Answer:
a) the magnitude of the force is
F= Q([tex]\frac{kqs}{r^3}[/tex]) and where k = 1/4πε₀
F = Qqs/4πε₀r³
b) the magnitude of the torque on the dipole
τ = Qqs/4πε₀r²
Explanation:
from coulomb's law
E = [tex]\frac{kq}{r^{2} }[/tex]
where k = 1/4πε₀
the expression of the electric field due to dipole at a distance r is
E(r) = [tex]\frac{kp}{r^{3} }[/tex] , where p = q × s
E(r) = [tex]\frac{kqs}{r^{3} }[/tex] where r>>s
a) find the magnitude of force due to the dipole
F=QE
F= Q([tex]\frac{kqs}{r^3}[/tex])
where k = 1/4πε₀
F = Qqs/4πε₀r³
b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces
τ = F sinθ × s
θ = 90°
note: sin90° = 1
τ = F × r
recall F = Qqs/4πε₀r³
∴ τ = (Qqs/4πε₀r³) × r
τ = Qqs/4πε₀r²
Part A: The expression of the force on the dipole is [tex]F = \dfrac {Qqs}{4 \pi \epsilon_0 r^3}[/tex].
Part B: The expression of the torque on the dipole is [tex]\tau = \dfrac {Qqs}{4\pi\epsilon_0 r^2}[/tex].
How do you calculate the force and torque on the dipole?Given that a point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s. Also, r>>s.
Part A
The electric field due to dipole at a distance r is given below.
[tex]E_r = \dfrac {qs}{4\pi \epsilon_0 r^3}[/tex]
The magnitude of the force can be given as below.
[tex]F = QE_r[/tex]
[tex]F = \dfrac {Qqs}{4 \pi \epsilon_0 r^3}[/tex]
Hence the expression of the force on the dipole is [tex]F = \dfrac {Qqs}{4 \pi \epsilon_0 r^3}[/tex].
Part B
The torque on the dipole will dependent on the perpendicular forces on the dipole. The expression of the torque is given below.
[tex]\tau = F \times r \times sin \theta[/tex]
For the perpendicular forces, θ = 90°. Hence the torque is given below.
[tex]\tau = F\times r[/tex]
[tex]\tau = \dfrac {Qqs}{4 \pi \epsilon_0 r^3} \times r[/tex]
[tex]\tau = \dfrac {Qqs}{4\pi\epsilon_0 r^2}[/tex]
Hence the expression of the torque on the dipole is [tex]\tau = \dfrac {Qqs}{4\pi\epsilon_0 r^2}[/tex].
To know more about force and torque, follow the link given below.
https://brainly.com/question/18992494.
Two spaceships are observed from earth to be approaching each other along a straight line. Ship A moves at 0.40c relative to the earth observer, while ship B moves at 0.60c relative to the same observer. What speed does the captain of ship A report for the speed of ship B
Answer:
0.80 c
Explanation:
The computation of speed is shown below:-
Here, The speed of the captain ship A report for speed of the ship B which is
[tex]S = \frac{S_A + S_B}{1 + \frac{(S_AS_B)}{c^2} }[/tex]
where
[tex]S_A[/tex] indicates the speed of the ship A
[tex]S_B[/tex] indicates the speed of the ship B
and
C indicates the velocity of life
now we will Substitute 0.40c for A and 0.60 for B in the equation which is
[tex]S = \frac{0.40c + 0.60c}{1 + \frac{(0.40c)(0.60c)}{c^2} }[/tex]
after solving the above equation we will get
0.80 c
So, The correct answer is 0.80c
Consider a race between the following three objects: object 1, a disk; object 2, a solid sphere; and object 3, a hollow spherical shell. All objects have the same mass and radius.
Required:
a. Rank the three objects in the order in which they finish the race. To rank objects that tie, overlap them.
b. Rank the objects in order of increasing kinetic energy at the bottom of the ramp. Rank objects from largest to smallest. To rank items as equivalent, overlap them.
Answer:
Since the angular acceleration of the objects will be proportional to the torque (due to gravity) acting on them and they will all experience the same torque their accelerations will be inversely proportional to their moments of inertia:
I disk = 1/2 M R^2
I sphere = 2/5 M R^2
I shell = 2/3 M R^2
Thus the sphere will experience the greatest angular acceleration and reach the bottom first, and then be followed by the disk and the shell.
By conservation of energy they will all have the same kinetic energy when they reach the bottom of the ramp.
(a) The ranking of the objects in order of how they will finish the race is
solid sphere > disk > hollow spherical shell
(b) The ranking of the objects in order of kinetic energy is
solid sphere > disk > hollow spherical shell
The moment of inertia of each object is calculated as follows;
disk: [tex]I = \frac{1} {2} MR^2[/tex]solid sphere: I = [tex]\frac{2}{5} MR^2[/tex]hollow spherical shell: I = [tex]\frac{2}{3} MR^2[/tex]The angular momentum of the objects is calculated as follows;
[tex]L =I \omega \\\\\omega = \frac{L}{I}[/tex]
The object with the least moment of inertia is will have the highest speed.
The ranking of the objects in order of how they will finish the race;
solid sphere > disk > hollow
The kinetic energy of the objects is calculated as follows;
[tex]K.E = \frac{1}{2} I \omega ^2[/tex]
The ranking of the objects in order of kinetic energy;
solid sphere > disk > hollow
Learn more here:https://brainly.com/question/15076457
can I get help please?
A uniform crate C with mass mC is being transported to the left by a forklift with a constant speed v1. What is the magnitude of the angular momentum of the crate about point A, that is, the point of contact between the front tire of the forklift and the ground
Answer:
The angular momentum of the crate is [tex]M_{C} V_{1} d[/tex]
Explanation:
mass of the crate = [tex]M_{C}[/tex]
speed of forklift = [tex]V_{1}[/tex]
The distance between the center of the mass and the point A = d
Recall that the angular moment is the moment of the momentum.
[tex]L = P*d[/tex] ..... equ 1
where L is the angular momentum,
P is the momentum of the system,
d is the perpendicular distance between the crate and the point on the axis about which the momentum acts. It is equal to d from the image
Also, we know that the momentum P is the product of mass and velocity
P = mv ....equ 2
in this case, the mass = [tex]M_{C}[/tex]
the velocity = [tex]V_{1}[/tex]
therefore, the momentum P = [tex]M_{C}[/tex][tex]V_{1}[/tex]
we substitute equation 2 into equation 1 to give
[tex]L = M_{C} V_{1} d[/tex]
11. A seesaw sits in static equilibrium. A child with a mass of 30 kg sits 1 m away from a pivot point. Another child sits 0.75 m away from the pivot point on the opposite side. The second child's mass is _____ kg.
Answer:
40 kgExplanation:
Find the diagram relating to the question for proper explanation of the question below.
Using the principle of moment
Sum of clockwise moments = Sum of anticlockwise moments
Moment = Force * perpendicular distance
For anti-clockwise moment:
Since the 30 kg moves in the anticlockwise direction according to the diagram
ACW moment = 30 * 1 = 30 kgm
For clockwise moment
If another child sits 0.75 m away from the pivot point on the opposite side, moment of the child in clockwise direction = M * 0.75 = 0.75M (M is the mass of the unknown child).
Equating both moments we have;
0.75M = 30
M = 30/0.75
M = 40 kg
The second child's mass is 40 kg
If, instead, the ball is revolved so that its speed is 3.7 m/s, what angle does the cord make with the vertical?
Complete Question:
A 0.50-kg ball that is tied to the end of a 1.5-m light cord is revolved in a horizontal plane, with the cord making a 30° angle with the vertical.
(a) Determine the ball’s speed. (b) If, instead, the ball is revolved so that its
speed is 3.7 m/s, what angle does the cord make with the vertical?
(Check attached image for the diagram.)
Answer:
(a) The ball’s speed, v = 2.06 m/s
(b) The angle the cord makes with the vertical is 50.40⁰
Explanation:
If the ball is revolved in a horizontal plane, it will form a circular trajectory,
the radius of the circle, R = Lsinθ
where;
L is length of the string
The force acting on the ball is given as;
F = mgtanθ
This above is also equal to centripetal force;
[tex]mgTan \theta = \frac{mv^2}{R} \\\\Recall, R = Lsin \theta\\\\mgTan \theta = \frac{mv^2}{Lsin \theta}\\\\v^2 = glTan \theta sin \theta\\\\v = \sqrt{glTan \theta sin \theta} \\\\v = \sqrt{(9.8)(1.5)(Tan30)(sin30)} \\\\v = 2.06 \ m/s[/tex]
(b) when the speed is 3.7 m/s
[tex]v = \sqrt{glTan \theta sin \theta} \ \ \ ;square \ both \ sides\\\\v^2 = glTan \theta sin \theta\\\\v^2 = gl(\frac{sin \theta}{cos \theta}) sin \theta\\\\v^2 = \frac{gl*sin^2 \theta}{cos \theta} \\\\v^2 = \frac{gl*(1- cos^2 \theta)}{cos \theta}\\\\gl*(1- cos^2 \theta) = v^2cos \theta\\\\(9.8*1.5)(1- cos^2 \theta) = (3.7^2)cos \theta\\\\14.7 - 14.7cos^2 \theta = 13.69cos \theta\\\\14.7cos^2 \theta + 13.69cos \theta - 14.7 = 0 \ \ \ ; this \ is \ quadratic \ equation\\\\[/tex]
[tex]Cos\theta = \frac{13.69\sqrt{13.69^2 -(-4*14.7*14.7)} }{14.7} \\\\Cos \theta = 0.6374\\\\\theta = Cos^{-1}(0.6374)\\\\\theta = 50.40 ^o[/tex]
Therefore, the angle the cord makes with the vertical is 50.40⁰
Muons are elementary particles that are formed high in the atmosphere by the interactions of cosmic rays with atomic nuclei. Muons are radioactive and have average lifetimes of about two-millionths of a second. Even though they travel at almost the speed of light, they have so far to travel through the atmosphere that very few should be detected at sea level - at least according to classical physics. Laboratory measurements, however, show that muons in great number do reach the earth's surface. What is the explanation?
Answer:
Muons reach the earth in great amount due to the relativistic time dilation from an earthly frame of reference.
Explanation:
Muons travel at exceedingly high speed; close to the speed of light. At this speed, relativistic effect starts to take effect. The effect of this is that, when viewed from an earthly reference frame, their short half life of about two-millionth of a second is dilated. The dilated time, due to relativistic effects on time for travelling at speed close to the speed of light, gives the muons an extended relative travel time before their complete decay. So in reality, the muon do not have enough half-life to survive the distance from their point of production high up in the atmosphere to sea level, but relativistic effect due to their near-light speed, dilates their half-life; enough for them to be found in sufficient amount at sea level.
A 2.3kg bicycle wheel has a diameter of 50cm. What torque must you apply to take the wheel from 0rpm to 120rpm in 5.5s?
Answer:
τ = 0.26 N.m
Explanation:
First we find the moment of inertia of the wheel, by using the following formula:
I= mr²
where,
I = Moment of Inertia = ?
m = mass of wheel = 2.3 kg
r = radius of wheel = 50 cm/2 = 25 cm = 0.25 m
Therefore,
I = (2.3 kg)(0.25 m)²
I = 0.115 kg.m²
Now, we find the angular acceleration of the wheel:
α = (ωf - ωi)/t
where,
α = angular acceleration = ?
ωf = final angular velocity = (120 rpm)(2π rad/1 rev)(1 m/60 s) = 12.56 rad/s
ωi = Initial Angular Velocity = 0 rad/s
t = time = 5.5 s
Therefore,
α = (12.56 rad/s - 0 rad/s)/(5.5 s)
α = 2.28 rad/s²
Now, the torque is given as:
Torque = τ = Iα
τ = (0.115 kg.m²)(2.28 rad/s²)
τ = 0.26 N.m
Observe the process by which the grey and the red spheres are charged using the electrophorus. After each sphere is first charged, what are their charges
Answer:
The gray spheres is negatively charged while the red is positively charged
Explanation:
This is because theelectrophorus becomes less positive once it pulls some electrons away from the red sphere, but, the electrophorus is replaced on the slab and recharged by grounding it before it proceeds to charge the grey sphere, thereby giving it electrons and making it negatively charged
Answer:
The gray sphere has a positive charge and the red sphere has a positive charge.
The Law of Biot-Savart shows that the magnetic field of an infinitesimal current element decreases as 1/r2. Is there anyway you could put together a complete circuit (any closed path of current-carrying wire) whose field exhibits this same 1/r^2 decrease in magnetic field strength? Explain your reasoning.
Answer and Explanation:
There is no probability of obtaining such a circuit of closed track current carrying wire whose field of magnitude displays i.e. [tex]B \alpha \frac{1}{r^2}[/tex]
The magnetic field is a volume of vectors
And [tex]\phi\ bds = 0[/tex]. This ensures isolated magnetic poles or magnetic charges would not exit
Therefore for a closed path, we never received magnetic field that followed the [tex]B \alpha \frac{1}{r^2}[/tex] it is only for the simple current-carrying wire for both finite or infinite length.
Describe the relationship between the density of electric field lines and the strength of the electric field?
Answer:
The greater the density of the electric field lines the stronger the electric field and vice versa
Explanation:
Electric field can be defined as the region where an electric force is experienced by a charged body. A charged body experiences a force whenever it is positioned close to another charged body.
An electric field may be described in terms of lines of force which represent the direction of a small positive charge placed at that point assuming that the charge is so small that it does not change appreciably in the presence of another charge. Arrows on the lines of force indicate the direction of the electric field.
The lines of force are indicated in such a way that the strength of the electric field is shown by the number or density of electric field lines crossing a unit area perpendicular to the lines. Hence, the greater the density of the electric field lines the stronger the the electric field and vice versa
A 1.5-kg mass attached to spring with a force constant of 20.0 N/m oscillates on a horizontal, frictionless track. At t = 0, the mass is released from rest at x = 10.0 cm. ( That is, the spring is stretched by 10.0 cm.) (a) Determine the frequency of the oscillations. (b) Determine the maximum speed of the mass. Where dos the maximum speed occur? (c) Determine the maximum acceleration of the mass. Where does the maximum acceleration occur? (d) Determine the total energy of teh oscillating system. (e) Express the displacement as a function of time.
Answer:
(a) f = 0.58Hz
(b) vmax = 0.364m/s
(c) amax = 1.32m/s^2
(d) E = 0.1J
(e) [tex]x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)[/tex]
Explanation:
(a) The frequency of the oscillation, in a spring-mass system, is calulated by using the following formula:
[tex]f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}[/tex] (1)
k: spring constant = 20.0N/m
m: mass = 1.5kg
you replace the values of m and k for getting f:
[tex]f=\frac{1}{2\pi}\sqrt{\frac{20.0N/m}{1.5kg}}=0.58s^{-1}=0.58Hz[/tex]
The frequency of the oscillation is 0.58Hz
(b) The maximum speed is given by:
[tex]v_{max}=\omega A=2\pi f A[/tex] (2)
A: amplitude of the oscillations = 10.0cm = 0.10m
[tex]v_{max}=2\pi (0.58s^{-1})(0.10m)=0.364\frac{m}{s}[/tex]
The maximum speed of the mass is 0.364 m/s.
The maximum speed occurs when the mass passes trough the equilibrium point of the oscillation.
(c) The maximum acceleration is given by:
[tex]a_{max}=\omega^2A=(2\pi f)^2 A[/tex]
[tex]a_{max}=(2\pi (0.58s^{-1}))(0.10m)=1.32\frac{m}{s^2}[/tex]
The maximum acceleration is 1.32 m/s^2
The maximum acceleration occurs where the elastic force is a maximum, that is, where the mass is at the maximum distance from the equilibrium point, that is, the acceleration.
(d) The total energy of the system is:
[tex]E=\frac{1}{2}kA^2=\frac{1}{2}(20.0N/m)(0.10m)^2=0.1J[/tex]
The total energy is 0.1J
(e) The displacement as a function of time is:
[tex]x(t)=Acos(\omega t)=Acos(2\pi ft)\\\\x(t)=0.1m\ cos(2\pi(0.58s^{-1})t)[/tex]
Two carts are connected by a loaded spring on a horizontal, frictionless surface. The spring is released and the carts push away from each other. Cart 1 has mass M and Cart 2 has mass M/3.
a) Is the momentum of Cart 1 conserved?
Yes
No
It depends on M
b) Is the momentum of Cart 2 conserved?
Yes
No
It depends on M
c) Is the total momentum of Carts 1 and 2 conserved?
Yes
No
It depends on M
d) Which cart ends up moving faster?
Cart 1
Cart 2
They move at the same speed
e) If M = 6 kg and Cart 1 moves with a speed of 16 m/s, what is the speed of Cart 2?
0 m/s
4.0 m/s
5.3 m/s
16 m/s
48 m/s
64 m/s
Answer:
a) yes
b) no
c) yes
d)Cart 2 with mass [tex]\frac{M}{3}[/tex] is expected to be more faster
e) u₂ = 48 m/s
Explanation:
a) the all out linear momentum of an arrangement of particles of Cart 1 not followed up on by external forces is constant.
b) the linear momentum of Cart 2 will be acted upon by external force by Cart 1 with mass M, thereby it's variable and the momentum is not conserved
c) yes, the momentum is conserved because no external force acted upon it and both Carts share the same velocity after the reaction
note: m₁u₁ + m₂u₂ = (m₁ + m₂)v
d) Cart 2 with mass [tex]\frac{M}{3}[/tex] will be faster than Cart 1 because Cart 2 is three times lighter than Cart 1.
e) Given
m₁= M
u₁ = 16m/s
m₂ =[tex]\frac{M}{3}[/tex]
u₂ = ?
from law of conservation of momentum
m₁u₁= m₂u₂
M× 16 = [tex]\frac{M}{3}[/tex] × u₂(multiply both sides by 3)
therefore, u₂ = [tex]\frac{3(M .16)}{M}[/tex] ("." means multiplication)
∴u₂ = 3×16 = 48 m/s
At t = 0, a battery is connected to a series arrangement of a resistor and an inductor. If the inductive time constant is 36.0 ms, at what time is the rate at which energy is dissipated in the resistor equal to the rate at which energy is stored in the inductor's magnetic field?
Answer:
The rate at which energy is dissipated in the resistor is equal to the rate at which energy is stored in the inductor's magnetic field in 24.95 ms.
Explanation:
The energy stored in the inductor is given as
E₁ = ½LI²
The rate at which energy is stored in the inductor is
(dE₁/dt) = (d/dt) (½LI²)
Since L is a constant
(dE₁/dt) = ½L × 2I (dI/dt) = LI (dI/dt)
(dE₁/dt) = LI (dI/dt)
Rate of Energy dissipated in a resistor = Power = I²R
(dE₂/dt) = I²R
When the rate at which energy is dissipated in the resistor equal to the rate at which energy is stored in the inductor's magnetic field
(dE₁/dt) = (dE₂/dt)
OK (dI/dt) = I²R
L (dI/dt) = IR
Current in a this kind of series setup of inductor and resistor at any time, t, is given as
I = (V/R) (1 - e⁻ᵏᵗ)
k = (1/time constant) = (R/L)
(dI/dt) = (kV/R) e⁻ᵏᵗ = (RV/RL) e⁻ᵏᵗ = (V/L) e⁻ᵏᵗ
L (dI/dt) = IR
L [(V/L) e⁻ᵏᵗ] = R [(V/R) (1 - e⁻ᵏᵗ)
V e⁻ᵏᵗ = V (1 - e⁻ᵏᵗ)
e⁻ᵏᵗ = 1 - e⁻ᵏᵗ
2 e⁻ᵏᵗ = 1
e⁻ᵏᵗ = (1/2) = 0.5
e⁻ᵏᵗ = 0.5
In e⁻ᵏᵗ = In 0.5 = -0.69315
- kt = -0.69315
kt = 0.69315
k = (1/time constant)
Time constant = 36.0 ms = 0.036 s
k = (1/0.036) = 27.78
27.78t = 0.69315
t = (0.69315/27.78) = 0.02495 = 24.95 ms
Hope this Helps!!!
A ball is thrown directly downward with an initial speed of 7.95 m/s, from a height of 29.0 m. After what time interval does it strike the ground?
Answer: after 1.75 seconds
Explanation:
The only force acting on the ball is the gravitational force, so the acceleration will be:
a = -9.8 m/s^2
the velocity can be obtained by integrating over time:
v = -9.8m/s^2*t + v0
where v0 is the initial velocity; v0 = -7.95 m/s.
v = -9.8m/s^2*t - 7.95 m/s.
For the position we integrate again:
p = -4.9m/s^2*t^2 - 7.95 m/s*t + p0
where p0 is the initial position: p0 = 29m
p = -4.9m/s^2*t^2 - 7.95 m/s*t + 29m
Now we want to find the time such that the position is equal to zero:
0 = -4.9m/s^2*t^2 - 7.95 m/s*t + 29m
Then we solve the Bhaskara's equation:
[tex]t = \frac{7.95 +- \sqrt{7.95^2 +4*4.9*29} }{-2*4.9} = \frac{7.95 +- 25.1}{9.8}[/tex]
Then the solutions are:
t = (7.95 + 25.1)/(-9.8) = -3.37s
t = (7.95 - 25.1)/(-9.8) = 1.75s
We need the positive time, then the correct answer is 1.75s
If, the limits of the visible spectrum are approximately 3000 A.U. and 5000 A.U. respectively. Determine the angular breadth of the first order visible spectrum produced by a plane diffraction grating having 12000 lines per inch when light is incident normally on the grating.
Answer:
θ₁ = 0.04º , θ₂ = 0.00118º
Explanation:
The equation that describes the diffraction pattern of a network is
d sin θ = m λ
where the diffraction order is, in this case they indicate that the order
m = 1
θ = sin⁻¹ (λ / d)
Trfuvsmod ls inrsd fr ll red s SI units
d = 12000 line / inc (1 inc / 2.54cm) = 4724 line / cm
the distance between two lines we can look for it with a direct proportions rule
If there are 4724 lines in a centimeter, the distance for two hundred is
d = 2 lines (1 cm / 4724 line) = 4.2337 10⁻⁴ cm
let's calculate the angles
λ = 300 10-9 m
θ₁ = sin⁻¹ (300 10-9 / 4,2337 10-4)
θ₁ = sin⁻¹ (7.08 10-4)
θ₁ = 0.04º
λ = 5000
θ₂ = sin-1 (500 10-9 / 4,2337 10-4)
θ₂ = 0.00118º
A force of 720 Newton stretches a spring 4 meters. A mass of 45 Kilograms is attached to the spring and is initially released from the equilibrium position with an upward velocity of 6 meters per second. Find an equation of the motion.
Answer:
x(t) = -3sin2t
Explanation:
Given that
Spring force of, W = 720 N
Extension of the spring, s = 4 m
Attached mass to the spring, m = 45 kg
Velocity of, v = 6 m/s
The proper calculation is attached via the image below.
Final solution is x(t) = -3.sin2t
There are two nearby point sources, each emitting a light wave of frequency f. When the frequency f is increased, how will the distance between troughs of constructive interference change?
Answer:
An increase in frequency will cause an increase in the number of lines per centimeter and a smaller distance between each consecutive line. That is the distance between each trough
Explanation:
This is because higher frequency light source should produce an interference pattern with more lines per centimeter in the pattern and a smaller spacing between lines.
A "laser cannon" of a spacecraft has a beam of cross-sectional area A. The maximum electric field in the beam is 2E. The beam is aimed at an asteroid that is initially moving in the direction of the spacecraft. What is the acceleration of the asteroid relative to the spacecraft if the laser beam strikes the asteroid perpendicularly to its surface, and the surface is not reflecting
Answer:
Acceleration of the asteroid relative to the spacecraft = 2ε[tex]E^{2}[/tex]A/m
Explanation:
The maximum electric field in the beam = 2E
cross-sectional area of beam = A
The intensity of an electromagnetic wave with electric field is
I = cε[tex]E_{0} ^{2}[/tex]/2
for [tex]E_{0}[/tex] = 2E
I = 2cε[tex]E^{2}[/tex] ....equ 1
where
I is the intensity
c is the speed of light
ε is the permeability of free space
[tex]E_{0}[/tex] is electric field
Radiation pressure of an electromagnetic wave on an absorbing surface is given as
P = I/c
substituting for I from above equ 1. we have
P = 2cε[tex]E^{2}[/tex]/c = 2ε[tex]E^{2}[/tex] ....equ 2
Also, pressure P = F/A
therefore,
F = PA ....equ 3
where
F is the force
P is pressure
A is cross-sectional area
substitute equ 2 into equ 3, we have
F = 2ε[tex]E^{2}[/tex]A
force on a body = mass x acceleration.
that is
F = ma
therefore,
a = F/m
acceleration of the asteroid will then be
a = 2ε[tex]E^{2}[/tex]A/m
where m is the mass of the asteroid.
A 10 gauge copper wire carries a current of 23 A. Assuming one free electron per copper atom, calculate the magnitude of the drift velocity of the electrons.
Question:
A 10 gauge copper wire carries a current of 15 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm².)
Answer:
3.22 x 10⁻⁴ m/s
Explanation:
The drift velocity (v) of the electrons in a wire (copper wire in this case) carrying current (I) is given by;
v = [tex]\frac{I}{nqA}[/tex]
Where;
n = number of free electrons per cubic meter
q = electron charge
A = cross-sectional area of the wire
First let's calculate the number of free electrons per cubic meter (n)
Known constants:
density of copper, ρ = 8.95 x 10³kg/m³
molar mass of copper, M = 63.5 x 10⁻³kg/mol
Avogadro's number, Nₐ = 6.02 x 10²³ particles/mol
But;
The number of copper atoms, N, per cubic meter is given by;
N = (Nₐ x ρ / M) -------------(ii)
Substitute the values of Nₐ, ρ and M into equation (ii) as follows;
N = (6.02 x 10²³ x 8.95 x 10³) / 63.5 x 10⁻³
N = 8.49 x 10²⁸ atom/m³
Since there is one free electron per copper atom, the number of free electrons per cubic meter is simply;
n = 8.49 x 10²⁸ electrons/m³
Now let's calculate the drift electron
Known values from question:
A = 5.261 mm² = 5.261 x 10⁻⁶m²
I = 23A
q = 1.6 x 10⁻¹⁹C
Substitute these values into equation (i) as follows;
v = [tex]\frac{I}{nqA}[/tex]
v = [tex]\frac{23}{8.49*10^{28} * 1.6 *10^{-19} * 5.261*10^{-6}}[/tex]
v = 3.22 x 10⁻⁴ m/s
Therefore, the drift electron is 3.22 x 10⁻⁴ m/s
A player is positioned 35 m[40 degrees W of S] of the net. He shoot the puck 25 m [E] to a teammate. What second displacement does the puck have to travel in order to make it to the net?
Answer:
x=22.57 m
Explanation:
Given that
35 m in W of S
angle = 40 degrees
25 m in east
From the diagram
The angle
[tex]\theta=90-40=50^o[/tex]
From the triangle OAB
[tex]cos40^o=\frac{35^2+25^2-x^2}{2\times 35\times 25}[/tex]
[tex]1340.57=35^2+25^2-x^2[/tex]
x=22.57 m
Therefore the answer of the above problem will be 22.57 m
A trolley going down an inclined plane has an acceleration of 2cm/s^2 What will be its velocity
3s after the start.
Answer:
[tex]V_{f}[/tex] = 6 cm/s
Explanation:
Given:
Acceleration = a = 2 cm/s²
Time = t = 3s
Initial Velocity = [tex]V_{i}[/tex] = 0 cm/s
Required:
Velocity = [tex]V_{f}[/tex] = ?
Formula:
a = [tex]\frac{V_{f}-V_{i}}{t}[/tex]
Solution:
2 = [tex]\frac{V_{f}-0}{3}[/tex]
=> [tex]V_{f}[/tex] = 2*3
=> [tex]V_{f}[/tex] = 6 cm/s
How fast must a 2500-kg elephant move to have the same kinetic energy as a 67.0-kg sprinter running at 15.0 m/s
Answer:
2.45 m/s
Explanation:
kinetic energy = 1/2 * m * v^2
then, 0.5 * 2500 * x^2 = 0.5 * 67 * 15^2
by solving for x, X = 2.45 m/s
g A change in the initial _____ of a projectile changes the range and maximum height of the projectile.
Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= ([tex]u^{2}[/tex]*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= ([tex]u^{2}[/tex] * [tex]sin^{2}[/tex]θ )/2g
the maximum distance also depends upon square of the initial velocity.
A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct
Complete question:
A solid conducting sphere is placed in an external uniform electric field. With regard to the electric field on the sphere's interior, which statement is correct?
A. the interior field points in a direction parallel to the exterior field
B. There is no electric field on the interior of the conducting sphere.
C. The interior field points in a direction perpendicular to the exterior field.
D. the interior field points in a direction opposite to the exterior field.
Answer:
B. There is no electric field on the interior of the conducting sphere.
Explanation:
Conductors are said to have free charges that move around easily. When the conductor is now placed in a static electric field, the free charges react to attain electrostatic equilibrium (steady state).
Here, a solid conducting sphere is placed in an external uniform electric field. Until the lines of the electric field are perpendicular to the surface, the free charges will move around the spherical conductor, causing polarization. There would be no electric field in the interior of the spherical conductor because there would be movement of free charges in the spherical conductor in response to any field until its neutralization.
Option B is correct.
There is no electric field on the interior of the conducting sphere.
A 1.0-kg ball is attached to the end of a 2.5-m string to form a pendulum. This pendulum is released from rest with the string horizontal. At the lowest point in its swing when it is moving horizontally, the ball collides elastically with a 2.0-kg block initially at rest on a horizontal frictionless surface. What is the speed of the block just after the collision
Answer:
[tex]v_{2}=3.5 m/s[/tex]
Explanation:
Using the conservation of energy we have:
[tex]\frac{1}{2}mv^{2}=mgh[/tex]
Let's solve it for v:
[tex]v=\sqrt{2gh}[/tex]
So the speed at the lowest point is [tex]v=7 m/s[/tex]
Now, using the conservation of momentum we have:
[tex]m_{1}v_{1}=m_{2}v_{2}[/tex]
[tex]v_{2}=\frac{1*7}{2}[/tex]
Therefore the speed of the block after the collision is [tex]v_{2}=3.5 m/s[/tex]
I hope it helps you!
A skydiver falls toward the ground at a constant velocity. Which statement best applies Newton’s laws of motion to explain the skydiver’s motion?
Answer:
A: An upward force balances the downward force of gravity on the skydiver.
Explanation:
on edge! hope this helps!!~ (⌒▽⌒)☆
Newton’s first law says that if motion changes, then a force is exerted. Describe a collision in terms of the forces exerted on both objects.
Answer:
In collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
Explanation:
In a collision two objects, there is a force exerted on both objects that causes an acceleration of both objects. These forces that act on both objects are equal in magnitude and opposite in direction.
Thus, in collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
A skater on ice with arms extended and one leg out spins at 3 rev/s. After he draws his arms and the leg in, his moment of inertia is reduced to 1/2. What is his new angular speed
Answer:
The new angular speed is [tex]w = 6 \ rev/s[/tex]
Explanation:
From the question we are told that
The angular velocity of the spin is [tex]w_o = 3 \ rev/s[/tex]
The original moment of inertia is [tex]I_o[/tex]
The new moment of inertia is [tex]I =\frac{I_o}{2}[/tex]
Generally angular momentum is mathematically represented as
[tex]L = I * w[/tex]
Now according to the law of conservation of momentum, the initial momentum is equal to the final momentum hence the angular momentum is constant so
[tex]I * w = constant[/tex]
=> [tex]I_o * w _o = I * w[/tex]
where w is the new angular speed
So
[tex]I_o * 3 = \frac{I_o}{2} * w[/tex]
=> [tex]w = \frac{3 * I_o}{\frac{I_o}{2} }[/tex]
=> [tex]w = 6 \ rev/s[/tex]
Two people push on a large gate as shown on the view from above in the diagram. If the moment of inertia of the gate is 90 kgm2, what is the resulting angular acceleration of the gate?
Answer:
1ft per second
Explanation:
Physics is on my side!!!!!!!!!!