronomical bodies as well as eclipses. the calculated the duration of a year and the lunar phases.

Answers

The Warren Field calendar is not considered to be the oldest calendar in the world. There are older known calendars, such as the archaeological site of Gobekli Tepe in Turkey, which dates back to around 9600 BCE.

The Warren Field calendar, located in Scotland, consists of 12 pits arranged in a roughly circular pattern. It has been suggested that these pits were used to track the lunar phases and mark the passage of time, making it a lunar calendar. However, there is ongoing debate among archaeologists regarding the purpose and exact age of the Warren Field calendar.

As for the claim that the Warren Field calendar builders developed the world's first star catalog and made significant contributions to the calculations of planetary movements during a golden age of astronomy, there is no historical evidence to support this. The Warren Field calendar consists of 12 pits arranged in a circular pattern, which some researchers believe were used to track lunar phases. However, there is ongoing debate and speculation about the purpose and age of the calendar.

While the Warren Field calendar is an intriguing archaeological site, it is not considered the oldest calendar in the world. There are other ancient calendars, such as those found at Gobekli Tepe, that predate it. Additionally, the claim that the Warren Field calendar builders developed the world's first star catalog and made significant contributions to astronomy during a golden age is not supported by historical evidence.

To know more about calendar, visit;
https://brainly.com/question/29468701
#SPJ11

1. a. Calculate the noise figure of the system below if the source is assumed to be at the standard room temperature. (5 points) b. Suppose the system shown below is preceded by a low-noise amplifier having a noise figure of 1dB. What must the gain of this low-noise amplifier be in order to reduce the noise figure of the whole system to 3dB. (5 points) Amplifier Attenuator Amplifier G=10dB G=20dB F=6dB T =320K L=10dB F=4dB

Answers

The gain of the low-noise amplifier should be 0.1 (or 10dB).

Calculate the equivalent resistance of the following circuit?

a. The noise figure (NF) of a system is calculated using the formula:

NF = 1 + (F1 - 1) / G1 + (F2 - 1) / G2 + ...

Where F1, F2, ... are the individual noise figures of the components and G1, G2, ... are the gains of the components.

In this case, the system consists of an amplifier with a gain of 10dB (G1 = 10), an attenuator with a loss of 10dB (G2 = -10), and another amplifier with a gain of 20dB (G3 = 20).

Assuming the source is at the standard room temperature, the noise figure of the system can be calculated as follows:

NF = 1 + (F1 - 1) / G1 + (F2 - 1) / G2 + (F3 - 1) / G3

  = 1 + (6 - 1) / 10 + (4 - 1) / -10 + 0 / 20

  = 1 + 0.5 - 0.3 + 0

  = 1.2

Therefore, the noise figure of the system is 1.2.

To reduce the noise figure of the whole system to 3dB, we need to calculate the gain of the low-noise amplifier that should be added before the system.

Using the formula for cascaded noise figures, we have:

NF_total = NF_LNA + (NF_system - 1) / G_LNA

Given that NF_total should be 3dB (NF_total = 3) and NF_LNA is 1dB, we can solve for G_LNA as follows:

3 = 1 + (1.2 - 1) / G_LNA

2 = 0.2 / G_LNA

G_LNA = 0.2 / 2

G_LNA = 0.1

Therefore, the gain of the low-noise amplifier should be 0.1 (or 10dB) to reduce the noise figure of the whole system to 3dB.

Learn more about amplifier

brainly.com/question/33224744

#SPJ11

chegg A force is applied to a block to move it up a 30 degree incline. The incline is frictionless. If F

Answers

If a force F is applied to a block to move it up a frictionless incline at a 30-degree angle, the force required to overcome the gravitational component acting on the block is given by [tex]F_cos(30)[/tex], where F is the applied force.

When a block is placed on an inclined plane, the force of gravity can be divided into two components: one parallel to the incline and one perpendicular to it. The force parallel to the incline, also known as the gravitational component, is given by [tex]F_g = mgsin(30)[/tex], where m is the mass of the block and g is the acceleration due to gravity.

To move the block up the incline, an external force F must be applied in the opposite direction of the gravitational component. Since the incline is frictionless, the force required to overcome the gravitational component is equal to the applied force F. However, since the applied force is not acting directly against gravity but at an angle of 30 degrees, only the component of the applied force parallel to the incline contributes to overcoming gravity. This component is given by [tex]F_cos(30)[/tex].

Therefore, the force required to move the block up the frictionless incline is equal to [tex]F_cos(30)[/tex], where F is the applied force.

Learn more about applied force here:

https://brainly.com/question/32549538

#SPJ11

For magnetically coupled circuits (where two coils are not physically touching), what enables current to flow in a secondary coil that is not connected to a power source, when the primary coil is connected to an AC source?

Answers

The phenomenon of electromagnetic induction enables current to flow in a secondary coil that is not connected to a power source when the primary coil is connected to an AC source.

Electromagnetic induction is the process by which a changing magnetic field induces an electric current in a nearby conductor. In the case of magnetically coupled circuits, the primary coil is connected to an alternating current (AC) source, which creates a changing magnetic field around it.

When the magnetic field around the primary coil changes, it induces a corresponding changing magnetic field in the secondary coil. This electromotive force (EMF) in the secondary coil, according to Faraday's law of electromagnetic induction.

The induced EMF causes an electric current to flow in the secondary coil, even though it is not directly connected to a power source. This phenomenon allows energy transfer from the primary coil to the secondary coil without the need for physical contact.

The magnitude of the induced current in the secondary coil depends on factors such as the number of turns in the coils, the rate of change of the magnetic field, and the properties of the coils. By adjusting these parameters, the coupling between the coils can be optimized to achieve efficient energy transfer.

Learn more about Electromagnetic induction

brainly.com/question/32444953?

#SPJ11.

railu Now assume that both coolers have the same speed after being pushed with the same horizontal force F. What can be said about the distances the two coolers are pushed? My friend and I plan a day of ice fishing out on a frozen lake. We each pack our own cooler full of supplies to be pushed out to our fishing spot. Initially both coolers are at rest and one has four times the mass of the other. In parts A and B we each exert the same horizontal force F on our coolers and move them the same distance d, from the shore towards the fishing hole. Friction may be ignored. ► View Available Hint(s) O The heavy cooler must be pushed 16 times farther than the light cooler. O The heavy cooler must be pushed 4 times farther than the light cooler. O The heavy cooler must be pushed 2 times farther than the light cooler. O The heavy cooler must be pushed the same distance as the light cooler. O The heavy cooler must be pushed half as far as the light cooler.

Answers

Mass of 1st cooler, m1 = m and mass of 2nd cooler, m2 = 4m Horizontal force applied to both the coolers, FThe distance moved by both the coolers, d Friction is ignored. As per the given information, the force applied is same on both the coolers.

Hence, the acceleration produced in both coolers is same. Let a be the acceleration produced in both the coolers. Now, we can use the Newton's second law of motion which states that the force acting on a body is equal to the product of its mass and acceleration.

Then, the force applied on the lighter cooler (of mass m) is F. Hence, we can say that F = ma ...(1)Using the same equation (1), we can say that the force applied on the heavier cooler (of mass 4m) is F and the acceleration produced in it is a/4.

To know more about applied visit:

https://brainly.com/question/29407703

#SPJ11

when would roll a hit the ground compared to a roll b? roll b has the same mass as roll a, but roll b is dropped straight down and does not unwind as it drops.

Answers

Roll B will hit the ground first since it has a greater linear acceleration and does not have the additional rotational energy associated with rolling and unwinding.

Roll B, which is dropped straight down and does not unwind as it drops, will hit the ground before Roll A.

The reason for this is that Roll B does not have any rotational motion while falling, so it experiences only the force of gravity acting vertically downward. This force causes Roll B to accelerate downward linearly, resulting in a faster descent compared to Roll A.

On the other hand, Roll A, which is rolling and unwinding as it drops, will experience a combination of gravitational force and rotational motion. The rotational motion introduces additional rotational kinetic energy, which reduces the overall linear acceleration of Roll A compared to Roll B.

As a result, Roll B will hit the ground first since it has a greater linear acceleration and does not have the additional rotational energy associated with rolling and unwinding.

Learn more about rotational energy here:

https://brainly.com/question/30459585

#SPJ11

Design a series resonant circuit to generate 300 kV high
voltage. (HİGH VOLTAGE ENGİNEERİNG)

Answers

The inductance of 0.4776 H is needed in the series resonant circuit to generate 300 kV high voltage.

High voltage required = 300kV

Impedance of series resonant circuit,Z = R + jXLC

For a series resonant circuit at resonance, the impedance becomes purely resistive. So, Xl = Xc or L = 1/ωC, where ω is the resonant frequency. Hence,Z = R

For a series resonant circuit with R = 150, the impedance is 150 Ω at resonance.

Since voltage across capacitor and inductor are equal to each other and are equal to the applied voltage,

Therefore, voltage across inductor = voltage across capacitor = Vc= VL= V/2

Total voltage across capacitor and inductor = Vc + VL= V/2 + V/2= V∴ V = 300kVFor a series resonant circuit,V = I × Z or I = V/ZI = V/R = 300 × 10³ /150= 2000 A

Therefore, inductance of the series resonant circuit is given by L = 1/ωC = 1/ (2πfC)Inductance L = V/(2πfIL) = 300 × 10³ / (2π × 50 × 2000) = 0.4776 H

Thus, an inductance of 0.4776 H is needed in the series resonant circuit to generate 300 kV high voltage.

Learn more about circuit with the given link,

https://brainly.com/question/2969220

#SPJ11

what sound level in db is produced by earphones that create an intensity of 3.50 ✕ 10−2 w/m2? db †

Answers

To determine the sound level in decibels (dB) produced by earphones with a given intensity, we can use the formula for sound level:

[tex]L = 10 * log10(I/I₀)[/tex]

where L is the sound level in dB, I is the intensity of the sound, and I₀ is the reference intensity, which is typically set at[tex]10^(-12) W/m².[/tex]

Given an intensity of [tex]3.50 × 10^(-2) W/m²[/tex], we can calculate the sound level as:

[tex]L = 10 * log10((3.50 × 10^(-2)) / (10^(-12)))[/tex]

Simplifying the equation:

[tex]L = 10 * log10(3.50 × 10^10)L = 10 * (10.544)L = 105.44 dB[/tex]

Therefore, the sound level produced by the earphones with an intensity of [tex]3.50 × 10^(-2) W/m²[/tex] is approximately 105.44 dB.

Sound levels are typically measured on a logarithmic scale (decibels) to represent the wide range of intensities that can be perceived by the human ear.

To know more about decibels refer here:

https://brainly.com/question/13047838#

#SPJ11

Calculate the resistivity of rainwater with a conductivity of
100 µS/cm

Answers

The task is to calculate the resistivity of rainwater with a given conductivity of 100 µS/cm.

Resistivity is the inverse of conductivity and is a measure of a material's resistance to the flow of electric current. To calculate the resistivity of rainwater with a conductivity of 100 µS/cm, we can use the formula: Resistivity = 1 / Conductivity.

In this case, the given conductivity of rainwater is 100 µS/cm. By substituting this value into the formula, we can calculate the resistivity of rainwater. The resistivity will be expressed in units of ohm-cm (Ω·cm).

Resistivity is a fundamental property that characterizes the electrical behavior of a material. It represents the intrinsic resistance of the material to the flow of electric current. In the context of rainwater, the conductivity value indicates its ability to conduct electricity. By calculating the resistivity from the given conductivity, we can determine the inverse of this conductivity, which gives us a measure of the rainwater's resistance to electric current flow.

Learn more about resistivity:

https://brainly.com/question/29427458

#SPJ11

Calculate the directivity of the helical antenna, HPBW and FNBW with the parameter: N = 7,F = 4GHz, C = 0.5A, s = 0.3 λ

Answers

The directivity of the helical antenna is 187,740, HPBW is 116 degrees and FNBW is 262 degrees.

To calculate the directivity of the helical antenna,

               HPBW, and FNBW with the parameter:

                    N = 7, F = 4 GHz, C = 0.5A, s = 0.3 λ,

we need to use the following formulas:

Directivity = 15 * (N/D)^2HPBW = 58 * (λ/D)

FNBW = 131 * (λ/D)where,λ is the wavelength of the signal in metersD is the diameter of the helix in meters

We are given the following parameters:

                        N = 7F = 4 GHz

                        C = 0.5As = 0.3λ

                         λ = c/f = 3 x 10^8 / 4 x 10^9 = 0.075 m

                       D = C * λ = 0.5 * 0.075 = 0.0375 m

Directivity = 15 * (N/D)^2= 15 * (7/0.0375)^2= 15 * 12516= 187,740

HPBW = 58 * (λ/D)= 58 * (0.075/0.0375)= 116

FNBW = 131 * (λ/D)= 131 * (0.075/0.0375)= 262

Therefore, the directivity of the helical antenna is 187,740, HPBW is 116 degrees and FNBW is 262 degrees.

Learn more about helical antenna

brainly.com/question/31248626

#SPJ11

1. Calculate the % regulation of 6.6 kV single-phase A.C. transmission line delivering 40 amps current at 0.8 lagging power factor. The total resistance and reactance of the line are 4.0 ohm and 5.0 ohm per phase respectively.
2. The generalized A and B constants of a transmission line are 0.96 ∠10 and 120 ∠800 respectively. If the line to line voltage at the sending and receiving ends are both 110 kV and the phase angle between them is 300, find the receiving-end power factor and the current. With the sending-end voltage maintained at 110 kV, if the load is sudden thrown off, find the corresponding receiving-end voltage

Answers

1. Therefore, the % regulation of 6.6 kV single-phase A.C. transmission line delivering 40 amps current at 0.8 lagging power factor is 13%. 2. When the load is suddenly thrown off, the receiving-end voltage becomes:  39,932 ∠ (-24.7°) Volts

1. The % regulation of 6.6 kV single-phase A.C. transmission line delivering 40 amps current at 0.8 lagging power factor can be calculated as follows:

Total impedance,

Z = √(4² + 5²) = 6.4 Ω

Total circuit voltage = 6.6 kV

Current, I = 40 amps

Lagging power factor,

cos Φ = 0.8

cos Φ = Re(Z) / Z

Im(Z) = √(Z² - Re(Z)²)

Im(Z) = √(6.4² - 4²) = 5.4 Ω

Therefore,

Re(Z) = 6.4 × 0.8 = 5.12 Ω

Thus, Im(Z) = 5.4 Ω

Now, Voltage regulation,

%V.R. = ((Total Circuit Voltage - Receiving End Voltage) / Receiving End Voltage) × 100

%V.R. = ((6.6 × 1000 - (40 × 6.4) × 0.8) / (40 × 0.8)) × 100

%V.R. = 13%

2. The receiving-end power factor can be calculated as follows:

The impedance of the line,

Z = (0.96 ∠10°) + (120 ∠800° / 2πf)

L = 100 km = 100,000 m

Line capacitance per unit length,

C = 0.022 μF / m

Hence,

C' = C / 2π

f = (0.022 × 10^-6) / (2π × 60)

= 18.5 × 10^-9 F/m

Line inductance per unit length,

L' = 2πf

L = 2π × 60 × 100,000

L = 37.7 × 10^6 H/m

The propagation constant,

γ = √(ZC')

γ = √(120 × 0.022 × 10^-6 / 2πf) ∠ 10°

γ = 0.647 × 10^-3 ∠ 10°

The characteristic impedance,

Z0 = √(Z / C')

Z0  = √(0.96 × 10^6 / 0.022)

Z0  = 19,736 Ω

The phase shift due to distance,

θ = γL ∠ (-90°)

θ = (0.647 × 10^-3) × (100 × 10^3) ∠ (-90°)

θ = -64.7°

The voltage at the receiving end,

VR = VS / 2 ∠ θ

The voltage across the line,

VL = 2 × VS / 2 ∠ θ

The current,

I = (VS / Z0) ∠ (θ + 10°)

I  = (110,000 / 19,736) ∠ (10° + (-64.7°))

I = 5.26 ∠ (-54.7°)

Hence, the receiving-end power factor,

cos Φ2 = Re(P) / S

Re(P) = (VR × I × cos Φ2)

Re(P)  = (110,000 / 2) × (5.26 × 0.85)

Re(P)  = 245,275 W

Therefore,

cos Φ2 = Re(P) / S

cos Φ2 = 245,275 / (110,000 × 5.26)

cos Φ2 = 0.42

The current at the receiving end is 5.26 ∠ (-54.7°) and the receiving-end power factor is 0.42.

When the load is suddenly thrown off, the receiving-end voltage becomes:

VR' = VS / 2 ∠ (θ + 90°)

VR'  = 110,000 / 2 ∠ (-24.7°)

VR'  = 39,932 ∠ (-24.7°) Volts.

to know more about  voltage visit:

https://brainly.com/question/13521443

#SPJ11

Which of the following speeds is the greatest? (1 mile = 1609 m) A) 0.74 km/min B) 40 km/h C) 400 m/min D) 40 mi/h E) 2.0 x 105 mm/min

Answers

The greatest speed among the given options is option D) 40 mi/h.

The greatest speed among the given options can be determined by converting all the speeds to a common unit and comparing their magnitudes. Let's convert all the speeds to meters per second (m/s) for a fair comparison:

A) 0.74 km/min = (0.74 km/min) * (1000 m/km) * (1/60 min/s) = 12.33 m/s

B) 40 km/h = (40 km/h) * (1000 m/km) * (1/3600 h/s) = 11.11 m/s

C) 400 m/min = (400 m/min) * (1/60 min/s) = 6.67 m/s

D) 40 mi/h = (40 mi/h) * (1609 m/mi) * (1/3600 h/s) = 17.88 m/s

E) 2.0 x 10^5 mm/min = (2.0 x 10^5 mm/min) * (1/1000 m/mm) * (1/60 min/s) = 55.56 m/s

By comparing the magnitudes of the converted speeds, we can conclude that the greatest speed is:

D) 40 mi/h = 17.88 m/s

Therefore, the correct answer is option D) 40 mi/h.

For more such questions on speed , click on:

https://brainly.com/question/13943409

#SPJ8


Which change would cause the needle on the ammeter
to point to the left of the zero?
A. making the wire thicker
B. adding coils to the wire
C. disconnecting the wire from one end of the ammeter
D. moving the wire downward through the magnetic
field

Answers

The change that that is needed for the needle on the ammeter to point to the left of the zero is by D. moving the wire downward through the magnetic field, option D is correct.

What is a magnetic field?

Magnetic forces can be seen in a magnetic field, an electric current, a changing electric field, or a vector field around a magnet.

A force acting on a charge while it travels through a magnetic field is perpendicular to both the charge's motion and the magnetic field. If the wire was lowered through the magnetic field, the ammeter's needle would shift to the left of zero.

Hence, Option D is correct.

Learn more about  ammeter at;

https://brainly.com/question/31545550

#SPJ1

Other Questions
write the balanced complete molecular chemical equation and the balanced net ionic chemical equation, including phase labels Using the directory -/class/e01/q07 create a script called 907.sh that reads two parameters from the command line for two files. These two parameters are the filenames for two files. Using the filenames provided on the command line print a short message including the two file names requested, and then use wc to output the number of characters in each file to the terminal in the following formats: The character lengths are requested for filename1 and filename2 #*#1 filename1 ##2 filename2 where ###1 is the number of characters in filename1 and ###2 is the number of characters in filename2. The file check07.sh has been provided to help you check your progress. Enter DONE for part A in the a07.txt file. A belt conveyor is designed with three roll idlers (all rollers are in same size) to handle the bauxite ore. Calculate the carrying capacity of the conveyor, the minimum belt width, the maximum and minimum tension in the belt, the operating power required at the driving drum and motor power from the following data: Bulk density, rho_b = 1.4 tonnes/m^3, Slope factor, k_s = 0.88, Width of the load stream on belt, b = 1.1 m, Toughing angle, beta = 30 degree, Surcharge angle, delta = 20 degree, Belt speed, v = 5.0 m/s, Shape factor, U = 0.15, Angle of elevation, alpha = 16 degree, Mass of the rotating parts of the idlers per unit length of belt on the carry side, m_ic = 225 kg/m, Mass of the rotating parts of the idlers per unit length of belt on the return side, m_ir = 75 kg/m, Mass of the belt per unit length overall, m_b = 16 kg/m, Overall length of the conveyor, L = 80 m, The net change in vertical elevation, H = 4 m, The coefficient for secondary resistances, K_SR = 0.9, Angle of wrap, theta = 220 degree, Friction coefficient between the belt and the drum, mu = 0.3, Belt friction coefficient, mu_r1 = mu_r2 = 0.025, and Motor efficiency, eta = 0.9. 1) State the kelvin's law for economic section of afeeder conductor . Mention the reasons for preferring the Kelvin'slaw.2) Why transformer is called as heart of powerdistribution system ? Explain quarterly data for nvidia inc. for the most recent 10 quarters follows ($ millions) This is the structure that ruptures during ovulation. cortical gyrus theca interna all of these tertiary follicle secondary follicle Design Functions using Multiplexers and Decoders Design the same code conversion circuit of lab 2 (2421 BCD code to 4-bit Gray Code conversion; please watch a video I recorded before regarding code conversion for Lab 2) using: 1. 2:4 decoder blocks at tree levels. 2.8:1 multiplexer blocks with the three MSBs of the 2421 code as control lines Simulate the built circuits and find their simulated truth tables (using probes). Answer and upload the solution (as directed) to the following questions: QUESTION 1 (Handwriting) For the decoder part: 1. construct the conversion truth table 2. simplify the output functions using the k-maps 3. design the simplified functions using the 2:4 decoder blocks tree Answer Yes if all three steps are done correctly and No if not. O Yes O No QUESTION 2 (Handwriting) Upload the .pdf file for Question 1 that contains the handwriting solution (answer all three steps). Title the file as name_id_decoder.pdf. (only pdf file extension is accepted) Attach File Browse Local Files Browse Content Collection r. n 1 bar, 350 K with a mass flow rate of 1 kg/s and exits at 4 bar. The pressor operating at steady state at isentropic compressor efficiency is 82%. Determine the power input, in kW, and the rate of entropy production, in kW/K, using the ideal gas model with data from Table A-22. 6.102 Refrigerant 134a enters a compressor operating at steady state as saturated vapor at -6.7C and exits at a pressure of 0.8 MPa. There is no significant heat transfer with the surroundings, and kinetic and potential energy effects can be ignored. a. Determine the minimum theoretical work input required, in kJ per kg of refrigerant flowing through the compressor, and the cor- responding exit temperature, in C. b. If the refrigerant exits at a temperature of 49C, determine the 1 1 isentropic compressor efficiency. 6.103 Air at 1.3 bar, 423 K and a velocity of 40 m/s enters a nozzle operating at steady state and expands adiabatically to the exit, where the pressure is 0.85 bar and velocity is 307 m/s. For air modeled as an with b = 1.4, determine for the nozzle (a) the temperature at Giancy In a hydraulic system with two pistons, the input piston has a radius of 2 inches, and the output piston has a diameter of 9 inches . What is the mechanical advantage 3. calculate the percentage of aspirin in each tablet, using the formula below Television sets, ballpoint pens, and tortilla chips are: Multiple Choice customized products standardized products fabrication products design products which of the following is not classified as mnufactuing overhead? supervisory labor, production supplies, factory insurance, product delivery costs i am struggling with how much time i want to spend alone, and how much time i want to spend with my partner. which dialectical tension am i experiencing? What are the standard deviations for BIF Corporation and Norwood, Inc.?Economy Probability BIF Corporation Norwood, Inc. Expected Return (%) Slow 30% -10 5Normal 40% 20 20 Robust 30% 50 35 QUESTION 34 Integrins can bind to proteins like fibronectin. This can cause an increase in the integrin's affinity for actin cyloskeleton-associated proteins. Wh. this form of signaling called? a actin nucleation b. outside-in signaling c. inside-out signaling d. invasive signaling e endocytic signaling A 440 V dc shunt motor has a rated armature current of 76 A at a speed of 1000 rev/min. The armature resistance of the motor is 0.377 W; the field resistance is 110 W; and the rotational losses is 1 kW. The load of the motor is unidirectional. The motor is braked by Plugging.(the terminal voltage has been reduced to 110 V). Find at the following points: 1. Point A: The Steady state operating point right before the terminal voltage has been reduced. Find the armature current, the developed torque, the motor speed, back EMF, developed power, efficiency 2. Point B: The initial braking instant right after the terminal voltage has been reduced. Find the initial braking current and the braking torque. what should you select in the notify shape to get a customized notification for email alerts or rss feeds? Find the maximum and the minimum values of f(x,y,z)=4x5y+5z on the sphere x 2 +y 2 +z 2 =66 The maximum value is (Simplify your answer.) The minimum value is (Simplify your answer.) the nursing is assessing a patient who reports joint pain. which typew of range of motion assessed by the nurse involves sagittal plane movement? A diagonal member of a truss is subjected to an axial force of 27 kips. If it has a section that is 2 inches by 3 inches, what is its axial stress? a. 13.5 ksi b.4.5 ksi C. 9.0 ksi d. 162 ksi