A part made from hot-rolled AISI 1212 steel undergoes a 15 percent cold-work operation. Determine the ratios of ultimate strength to yield strength before and after the cold-work operation.What does the result indicate about the change of ductility of the part? The ratio of ultimate strength to yield strength before cold-work operation is 1.301 X The ratio of ultimate strength to yield strength after cold-work operation is 1.216 x After the cold-work operation, the ductility of the part is reduced

Answers

Answer 1

The ratio of ultimate strength to yield strength is an indicator of a material's ductility. Before the cold-work operation, the ratio is 1.301, which means that the material can sustain relatively higher stress levels before permanent deformation occurs. However, after the cold-work operation, the ratio decreases to 1.216, indicating a reduction in ductility.

Cold working involves the plastic deformation of a material at temperatures below its recrystallization temperature. It introduces dislocations and changes the microstructure, resulting in increased strength but reduced ductility. The material becomes harder and more brittle, making it less capable of undergoing significant plastic deformation before fracture.

The decrease in the ratio of ultimate strength to yield strength suggests that the material has become less resistant to plastic deformation and more prone to fracture after the cold-work operation. Therefore, the ductility of the part has been negatively affected, indicating a loss in its ability to deform without breaking.

learn more about material's ductility here

brainly.com/question/774923

#SPJ11


Related Questions

During a tensile test in which the starting gage length = 125 mm and the cross- sectional area = 62.5 mm^2. The maximum load is 28,913 N and the final data point occurred immediately prior to failure. Determine the tensile strength. 462.6 MPa 622 MPa 231.3 MPa In the above problem (During a tensile test in which the starting gage length = 125 mm....), fracture occurs at a gage length of 160.1mm. (a) Determine the percent elongation. 50% 46% 28% 64%

Answers

During a tensile test the percent elongation is 28%(Option C) and the tensile strength is 426.6 MPa (Option A).

Starting gauge length (Lo) = 125 mm Cross-sectional area (Ao) = 62.5 mm²Maximum load = 28,913 N Fracture occurs at gauge length (Lf) = 160.1 mm.

(a) Determine the percent elongation.Percent Elongation = Change in length/original length= (Lf - Lo) / Lo= (160.1 - 125) / 125= 35.1 / 125= 0.2808 or 28% (approx)Therefore, the percent elongation is 28%. (Option C)

(b) Determine the tensile strength.Tensile strength (σ) = Maximum load / Cross-sectional area= 28,913 / 62.5= 462.608 MPa (approx)Therefore, the tensile strength is 462.6 MPa. (Option A)Hence, option A and C are the correct answers.

To learn more about "Tensile Test" visit: https://brainly.com/question/13260260

#SPJ11

Assume that your username is ben and you type the following command: echo \$user is $user. What will be printed on the screen?A. \$user is $user
B. ben is $user
C. $user is ben
D. ben is ben

Answers

Assume that your username is ben and you type the following command: echo \$user is $user. ben is $user will be printed on the screen.

In this case, since the dollar sign preceding $user is not escaped with a backslash (\), it will be treated as a variable. The value of the variable $user will be replaced with the username, which is "ben." Therefore, the output will be "ben is $user," where $user is not expanded further since it is within single quotes.

Thus, the correct option is b.

Learn more about command:

https://brainly.com/question/25808182

#SPJ11

Steam condensing on the outer surface of a thin-walled circular tube of 50-mm diameter and 6-m length maintains a uniform surface temperature of 100 o C. Water flows through the tube at a rate of m. = 0.25 kg/s, and its inlet and outlet temperatures are Tm,i = 15 o C and Tm,o = 57 o C. What is the average convection coefficient associated with the water flow? (Cp water = 4178 J/kg.K) Assumptions: Negligible outer surface convection resistance and tube wall conduction resistance; hence, tube inner surface is at Ts = 100 o C, negligible kinetic and potential energy effects, constant properties.

Answers

The objective is to determine the average convection coefficient associated with the water flow and steam condensation on the outer surface of a circular tube.

What is the objective of the problem described in the paragraph?

The given problem involves the condensation of steam on the outer surface of a thin-walled circular tube. The tube has a diameter of 50 mm and a length of 6 m, and its outer surface temperature is maintained at 100 °C. Water flows through the tube at a rate of 0.25 kg/s, with inlet and outlet temperatures of 15 °C and 57 °C, respectively. The task is to determine the average convection coefficient associated with the water flow.

To solve this problem, certain assumptions are made, including negligible convection resistance on the outer surface and tube wall conduction resistance. Therefore, the inner surface of the tube is considered to be at a temperature of 100 °C. Additionally, kinetic and potential energy effects are neglected, and the properties of water are assumed to be constant.

The average convection coefficient is calculated based on the given parameters and assumptions. The convection coefficient represents the heat transfer coefficient between the flowing water and the tube's outer surface. It is an important parameter for analyzing heat transfer in such systems.

Learn more about water flow

brainly.com/question/29001272

#SPJ11

The stream function of a 2D non-viscous fluid flow is given by . Determine if this fluid flow is incompressible or not, calculate the vorticity in this flow field and determine the pressure gradient in horizontal x direction at coordinate (1,4).

Answers

The fluid flow described by the given stream function is incompressible. The vorticity of this flow field is zero. The pressure gradient in the horizontal x direction at coordinate (1,4) cannot be determined without additional information.

In fluid dynamics, an incompressible flow refers to a flow where the density of the fluid remains constant. The incompressibility condition is mathematically expressed as ∇ · v = 0, where ∇ is the del operator and v represents the velocity vector of the fluid flow. In the given problem, the stream function is provided, but the velocity vector is not explicitly given. However, the stream function is related to the velocity components through the equations ∂ψ/∂y = u and ∂ψ/∂x = -v, where u and v are the x and y components of the velocity vector. Taking the derivatives of these equations, we find ∂²ψ/∂x² + ∂²ψ/∂y² = 0, which satisfies the incompressibility condition (∇ · v = 0). Hence, the fluid flow described by the given stream function is incompressible.

Vorticity is a measure of the local rotation of fluid particles in a flow. It is defined as the curl of the velocity vector, given by ∇ × v. Since the velocity vector is related to the stream function as mentioned earlier, we can calculate the vorticity as ∇ × (∂ψ/∂y, -∂ψ/∂x). Taking the curl, we obtain ∇ × (∂ψ/∂y, -∂ψ/∂x) = ∂²ψ/∂x² + ∂²ψ/∂y². As this expression evaluates to zero in the given problem, the vorticity in this flow field is zero.

To determine the pressure gradient in the horizontal x direction at coordinate (1,4), we need additional information. The stream function alone does not provide a direct relationship with the pressure gradient. Other governing equations, such as the Bernoulli equation or the Navier-Stokes equations, would be required to establish the pressure distribution in the flow field and calculate the pressure gradient.

Learn more about fluid flow

brainly.com/question/28727482

#SPJ11

A 15-hp, 220-V, 2000-rpm separately excited dc motor controls a load requiring a torque of 147 , the armature 45 N·m at a speed of 1200 rpm. The field circuit resistance is Rf TL circuit resistance is Ra The field voltage is Vf 0.25 , and the voltage constant of the motor is K₂ 220 V. The viscous friction and no-load losses are negligible. The arma- ture current may be assumed continuous and ripple free. Determine (a) the back emf Eg, (b) the required armature voltage Va, and (c) the rated armature current of the motor. Solution = = = = = = 0.7032 V/A rad/s.

Answers

(a) The back emf (Eg) of the motor is 0.7032 V/A rad/s.

(b) The required armature voltage (Va) for the motor is to be determined.

(c) The rated armature current of the motor needs to be calculated.

To determine the back emf (Eg), we can use the formula Eg = K₂ * ω, where K₂ is the voltage constant of the motor and ω is the angular velocity. Given that K₂ is 220 V and ω is 2000 rpm (converted to rad/s), we can calculate Eg as 0.7032 V/A rad/s.

To find the required armature voltage (Va), we need to consider the torque and back emf. The torque equation is T = Kt * Ia, where T is the torque, Kt is the torque constant, and Ia is the armature current. Rearranging the equation, we get Ia = T / Kt. Since the load requires a torque of 147 N·m and Kt is related to the motor characteristics, we would need more information to calculate Va.

To determine the rated armature current, we can use the formula V = Ia * Ra + Eg, where V is the terminal voltage, Ra is the armature circuit resistance, and Eg is the back emf. Given that V is 220 V and Eg is 0.7032 V/A rad/s, and assuming a continuous and ripple-free armature current, we can calculate the rated armature current. However, the given values for Ra and other necessary parameters are missing, making it impossible to provide a specific answer for the rated armature current.

Learn more about back emf here

brainly.com/question/13109636

#SPJ11

D2.5 For second-order systems with the following transfer functions, determine the undamped natural frequency, the damping ratio, and the oscillation frequency. T(s) = 100/s2 +s $2+3s +49

Answers

The undamped natural frequency, damping ratio, and oscillation frequency of a second-order system with the transfer function T(s) = 100/(s^2 + s^2 + 3s + 49), we can express the transfer function in the standard second-order form:

T(s) = ωn^2 / (s^2 + 2ζωn s + ωn^2)

Comparing the standard form with the given transfer function, we can find the values of ωn (undamped natural frequency) and ζ (damping ratio).

For the given transfer function, we have:

ωn^2 = 100

2ζωn = 3

Let's solve these equations to find the values of ωn and ζ:

From the equation 2ζωn = 3, we can solve for ζ:

ζ = 3 / (2ωn)

Substituting the value of ωn from the equation ωn^2 = 100, we get:

ζ = 3 / (2 * √(100))

ζ = 3 / 20

So, the damping ratio ζ is 0.15.

Now, let's find the undamped natural frequency ωn:

ωn^2 = 100

ωn = √100

ωn = 10

Therefore, the undamped natural frequency ωn is 10.

To find the oscillation frequency, we can use the relationship:

Oscillation Frequency (ωd) = ωn * √(1 - ζ^2)

Substituting the values, we get:

ωd = 10 * √(1 - (0.15)^2)

ωd = 10 * √(1 - 0.0225)

ωd = 10 * √(0.9775)

ωd ≈ 9.887

So, the oscillation frequency ωd is approximately 9.887.

In summary, for the given transfer function, the undamped natural frequency (ωn) is 10, the damping ratio (ζ) is 0.15, and the oscillation frequency (ωd) is approximately 9.887.

Learn more about second-order here:

brainly.com/question/30853813

#SPJ11

Regarding the no-load and the locked-rotor tests of 3-phase induction motor, the correct statement is (). A. The mechanical loss pm can be separated from the total loss in a no-load test. B. The magnetization impedance should be measured when injecting the rated current to the stator in a no-load test. C. The short-circuit impedance should be measured when applying the rated voltage to the stator in a locked-rotor test D. In the locked-rotor test, most of the input power is consumed as the iron loss.

Answers

In the locked-rotor test, most of the input power is consumed as the iron loss.

Which statement regarding the no-load and locked-rotor tests of a 3-phase induction motor is incorrect?

The statement D is incorrect because in the locked-rotor test of a 3-phase induction motor, most of the input power is consumed as the stator and rotor copper losses, not the iron loss.

During the locked-rotor test, the motor is intentionally locked or mechanically restrained from rotating while connected to a power source.

As a result, the motor draws a high current, and the input power is mainly dissipated as heat in the stator and rotor windings.

This is due to the high current flowing through the windings, resulting in copper losses.

Iron loss, also known as core loss or magnetic loss, occurs when the magnetic field in the motor's core undergoes cyclic changes.

This loss is caused by hysteresis and eddy currents in the core material.

However, in the locked-rotor test, the motor is not rotating, and there is no significant magnetic field variation, so the iron loss is relatively small compared to the copper losses.

Therefore, statement D is incorrect because the majority of the input power in the locked-rotor test is consumed as copper losses, not iron loss.

Learn more about locked-rotor

brainly.com/question/32239974

#SPJ11

Consider an ideal gas-turbine cycle with two stages of compression and two stages of expansion. The pressure ratio across each stage of the compressor is 5 and it is across each stage of the turbine is 8. The air enters each stage of the compressor at 300 K and each stage of the turbine at 1200 K. The cycle has a regenerator with 75 percent effectiveness to improve its overall thermal efficiency. It is assumed that the kinetic and potential energy changes are negligible. The air standard assumptions and constant specific heats are utilised with Cv 0.718 kJ/kg.K and Cp-1.005 kJ/kg.K. Determine: The back work ratio, (ii) The network output, (iii) The thermal efficiency of the cycle.

Answers

The gas-turbine cycle is known as Brayton Cycle. It consists of four processes: two isentropic and two constant-pressure processes. The heat transfer occurs during these constant pressure processes (Reheat or Regeneration).

The cycle thermal efficiency is improved with the help of regeneration. Given parameters:Pressure ratio across each stage of compressor, rp = 5Pressure ratio across each stage of turbine, rt = 8Regenerator effectiveness, ε = 0.75Cv = 0.718 kJ/kg.KCp = 1.005 kJ/kg.KTemperature at compressor inlet, T1 = 300 KTemperature at turbine inlet, T3 = 1200 K(i) Back work ratio:To determine back work ratio,First, we need to determine enthalpy of the air at different stages using specific heat equation:Q = m(Cp)(T2 - T1)W = -m(Cp)(T4 - T3).

Srp = (P2/P1)ηC = (P2/P1)^((k-1)/k)Where k = Cp/Cv = 1.4Also,P2/P1 = 5P3/P2 = 5T2/T1 = (P2/P1)^((k-1)/k) = 5^0.4 = 1.827T2 = T1(1.827) = 548.1 KSimilarly, for second stage, T4 = T3(5^0.4) = 1638.3 KSimilarly, for turbine stages,T5/T4 = 1/5^0.4 = 0.5481T5 = 1638.3(0.5481) = 897.2 KSo, the thermal efficiency of the cycle is given by,ηth = 1 - (1/rpt)(1/(1 + εrpt - rprc^γ))where rp = pressure ratio of compressor = 25rt = pressure ratio of turbine = 64ε = effectiveness of the regenerator = 0.75γ = Cp/Cv = 1.4Substituting the values,ηth = 1 - (1/64)(1/(1 + 0.75(64) - 25^(1.4)))ηth = 0.4641 = 46.41%Therefore, the thermal efficiency of the cycle is 46.41%.

To know more about isentropic visit:

https://brainly.com/question/32656653

#SPJ11

The lna has g = 15 db and nf = 1.5 db. the mixer has a conversion gain of g = 10 db and nf = 10 db. the if amplifier has g = 70 db and nf = 20 db.

Answers

The overall gain and noise figure of the system can be calculated by cascading the gains and noise figures of the individual components. The main answer is as follows:

The overall gain of the system is 95 dB and the overall noise figure is 30 dB.

To calculate the overall gain, we sum up the individual gains in dB:

Overall gain (G) = G1 + G2 + G3

             = 15 dB + 10 dB + 70 dB

             = 95 dB

To calculate the overall noise figure, we use the Friis formula, which takes into account the noise figure of each component:

1/NF_total = 1/NF1 + (G1-1)/NF2 + (G1-1)(G2-1)/NF3 + ...

Where NF_total is the overall noise figure in dB, NF1, NF2, NF3 are the noise figures of the individual components in dB, and G1, G2, G3 are the gains of the individual components.

Plugging in the values:

1/NF_total = 1/1.5 + (10-1)/10 + (10-1)(70-1)/20

          = 0.6667 + 0.9 + 32.7

          = 34.2667

NF_total = 1/0.0342667

        = 29.165 dB

Therefore, the overall noise figure of the system is approximately 30 dB.

In summary, the overall gain of the system is 95 dB and the overall noise figure is 30 dB. These values indicate the amplification and noise performance of the system, respectively.

Learn more about gains

brainly.com/question/32279832

#SPJ11.

QUESTION 1 Which of the followings is true? For wideband FM, O A. complex envelope can always be defined. O B. the complex envelope would always need to be formulated. O C. its bandwidth is typically difficult to compute for arbitrary messages. O D. the modulation index beta can always be defined.

Answers

For wideband FM, the complex envelope can always be defined. Wideband frequency modulation (FM).

The complex envelope in FM refers to the complex representation of the modulated signal. In FM, the complex envelope can always be defined because the modulation process involves the direct modulation of the carrier frequency. The modulated signal can be represented as a complex exponential with a varying frequency, which allows for the formulation of the complex envelope. The complex envelope representation is useful in analyzing the spectral characteristics and demodulation of wideband FM signals. It provides a convenient way to separate the amplitude and phase components of the modulated signal, facilitating the analysis of signal propagation, bandwidth requirements, and demodulation techniques. Therefore, for wideband FM, the complex envelope can always be defined, enabling the analysis and processing of FM signals using complex representation techniques.

learn more about FM here :

https://brainly.com/question/1392064

#SPJ11

When the retor of a three phase induction motor rotates at eyndarong speed, the slip is: b.10-slipe | d. none A. 2010 5. the rotor winding (secondary winding) of a three phase induction motor is a open circuit short circuit . none

Answers

When the rotor of a three-phase induction motor rotates at synchronous speed, the slip is zero.

What is the slip of a three-phase induction motor when the rotor rotates at synchronous speed?

When the rotor of a three-phase induction motor rotates at synchronous speed, it means that the rotational speed of the rotor is equal to the speed of the rotating magnetic field produced by the stator.

In this scenario, the relative speed between the rotor and the rotating magnetic field is zero.

The slip of an induction motor is defined as the difference between the synchronous speed and the actual rotor speed, expressed as a percentage or decimal value.

When the rotor rotates at synchronous speed, there is no difference between the two speeds, resulting in a slip of zero.

Therefore, the slip is zero when the rotor of a three-phase induction motor rotates at synchronous speed.

Learn more about synchronous

brainly.com/question/27189278

#SPJ11

Design an active (OPAMP) highpass filter with a high-frequency gain of 5 and a corner frequency of 2 kHz. Use a 0.1µF capacitor in your design.
Verify your design with LTspice. Use the UniversalOpAmp component as OPAMP

Answers

To design an active highpass filter with a high-frequency gain of 5 and a corner frequency of 2 kHz using an operational amplifier (OPAMP), we can use a basic configuration called the Sallen-Key filter. Here are the steps to design the filter:

Step 1: Determine the transfer function

The transfer function of the Sallen-Key highpass filter is given by:

H(s) = (sR2C2) / (sR1C1 + 1)

Step 2: Determine the component values

Given that the corner frequency (fc) is 2 kHz, we can set C1 = C2 = 0.1µF.

Using the formula fc = 1 / (2πR1C1), we can solve for R1.

Similarly, using the formula fc = 1 / (2πR2C2), we can solve for R2.

Step 3: Calculate the gain

The desired high-frequency gain is 5. We can set the feedback resistor (Rf) to any value and calculate the input resistor (Rin) using the formula Rin = Rf / (G - 1), where G is the desired high-frequency gain.

Step 4: Verify the design using LTspice

To verify the design, we can simulate the circuit using LTspice. We'll use the UniversalOpAmp component as the operational amplifier in LTspice.

Here is an example circuit schematic for the active highpass filter:

```

* Active Highpass Filter

* Component values

C1 1 0 0.1uF

C2 2 3 0.1uF

R1 1 2 7.96k

R2 2 0 1.99k

Rf 3 0 39.2k

* OPAMP

X1 3 1 0 UniversalOpAmp

* AC analysis

.ac dec 10 1Hz 100kHz

* Plot output

.plot ac V(3)

```

In the LTspice simulation, you can plot the output voltage (V(3)) to see the frequency response of the highpass filter. Make sure to run the AC analysis to obtain the frequency response plot.

Adjust the component values if necessary to achieve the desired high-frequency gain and corner frequency.

Note: This is a basic design example, and further refinements may be required for specific applications or to meet certain design specifications.

Learn more about transfer function here:

https://brainly.com/question/28881525

#SPJ11

Question 3 (a) Give a reason why ceramic package is a better package for housing integrated circuit. (b) For VLSI device plastic molding, state the reason why multipot molding is necessary. (c) State how many levels of packaging strategy are used for interconnection and list down each of them. (d) An integrated circuit has 2,500 gates, its nominal propagation delay for a transistor is 6.0×10 −16
s, its junction to ambient maximum temperature difference is 45 ∘
C, and junction to ambient thermal resistance is 100 ∘
C/W. Calculate the activation energy of each gate of this circuit in electron volt. (e) The typical thermal resistance of plastic epoxy material and ceramic alumina materials are 38 ∘
C/W and 20 ∘
C/W respectively. If you have an integrated circuit that dissipate high power, which package type material would you choose to house this integrated circuit? Explain the reason of your choice.

Answers

(a) The ceramic package is a better package for housing integrated circuits because the ceramic is a good thermal conductor, it offers good stability of electrical characteristics over a wide temperature range, it has high strength and resistance to thermal and mechanical stress, and it provides good protection against environmental influences.

(b) The multipot molding process is necessary for VLSI devices because it enables the production of complex structures with a high degree of accuracy and consistency. Multipot molding allows for the creation of multiple layers of interconnects within a single device, which is essential for achieving high-density designs that can accommodate a large number of components within a small footprint.

(c) There are typically four levels of packaging strategy used for interconnection, including : Chip-level packagingModule-level packagingBoard-level packagingSystem-level packaging

(d) The activation energy of each gate of this circuit in electron-volts can be calculated using the formula:Ea = (k*T^2)/(6.0x10^-16)*ln(t/t0)where k is the Boltzmann constant (8.617x10^-5 eV/K), T is the temperature difference between the junction and the ambient environment (45C), t is the nominal propagation delay for a transistor (2,500 gates x 6.0x10^-16 s = 1.5x10^-12 s), and t0 is the reference delay time (1x10^-12 s).

Additionally, ceramic has a higher strength and resistance to mechanical stress, making it more reliable and durable in high-stress environments.

To know more about environmental visit :

https://brainly.com/question/21976584

#SPJ11

A cylindrical-rotor and under-excitation, synchronous generator connected to infinite bus is operated with load the correct statement is ( ). A. The power factor of the synchronous generator is lagging. B. The load is resistive and inductive. C. If the operator of the synchronous generator increases the field current while keeping constant output torque of the prime mover, the armature current will increase. D. If the operator of the synchronous generator reduces the field current while keeping constant output torque of the prime mover, the armature current will increase till the instable operation of the generator.

Answers

The correct statement for a cylindrical-rotor and under-excitation synchronous generator connected to an infinite bus and operated with load is: the power factor of the synchronous generator is lagging.

A synchronous generator (alternator) is a machine that generates AC electricity through electromagnetic induction by spinning a rotating magnet around a fixed coil of wire. The synchronicity is essential in this generator since the rotor must rotate at the same speed as the magnetic field generated by the stator winding, creating a constant AC voltage.The terms for the given question are: cylindrical-rotor and under-excitation, synchronous generator, infinite bus, operated with load.

Option A: The power factor of the synchronous generator is lagging. Answer: True

Explanation: The synchronous generator's power factor is lagging since it is under-excited and operated under load.

Option B: The load is resistive and inductive. Answer: False

Explanation: The load may be resistive or inductive or a mixture of both.

Option C: If the operator of the synchronous generator increases the field current while keeping constant output torque of the prime mover, the armature current will increase. Answer: True

Explanation: If the field current is increased, the magnetic field will be strengthened, causing an increase in the armature current.

Option D: If the operator of the synchronous generator reduces the field current while keeping constant output torque of the prime mover, the armature current will increase till the unstable operation of the generator.Answer: False

Explanation: Reducing the field current will cause a drop in the magnetic field strength, resulting in a reduction in the armature current until the generator becomes unstable.

To know more about generator visit:

https://brainly.com/question/12841996

#SPJ11

Air of constant density 1.2 kg/m³ is flowing through a horizontal circular pipe. At a given cross-section of the pipe, the Static Pressure is 70kPa gauge, and the Total Pressure is 90kPa gauge. (a) What is the average velocity of the flow at that pipe cross section if the atmospheric pressure is 100kPa ? Some metres down the pipe, the velocity of the air still have the same value, but the Static Pressure is now 60kPa gauge. (b) What is the decrease in the total pressure between the two measuring stations if the density of the air is assumed constant? (c) Repeat calculations for water with a density of 1000 kg/m³.

Answers

The decrease in total pressure between the two measuring stations is 30 kPa.

What is the decrease in total pressure between the two measuring stations?

(a) To find the average velocity of the flow at the given pipe cross-section, we can use Bernoulli's equation:

Total Pressure + Dynamic Pressure = Static Pressure + Atmospheric Pressure

Since the pipe is horizontal and the density is constant, the dynamic pressure is zero. Therefore, we have:

Total Pressure = Static Pressure + Atmospheric Pressure

Rearranging the equation, we get:

Dynamic Pressure = Total Pressure - Atmospheric Pressure

Substituting the given values:

Dynamic Pressure = 90 kPa - 100 kPa = -10 kPa

Using the formula for dynamic pressure:

Dynamic Pressure = (1/2) * density * velocity^2

We can rearrange it to solve for velocity:

velocity = sqrt((2 * Dynamic Pressure) / density)

Substituting the values:

velocity = sqrt((2 * (-10 kPa)) / (1.2 kg/m^3))

velocity ≈ sqrt(-16.67) ≈ imaginary (since the value inside the square root is negative)

Therefore, the average velocity of the flow cannot be determined with the given information.

(b) To find the decrease in total pressure between the two measuring stations, we use the same formula:

Total Pressure = Static Pressure + Atmospheric Pressure

The decrease in total pressure is given by:

Pressure decrease = Total Pressure (station 1) - Total Pressure (station 2)

Substituting the given values:

Pressure decrease = 90 kPa - 60 kPa = 30 kPa

Therefore, the decrease in total pressure between the two measuring stations is 30 kPa.

(c) To repeat the calculations for water with a density of 1000 kg/m³, we would need additional information such as the static pressure and total pressure at the given cross-section of the pipe and the static pressure at the second measuring station. Without these values, we cannot calculate the velocity or the pressure decrease for water.

Learn more about decrease

brainly.com/question/2426876

#SPJ11

Which of the followings is true? Given an RC circuit: resistor-capacitor C in series. The output voltage is measured across C, an input voltage supplies power to this circuit. For the transfer function of the RC circuit with respect to input voltage: O A. Its phase response is -90 degrees. O B. Its phase response is negative. O C. Its phase response is 90 degrees. O D. Its phase response is positive.

Answers

In an RC circuit with a resistor-capacitor in series and the output voltage measured across C while an input voltage supplies power to this circuit, the phase response of the transfer function of the RC circuit with respect to input voltage is -90 degrees.

Hence, the correct answer is option A. A transfer function is a mathematical representation of a system that maps input signals to output signals.The transfer function of an RC circuit refers to the voltage across the capacitor with respect to the input voltage. The transfer function represents the system's response to the input signals.

The transfer function H(s) of the RC circuit with respect to input voltage V(s) is given by the equation where R is the resistance, C is the capacitance, and s is the Laplace operator. In the frequency domain, the transfer function H(jω) is obtained by substituting s = jω where j is the imaginary number and ω is the angular frequency.A phase response refers to the behavior of a system with respect to the input signal's phase angle. The phase response of the transfer function H(jω) for an RC circuit is given by the expression.

To know more about resistor-capacitor visit :

https://brainly.com/question/31080064

#SPJ11

In the position coordinate, Pſr, θ), r = radial coordinate, and θ=transverse coordinate (True/False).

Answers

False. In the position coordinate (r, θ), **r** represents the radial coordinate, while **θ** represents the angular or polar coordinate.

To elaborate, in polar coordinates, a point in a two-dimensional plane is represented using the radial distance from the origin (r) and the angle between the positive x-axis and the line connecting the origin to the point (θ). The radial coordinate (r) determines how far the point is from the origin, while the angular coordinate (θ) specifies the direction or angle at which the point is located with respect to the reference axis. These coordinates are commonly used in mathematics, physics, and engineering to describe positions, velocities, and forces in circular or rotational systems.

Learn more about two-dimensional plane here:

https://brainly.com/question/30268156

#SPJ11

An estimate of the amount of work accomplished is the:
variation
relative intensity
volume load
specificity

Answers

The estimate of the amount of work accomplished is called volume load.

Volume load refers to the total amount of weight lifted in a workout session. It takes into account the number of sets, the number of repetitions, and the weight used. Volume load can be used as a measure of the amount of work accomplished. Volume load is also used to monitor progress over time.

In conclusion, the estimate of the amount of work accomplished is called volume load. Volume load is a measure of the amount of work done in a workout session. It can be used to monitor progress over time.

To know more about work visit:

brainly.com/question/18094932

#SPJ11

please need answer asap
5 5. An aircraft is moving steadily in the air at a velocity of 330 m/s. Determine the speed of sound and Mach number at (a) 300 K (4 marks) (b) 800 K. (4 marks)

Answers

The speed of sound can be calculated using the equation v = √(γRT), where v is the speed of sound, γ is the adiabatic index (1.4 for air), R is the gas constant (approximately 287 J/kg*K), and T is the temperature in Kelvin.

(a) At 300 K, the speed of sound can be calculated as v = √(1.4 * 287 * 300) = 346.6 m/s. To find the Mach number, we divide the velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/346.6 ≈ 0.951.

(b) At 800 K, the speed of sound can be calculated as v = √(1.4 * 287 * 800) = 464.7 m/s. The Mach number is obtained by dividing the velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/464.7 ≈ 0.709.

The speed of sound can be calculated using the equation v = √(γRT), where v is the speed of sound, γ is the adiabatic index (1.4 for air), R is the gas constant (approximately 287 J/kg*K), and T is the temperature in Kelvin. For part (a), at a temperature of 300 K, substituting the values into the equation gives v = √(1.4 * 287 * 300) = 346.6 m/s. To find the Mach number, which represents the ratio of the aircraft's velocity to the speed of sound, we divide the given velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/346.6 ≈ 0.951. For part (b), at a temperature of 800 K, substituting the values into the equation gives v = √(1.4 * 287 * 800) = 464.7 m/s. The Mach number is obtained by dividing the given velocity of the aircraft (330 m/s) by the speed of sound: Mach number = 330/464.7 ≈ 0.709.

Learn more about Mach number here

brainly.com/question/29538118

#SPJ11

Consider the 2-D rectangular region 0 ≤ x ≤ a, 0 ≤ y ≤ b that has an initial uniform temperature F(x, y). For t > 0, the region is subjected to the following boundary conditions: The boundary surfaces at y = 0 and y = b are maintained at a prescribed temperature To, the boundary at x 0 dissipates heat by convection into a medium with fluid temperature To and with a heat transfer coefficient h, and the boundary surface at x = = 8 a is exposed to constant incident heat flux qő. Calculate the temperature T(x, y, t).

Answers

The temperature T(x, y, t) within the 2-D rectangular region with the given boundary conditions, we need to solve the heat equation, also known as the diffusion equation,

which governs the temperature distribution in a conducting medium. The heat equation is given by:

∂T/∂t = α (∂²T/∂x² + ∂²T/∂y²)

where T is the temperature, t is time, x and y are the spatial coordinates, and α is the thermal diffusivity of the material.

Since the boundary conditions are specified, we can solve the heat equation using appropriate methods such as separation of variables or finite difference methods. However, to provide a general solution here, I will present the solution using the method of separation of variables.

Assuming that T(x, y, t) can be written as a product of three functions: X(x), Y(y), and T(t), we can separate the variables and obtain three ordinary differential equations:

X''(x)/X(x) + Y''(y)/Y(y) = T'(t)/αT(t) = -λ²

where λ² is the separation constant.

Solving the ordinary differential equations for X(x) and Y(y) subject to the given boundary conditions, we find:

X(x) = C1 cos(λx) + C2 sin(λx)

Y(y) = C3 cosh(λy) + C4 sinh(λy)

where C1, C2, C3, and C4 are constants determined by the boundary conditions.

The time function T(t) can be solved as:

T(t) = exp(-αλ²t)

By applying the initial condition F(x, y) at t = 0, we can express F(x, y) in terms of X(x) and Y(y) and determine the appropriate values of the constants.

Learn more about boundary here:

brainly.com/question/30853813

#SPJ11

A long cylindrical tod of diameter D1=0.01 m is costed with this new material and is placed in an evacuated long cylindrical enclosure of diameter D2=0.1 mand emissivity e2 = 4.95. which is cooled extemally and maintained at a kemperature of 200 K at all times. The rod is heated by passing electric current through it. When steady operating conditions are reached, it is observed that the rod is dissipating electric power at a rate of 8 W per unit of its length and its sarface temperature is 500 K. Blased on these measurements, determine the emissivity of the coating on the rod.

Answers

The emissivity of the coating on the rod is 0.9301.

The heat lost per unit length from the long cylindrical rod is given by:q = -k (A / L) dT/dx

Where,k is the thermal conductivity of the rodA is the surface areaL is the length of the rod

dT/dx is the temperature gradient

The power dissipated per unit length of the rod is given as 8 W.

So,q = - 8 W / m The surface temperature of the rod is given as 500 K. So,T1 = 500 K

The enclosure is evacuated. Hence, there is no convective heat transfer between the surface of the rod and the enclosure.

Hence, the heat transfer from the rod to the enclosure takes place only by radiation.

So,q = σ (A / L) e1 e2 (T1⁴ - T2⁴)σ is the Stefan-Boltzmann constant

e1 is the emissivity of the rodA is the surface area

L is the length of the rod

T1 is the surface temperature of the rod

T2 is the temperature of the enclosure

By comparing the above two equations, we can write,σ (A / L) e1 e2 (T1⁴ - T2⁴) = - 8 W / m

e1 = -8 / σ (A / L) e2 (T1⁴ - T2⁴)

Since T1 and T2 are in Kelvin, the temperature difference can be taken as:

ΔT = T1 - T2 = 500 - 200 = 300 K.

Substituting the values of the constants, we get,e1 = -8 / (5.67 × 10^-8 × π × (0.01 / 2)² × 4.95 × (300)⁴) = 0.9301

Learn more about thermal conductivity at

https://brainly.com/question/13322944

#SPJ11

QUESTION 11 Which of the followings is true? For FM, the phase deviation is given as a function of sin(.) to ensure that O A. the FM spectrum can be computed using Carson's rule. B. deployment of cosine and sine functions is balanced. O C. the wideband FM can be generated using Carson's rule. O D. the message is positive.

Answers

For FM, the phase deviation is given as a function of sin(.) to ensure that the FM spectrum can be computed using Carson's rule.

A result of the modulating signal. It is typically expressed as a function of sin(.), where "." represents the modulating signal. One of the key reasons for representing the phase deviation as a function of sin(.) is to ensure that the FM spectrum can be computed accurately using Carson's rule. Carson's rule is a mathematical formula that provides an estimation of the bandwidth of an FM signal. By using sin(.) in the expression for phase deviation, the FM spectrum can be calculated using Carson's rule, which simplifies the analysis and characterization of FM signals. Carson's rule takes into account the modulation index and the highest frequency component of the modulating signal, both of which are related to the phase deviation. Therefore, by specifying the phase deviation as a function of sin(.), the FM spectrum can be effectively determined using Carson's rule, allowing for efficient signal processing and communication system design.

learn more about deviation here :

https://brainly.com/question/31835352

#SPJ11

Calculate the dimension of the sprues required for the fusion of
a cube of grey cast iron with sand casting technology

Answers

Factors such as the size and geometry of the cube, gating system design, casting process parameters, pouring temperature, metal fluidity, and solidification characteristics influence the dimension of the sprues.

What factors influence the dimension of the sprues required for the fusion of a cube of grey cast iron with sand casting technology?

The dimension of the sprues required for the fusion of a cube of grey cast iron with sand casting technology depends on various factors, including the size and geometry of the cube, the gating system design, and the casting process parameters. Sprues are channels through which molten metal is introduced into the mold cavity.

To determine the sprue dimension, considerations such as minimizing turbulence, avoiding premature solidification, and ensuring proper filling of the mold need to be taken into account. Factors like pouring temperature, metal fluidity, and solidification characteristics of the cast iron also influence sprue design.

The dimensions of the sprues are typically determined through engineering calculations, simulations, and practical experience. The goal is to achieve efficient and defect-free casting by providing a controlled flow of molten metal into the mold cavity.

It is important to note that without specific details about the cube's dimensions, casting requirements, and process parameters, it is not possible to provide a specific sprue dimension. Each casting application requires a customized approach to sprue design for optimal results.

Learn more about sprues

brainly.com/question/30899946

#SPJ11

Steam at 300 psia and 700 F leaves the boiler and enters the first stage of the turbine, which has an efficiency of 80%. Some of the steam is extracted from the first stage turbine at 30 psia and is rejected into a feedwater heater. The remainder of the steam is expanded to 0.491 psia in the second stage turbine, which has an efficiency of 75%.
a.Compute the net work,
b.Compute the thermal efficiency of the cycle.

Answers

a) Compute the work done in each turbine stage and sum them up to obtain the net work.

b) Calculate the thermal efficiency by dividing the net work by the heat input to the cycle.

a) To compute the net work, we need to calculate the work done in each turbine stage. In the first stage, we use the efficiency formula to find the actual work output. Then, we calculate the work extracted in the second stage using the given efficiency. Finally, we add these two values to obtain the net work done by the turbine.

b) The thermal efficiency of the cycle can be determined by dividing the net work done by the heat input to the cycle. The heat input is the enthalpy change of the steam from the initial state in the boiler to the final state in the condenser. Dividing the net work by the heat input gives us the thermal efficiency of the cycle.

Learn more about turbine stage here:

https://brainly.com/question/15076938

#SPJ11

consider true or an F for (10 pomis) Calculating setup-time cost does not require a value for the burden rate, Captured quality refers to the defects found before the product is shipped to the customer. The number of inventory turns is the average number of days that a part spends in production Flexibility never measures the ability to produce new product designs in a short time. Computers use an Alphanumeric System. While our words vary in length, computer words are of fixed length. In the spline technique, the control points are located on the curve itself. Bezier curves allow for local control. Wireframe models are considered true surface models. A variant CAPP system does not require a database containing a standard process plan for each family of parts. When similar parts are being produced on the same machines, machine setup times are reduced. The average-linkage clustering algorithm (ALCA) is well suited to prevent a potential chaining effect. PLCs are not microprocessor-based devices. PLC technology was developed exclusively for manufacturing. Ladder diagrams have been used to document connection circuits. In a ladder diagram each rung has at least two outputs. TON timers always need a Reset instruction. If the time base of a timer is one the preset value represents seconds Allen-Bradley timers have three bits (EN, DN, and TT). In an off-delay timer the enabled bit and the done bit become true at the same time.

Answers

Calculating setup-time cost does not require a value for the burden rate. Captured quality refers to defects found after the product is shipped. The number of inventory turns measures the average number of times inventory is sold or used in a given period.

Flexibility can measure the ability to produce new product designs quickly. Computers use a binary system, not an alphanumeric system. Words in computer systems are not of fixed length. Control points in the spline technique are not located on the curve itself. Bezier curves do allow for local control. Wireframe models are not considered true surface models. A variant CAPP system requires a database with standard process plans. Similar parts being produced on the same machines may reduce setup times. The average-linkage clustering algorithm is not specifically designed to prevent a chaining effect. PLCs are microprocessor-based devices. PLC technology was not developed exclusively for manufacturing. Ladder diagrams document connection circuits. Each rung in a ladder diagram can have multiple outputs. TON timers do not always need a reset instruction. The preset value of a timer represents the time base, not necessarily seconds. Allen-Bradley timers have more than three bits (EN, DN, and TT). In an off-delay timer, the enabled bit and the done bit do not become true at the same time.

Learn more about average-linkage clustering here:

https://brainly.com/question/31194854

#SPJ11

For the transfer function given below: R(s)
Y(s)
= s 2
+9s+14
28(s+1)
Find y(t) when r(t) is a unit step function.

Answers

The required solution is y(t) = [-2e^(-t)] + [(11 / 28) × u(t)] when r(t) is a unit step function.

To find the inverse Laplace transform of the given transfer function, multiply the numerator and denominator of the transfer function by L^-1, then apply partial fractions in order to simplify the Laplace inverse. That is,R(s) = [s^2 + 9s + 14] / [28(s + 1)]=> R(s) = [s^2 + 9s + 14] / [28(s + 1)]= [A / (s + 1)] + [B / 28]...by partial fraction decomposition.

Now, let us find the values of A and B as follows: [s^2 + 9s + 14] = A (28) + B (s + 1) => Put s = -1, => A = -2, Put s = 2, => B = 11

Now, we have the Laplace transform of the unit step function as follows: L [u(t)] = 1 / sThus, the Laplace transform of r(t) is L[r(t)] = L[u(t)] / s = 1 / s

Using the convolution property, we haveY(s) = R(s) L[r(t)]=> Y(s) = [A / (s + 1)] + [B / 28] × L[r(t)]Taking inverse Laplace transform of Y(s), we have y(t) = [Ae^(-t)] + [B / 28] × u(t) => y(t) = [-2e^(-t)] + [(11 / 28) × u(t)].

To learn more about "Laplace Transform" visit: https://brainly.com/question/29583725

#SPJ11

Score =. (Each question Score 12points, Total Score 12 points ) An information source consists of A, B, C, D and E, each symbol appear independently, and its occurrence probability is 1/4, 1/8, 1/8, 3/16 and 5/16 respectively. If 1200 symbols are transmitted per second, try to find: (1) The average information content of the information source; (2) The average information content within 1.5 hour. (3) The possible maximum information content within 1 hour.

Answers

Sure, I can help you with that.

1. The average information content of the information source

The average information content of an information source is calculated by multiplying the probability of each symbol by its self-information. The self-information of a symbol is the amount of information that is conveyed by the symbol. It is calculated using the following equation:

```

H(x) = -log(p(x))

```

where:

* H(x) is the self-information of symbol x

* p(x) is the probability of symbol x

Substituting the given values, we get the following self-information values:

* A: -log(1/4) = 2 bits

* B: -log(1/8) = 3 bits

* C: -log(1/8) = 3 bits

* D: -log(3/16) = 2.5 bits

* E: -log(5/16) = 2.3 bits

The average information content of the information source is then calculated as follows:

```

H = p(A)H(A) + p(B)H(B) + p(C)H(C) + p(D)H(D) + p(E)H(E)

```

```

= (1/4)2 + (1/8)3 + (1/8)3 + (3/16)2.5 + (5/16)2.3

```

```

= 1.8 bits

```

Therefore, the average information content of the information source is 1.8 bits.

2. The average information content within 1.5 hour

The average information content within 1.5 hour is calculated by multiplying the average information content by the number of symbols transmitted per second and the number of seconds in 1.5 hour. The number of seconds in 1.5 hour is 5400.

```

I = H * 1200 * 5400

```

```

= 1.8 bits * 1200 * 5400

```

```

= 11664000 bits

```

Therefore, the average information content within 1.5 hour is 11664000 bits.

3. The possible maximum information content within 1 hour

The possible maximum information content within 1 hour is calculated by multiplying the maximum number of symbols that can be transmitted per second by the number of seconds in 1 hour. The maximum number of symbols that can be transmitted per second is 1200.

```

I = 1200 * 3600

```

```

= 4320000 bits

```

Therefore, the possible maximum information content within 1 hour is 4320000 bits.

Learn more about information theory here:

https://brainly.com/question/31566776

#SPJ11

Suppose a factory has following loads connected to the main supply of 415 V, 50 Hz: (a) 40 kVA, 0.75 lagging, (b) 5 kVA, unity pf.; and (c) 40 kVA, 0.75 leading. Find the element needed to correct the power factor to 0.95 lagging and draw phasor diagram for the given problem.

Answers

To correct the power factor to 0.95 lagging, we need to add a reactive element to the load that will provide the necessary reactive power to compensate for the lagging or leading power factor of the existing loads.

Given loads:

(a) 40 kVA, 0.75 lagging

(b) 5 kVA, unity power factor

(c) 40 kVA, 0.75 leading

To find the reactive element needed, we can calculate the total apparent power and the total reactive power of the loads.

Total apparent power (S) is the sum of the apparent powers of the individual loads:

[tex]S = S_a + S_b + S_c[/tex]

where [tex]S_a, \:S_b, \:and\: S_c[/tex] are the apparent powers of loads (a), (b), and (c) respectively.

Total reactive power (Q) is the sum of the reactive powers of the individual loads:

[tex]Q = Q_a + Q_b + Q_c[/tex]

where [tex]Q_a[/tex], [tex]Q_b[/tex], and [tex]Q_c[/tex] are the reactive powers of loads (a), (b), and (c) respectively.

To calculate the reactive power Q, we can use the formula:

[tex]\[Q = S \cdot \tan(\cos^{-1}(pf) - \cos^{-1}(desired\_pf))\][/tex]

Using the given values, we can calculate the total apparent power and total reactive power. Then, we can find the reactive element needed to correct the power factor to 0.95 lagging.

The phasor diagram represents the voltages, currents, and power factors of the loads. It helps visualize the relationships between these quantities and the power triangle. The diagram will illustrate the before and after correction scenarios, showing the change in power factor and the addition of the reactive element.

Learn more about the power factor here:

brainly.com/question/11957513

#SPJ11

A three-phase load is to be powered by a three-wire three-phase Y-connected source having phase voltage of 400 V and operating at 50 Hz. Each phase of the load consists of a parallel combination of a 500Ω resistor, 10 mH inductor, and 1 mF capacitor.


Required:

a. Compute the line current, line voltage, phase current, and power factor of the load if the load is also Y-connected.

b. Rewire the load so that it is -connected and find the same quantities requested in part (a).

Answers

The line current, line voltage, phase current, and power factor of the load if it is Y-connected are 0.796 A, 400 V, 0.532 A, and 0.965, respectively.

The phase impedance of the load is given by

Z_p = R + jX_L - jX_C

      = 500 + j(2*pi*50*10e-3) - j(1/(2*pi*50))

      = 500 + j3.183

The line voltage of the load is equal to the phase voltage, so 400 V. The line current is given by

I_L = V_L / Z_p

     = 400 / (500 + j3.183)

     = 0.796 + j0.107 A

The phase current is equal to the line current divided by sqrt(3), or

I_p = I_L / sqrt(3)

     = 0.532 + j0.072 A

The power factor of the load is given by

pf = cos(theta)

   = 0.965

The line current, line voltage, phase current, and power factor of the load if it is Y-connected are 0.796 A, 400 V, 0.532 A, and 0.965, respectively. The power factor is close to unity, indicating that the load is predominantly resistive.

To know more about power factor, visit

https://brainly.com/question/25543272

#SPJ11

4. Write down the general expressions of frequency modulated signal a modulated signal. And show the methods to generate FM signals.

Answers

1) The general expression of a frequency-modulated (FM) signal is:

s(t) = Ac * cos[2πfct + φ(t)]

2) The methods to generate FM signals are:

Direct FM

Indirect FM

Phase-Locked Loop (PLL)

Software-Based FM

How to express Frequency modulated signals?

1) The general expression of a frequency-modulated (FM) signal is:

s(t) = Ac * cos[2πfct + φ(t)]

Where:

s(t) is the FM signal as a function of time.

Ac is the amplitude of the carrier signal.

fc is the frequency of the carrier signal.

φ(t) represents the phase deviation or modulation as a function of time.

2) The methods to generate FM signals are:

Direct FM: In this method, the modulating signal directly changes the frequency of the carrier signal. This is accomplished by connecting the modulating signal to a Voltage Controlled Oscillator (VCO). The voltage level determines the frequency deviation of the carrier signal.  

Indirect FM: In this method, the modulating signal first changes the amplitude of the carrier signal and then uses a frequency modulator to convert the amplitude modulation to frequency modulation. The modulating signal is applied to a voltage controlled amplifier (VCA) that modulates the amplitude of the carrier signal. The resulting signal is fed to a frequency multiplier or modulator to convert amplitude modulation to frequency modulation.  

Phase-Locked Loop (PLL): A PLL allows you to generate FM signals using phase detectors, loop filters, and voltage controlled oscillators (VCOs). A modulating signal is applied to the control input of the VCO, and the phase detector compares the phase of the VCO output with a reference signal. A loop filter adjusts the VCO control voltage based on the phase difference, resulting in frequency modulation.  

Software-Based FM: FM signals can also be generated using software-based methods. Using digital signal processing techniques, FM signals can be generated by manipulating the carrier frequency and phase based on the modulating signal. It is commonly used in software defined radio (SDR) systems.  

Read more about Frequency Modulated Signals at: https://brainly.com/question/33223009

#SPJ4

Other Questions
______ encompasses various technologies that control access to electronic media and files. Explain why gas composition in the alveoli remains relatively constant during normal breathing and demonstrate how it might change during other breathing patterns. Activity 1 is the graph labeled Brachiopoda, Activity 2 is the graph labeled Mass extinction amongst generas.1.(A) Describe the time periods analyzed in Activity 2 that exhibit mass extinctions. Do these time periods correspond to the data analyzed in Activity 1? (Student responses should include references to the figures created in Activities 1 and 2).(B) Can the extinction rate be equivalent to the origination rate for a group? Describe what would happen to the number of taxa in the group if these rates were equivalent.(C) Which taxon included in Activity 2 has the oldest origination? Which has the youngest origination? Why does the taxon Trilobita not have an origination rate in the Cenozoic era?(D) Which taxon included in Activity 2 was most diverse at its historical peak? Suppose the following is the probability distribution for a discrete random variable X. (round all your answers to two decimal places) . -3 -2 p(2) 0.3 0.1 0 1 3 0.05 .15 0.4 (A) What is Pl{X-2} U {X22})? Answer: (B) Calculate the expectation and the variance of X. E(X) = Var(X) = If 30 locusts eat 429 grams of grass in a week. how many days will take 21 locusts to consume 429grams of grass if they eat at the same rate Find the area of region bounded by f(x)=87x 2,g(x)=x, from x=0 and x1. Show all work, doing, all integration by hand. Give your final answer in friction form (not a decimal), Where do you find Trichonymphida and Trichomonadida in nature?Gut of the tsetse flyTermite gutGut of Triatominae, the "kissing bugs"OR Contaminated streams Choose the sentence that is NOT a run-on sentence.Group of answer choicesA. As his first major project, Frederick Law Olmsted designed New York Citys Central Park, it is one of the most beautiful urban spaces in the United States.B. As his first major project, Frederick Law Olmsted designed New York Citys Central Park, one of the most beautiful urban spaces in the United States. One A solid cube is placed in a refrigeration unit with an ambient internal temperature of 3C using the data shown below, formulate a differential equation to describe the thermal behaviour of this system. Use this equation to determine the time taken for the body to cool from an initial temperature of 90 C to 7 C. Dimensions of cube = 0.2m x0.2m x 0.2m -1 h = Convective heat transfer coefficient 10 Wm K- p = density of solid = 30 kgm- -3 C= specific heat capacity of solid = 0.41 KJkg-K- [Total 25 marks] Let f be the function given by f(x)=4x. Which of the following statements about f are true? I. f is continuous at x=0. II. f is differentiable at x=0. III. f has an absolute maximum at x=0. I only II only III only I and II only I and III only II and III only Which of these physical quantities could be measured using a magnetic field across a plastic pipe? A. Magnetic field B. Illumination C. Pressure D. Acceleration E. Flow F. Strain 1. Bertha is taking care of Mrs. Peabody who has been diagnosed with angina pectoris. Bertha knows angina pectoris occurs when: a) there is blockage in one of the arteries of the lungs. b) the immune system attacks the covering on the nerve fibers. c) blood flow to the brain gets interrupted. d) the heart muscle does not get the blood supply it needs. 2. A gait belt is a device used to: a) support a person during ambulation or transfer. b) prevent a resident from falling out of bed. c) treat a specific medical symptom. d) restrict a persons freedom of movement. 3. Mrs. Porgey is a newly admitted resident on Bertha's assignment. She cannot bear weight and her Plan of Care states she is to be transferred by a mechanical lift. To promote safety, Bertha should: a) place a draw sheet over the lift sheet b) cover the resident with a blanket c) obtain the assistance of at least 1 other Nursing Assistant d) move her to the edge of the bed before placing her on the lift sheet 4. The three main parts of the urinary system (renal) are: a) kidneys, esophagus and nerves. b) urethra, meatus and lungs. c) blood vessels, urethra and colon. d) bladder, ureters and kidneys. 5. The Circulatory (Cardiovascular) system is made up of: a) blood, lungs and heart b) blood vessels, kidneys and arteries c) heart, blood and blood vessels d) arteries, nerves and heart after you find the confidence interval, how do you compare it to a worldwide result The standard amount of materials required to make one unit of Product Q is 6 pounds. Tusa's static budget showed a planned production of 5,100 units. During the period, the company actually produced 5,200 units of product. The actual amount of materials used averaged 5.9 pounds per unit. The standard price of material is $1 per pound. Based on this information, the materials usage variance was: A 0.22 m thick large flat plate electric bus-bar generates heat uniformly at a rate of 0.4 MW/m due to current flow. The bus-bar is well insulated on the back and the front is exposed to the surroundings at 85C. The thermal conductivity of the bus-bar material is 40 W/m.K and the heat transfer coefficient between the bar and the surroundings is 450 W/m.K. Calculate the maximum temperature in the bus-bar. A building services engineer is designing an energy recovery system for a hospital at Kowloon Tong to recover the heat from the exhaust air to pre-heat the fresh air for energy saving. Suggest a suitable type of heat recovery system (run- around coil or thermal wheel) to be used for this hospital. Give justification on the selection. which of the following is not an economic benefit of the cloud computing? moving from the capital expense to operational expense reducing the risk management costs eliminating the training costs reducing the capital and operational costs We are going to work problem 5.17 in two steps. The first step is to derive the differential equation for the internal pressure of the volume. The second step will be to simulate the response in MATLAB, but that will come in another assignment next time. For now, just get the correct equations.For this first assignment, neglect all wording in the problem except the first sentence. You will use the internal pressure dPi discharging to atmospheric pressure through an orifice of 0.17 mm2. Derive the differential equation using the compressible continuity equation, the compressible flow equation, and the ideal gas law. This will be similar to what we derived in class except that the flow is out not in.5.17 A rigid tank of compressed air is discharged through an oritice to atmospheric pressure. Using state-space notation and digital simulation, obtain the transient response of the pressure inside the tank. Plot your results for the following cases: for how many (not necessarily positive) integer values of $n$ is the value of $4000\cdot \left(\tfrac{2}{5}\right)^n$ an integer? 4. [Show all steps! Otherwise, no credit will be awarded.] (10 points) Find the standard matrix for the linear transformation T(x 1,x 2,x 3,x 4)=(x 1x 2,x 3,x 1+2x 2x 4,x 4)