A pair of parametric equations is given.
x = tan(t), y = cot(t), 0 < t < pi/2
Find a rectangular-coordinate equation for the curve by eliminating the parameter.
__________ , where x > _____ and y > ______

Answers

Answer 1

To eliminate the parameter t from the given parametric equations, we can use the trigonometric identities: tan(t) = sin(t)/cos(t) and cot(t) = cos(t)/sin(t). Substituting these into x = tan(t) and y = cot(t), we get x = sin(t)/cos(t) and y = cos(t)/sin(t), respectively. Multiplying both sides of x = sin(t)/cos(t) by cos(t) and both sides of y = cos(t)/sin(t) by sin(t), we get x*cos(t) = sin(t) and y*sin(t) = cos(t). Solving for sin(t) in both equations and substituting into y*sin(t) = cos(t), we get y*x*cos(t) = 1. Therefore, the rectangular-coordinate equation for the curve is y*x = 1, where x > 0 and y > 0.

To eliminate the parameter t from the given parametric equations, we need to express x and y in terms of each other using trigonometric identities. Once we have the equations x = sin(t)/cos(t) and y = cos(t)/sin(t), we can manipulate them to eliminate t and obtain a rectangular-coordinate equation. By multiplying both sides of x = sin(t)/cos(t) by cos(t) and both sides of y = cos(t)/sin(t) by sin(t), we can obtain equations in terms of x and y, and solve for sin(t) in both equations. Substituting this expression for sin(t) into y*sin(t) = cos(t), we can then solve for a rectangular-coordinate equation in terms of x and y.

The rectangular-coordinate equation for the curve with the given parametric equations is y*x = 1, where x > 0 and y > 0. This equation is obtained by eliminating the parameter t from the parametric equations and expressing x and y in terms of each other using trigonometric identities.

To know more about parametric equation visit:

https://brainly.com/question/28537985

#SPJ11


Related Questions

Use power series operations to find the Taylor series at x = 0 for the following function. 9xeX The Taylor series for e x is a commonly known series. What is the Taylor series at x 0 for e x?

Answers

Taylor series for f(x) = 9x(e^x) = 9x(∑(n=0 to infinity) x^n/n!)

The Taylor series at x = 0 for the function f(x) = 9xe^x can be found by using the product rule and the known Taylor series for e^x:

f(x) = 9xe^x

f'(x) = 9e^x + 9xe^x

f''(x) = 18e^x + 9e^x + 9xe^x

f'''(x) = 27e^x + 18e^x + 9e^x + 9xe^x

...

Using these derivatives, we can find the Taylor series at x = 0:

f(0) = 0

f'(0) = 9

f''(0) = 27

f'''(0) = 54

...

So the Taylor series for f(x) = 9xe^x at x = 0 is:

f(x) = 0 + 9x + 27x^2 + 54x^3 + ... + (9^n)(n+1)x^n + ...

We can simplify this using sigma notation:

f(x) = ∑(n=1 to infinity) (9^n)(n+1)x^n/n!

The Taylor series for e^x at x = 0 is:

e^x = ∑(n=0 to infinity) x^n/n!

So we can also write the Taylor series for f(x) = 9xe^x as:

f(x) = 9x(e^x) = 9x(∑(n=0 to infinity) x^n/n!) = ∑(n=0 to infinity) 9x^(n+1)/(n!)

Note that this is equivalent to the Taylor series we found earlier, except we start the summation at n = 0 instead of n = 1.

To know more about Taylor series refer here:

https://brainly.com/question/29733106

#SPJ11

Use the degree 2 Taylor polynomial centered at the origin for f to estimate the integral
I = \(\int_{0}^{1}\) f(x)dx
when
f(x) = e^(-x^2/4)
a. I = 11/12
b. I = 13/12
c. I = 7/6
d. I = 5/6

Answers

The answer is (b) I = 13/12.

We can use the degree 2 Taylor polynomial of f(x) centered at 0, which is given by:

f(x) ≈ f(0) + f'(0)x + (1/2)f''(0)x^2

where f(0) = e^0 = 1, f'(x) = (-1/2)xe^(-x^2/4), and f''(x) = (1/4)(x^2-2)e^(-x^2/4).

Integrating the approximation from 0 to 1, we get:

∫₀¹ f(x) dx ≈ ∫₀¹ [f(0) + f'(0)x + (1/2)f''(0)x²] dx

= [x + (-1/2)e^(-x²/4)]₀¹ + (1/2)∫₀¹ (x²-2)e^(-x²/4) dx

Evaluating the limits of the first term, we get:

[x + (-1/2)e^(-x²/4)]₀¹ = 1 + (-1/2)e^(-1/4) - 0 - (-1/2)e^0

= 1 + (1/2)(1 - e^(-1/4))

Evaluating the integral in the second term is a bit tricky, but we can make a substitution u = x²/2 to simplify it:

∫₀¹ (x²-2)e^(-x²/4) dx = 2∫₀^(1/√2) (2u-2) e^(-u) du

= -4[e^(-u)(u+1)]₀^(1/√2)

= 4(1/√e - (1/√2 + 1))

Substituting these results into the approximation formula, we get:

∫₀¹ f(x) dx ≈ 1 + (1/2)(1 - e^(-1/4)) + 2(1/√e - 1/√2 - 1)

≈ 1.0838

Therefore, the closest answer choice is (b) I = 13/12.

To know more about taylor polynomial refer here:

https://brainly.com/question/31419648?#

SPJ11

P(A) = 9/20 * P(B) = 3 4 P(A and B)= 27 80 P(A or B)=?

Answers

The probability of event A or event B occurring is 69/80.

The likelihood that two events will occur together to determine P(A or B):

P(A or B) equals P(A) plus P(B) less P(A and B).

P(A) = 9/20, P(B) = 3/4, and P(A and B) = 27/80 are the values that are provided.

When these values are added to the formula, we obtain:

P(A or B) = (9/20) + (3/4) - (27/80)

If we simplify, we get:

P(A or B) = 36/80 + 60/80 - 27/80

P(A or B) = 69/80

Probability that two occurrences will take place simultaneously to determine P(A or B):

P(A or B) is equivalent to P(A + P(B) – P(A and B)).

The values are given as P(A) = 9/20, P(B) = 3/4, and P(A and B) = 27/80. Adding these values to the formula yields the following results:

P(A or B) = (9/20) + (3/4) - (27/80)

Simplifying, we obtain: P(A or B) = 36/80

For similar questions on probability

https://brainly.com/question/251701

#SPJ11

For some value of Z, the value of the cumulative standardized normal distribution is 0.2090. What is the value of Z? Round to two decimal places. A -0.81 B. -0.31 C. 1.96 D. 0.31

Answers

The answer is (A) -0.81.

We need to find the value of Z such that the cumulative standardized normal distribution up to Z is 0.2090.

Using a standard normal distribution table or calculator, we can find that the value of Z that corresponds to a cumulative probability of 0.2090 is approximately -0.81.

Therefore, the answer is (A) -0.81.

To know more about probability refer here:

https://brainly.com/question/11234923

#SPJ11

consider the following hypotheses: h0: μ = 30 ha: μ ≠ 30 the population is normally distributed. a sample produces the following observations:

Answers

To test a hypothesis, we need to collect a sample, calculate a test statistic, and compare it to a critical value to determine whether to reject or fail to reject the null hypothesis. However, I can explain the general process for testing a hypothesis.

In this case, the null hypothesis (H0) states that the population mean (μ) is equal to 30, while the alternative hypothesis (HA) states that the population mean is not equal to 30. We assume that the population is normally distributed. To test these hypotheses, we would first collect a sample of observations from the population. The size of the sample would depend on various factors, such as the level of precision desired and the variability in the population. Once we have the sample, we would calculate the sample mean and sample standard deviation. We would then use this information to calculate a test statistic, such as a t-score or z-score, depending on the sample size and whether the population standard deviation is known. Finally, we would compare the test statistic to a critical value from a t-distribution or a standard normal distribution, depending on the test statistic used. If the test statistic falls in the rejection region, we would reject the null hypothesis and conclude that there is evidence to support the alternative hypothesis. If the test statistic falls in the non-rejection region, we would fail to reject the null hypothesis and conclude that there is not enough evidence to support the alternative hypothesis.

Learn more about statistic here:

https://brainly.com/question/31577270

#SPJ11

if X is uniformly distributed over(-1,1)' find
a)P{|x | > 1/2};
b) the density function of the random variable |X|

Answers

The density function of the random variable |X| is f_Y(y) = 1 for 0 ≤ y ≤ 1.

a) Since X is uniformly distributed over (-1,1), the probability density function of X is f(x) = 1/2 for -1 < x < 1, and 0 otherwise. Therefore, the probability of the event {|X| > 1/2} can be computed as follows:

P{|X| > 1/2} = P{X < -1/2 or X > 1/2}

= P{X < -1/2} + P{X > 1/2}

= (1/2)(-1/2 - (-1)) + (1/2)(1 - 1/2)

= 1/4 + 1/4

= 1/2

Therefore, P{|X| > 1/2} = 1/2.

b) To find the density function of the random variable |X|, we can use the transformation method. Let Y = |X|. Then, for y > 0, we have:

F_Y(y) = P{Y ≤ y} = P{|X| ≤ y} = P{-y ≤ X ≤ y}

Since X is uniformly distributed over (-1,1), we have:

F_Y(y) = P{-y ≤ X ≤ y} = (1/2)(y - (-y)) = y

Therefore, the cumulative distribution function of Y is F_Y(y) = y for 0 ≤ y ≤ 1.

To find the density function of Y, we differentiate F_Y(y) with respect to y to obtain:

f_Y(y) = dF_Y(y)/dy = 1 for 0 ≤ y ≤ 1

Therefore, the density function of the random variable |X| is f_Y(y) = 1 for 0 ≤ y ≤ 1.

To know more about random variable refer here:

https://brainly.com/question/17238189

#SPJ11

find a power series for ()=6(2 1)2, ||<1 in the form ∑=1[infinity].

Answers

A power series for f(x) = 6(2x+1)^2, ||<1,  can be calculated by  using the binomial series formula: (1 + t)^n = ∑(k=0 to infinity) [(n choose k) * t^k]. The power series for f(x) is: f(x) = 6 + 12(x - (-1/2)) + 6(x - (-1/2))^2 + ∑(k=3 to infinity) [ck * (x - (-1/2))^k]


Where (n choose k) is the binomial coefficient, given by:
(n choose k) = n! / (k! * (n-k)!)
Applying this formula to our function, we get:
f(x) = 6(2x+1)^2 = 6 * (4x^2 + 4x + 1)
= 6 * [4(x^2 + x) + 1]
= 6 * [4(x^2 + x + 1/4) - 1/4 + 1]
= 6 * [4((x + 1/2)^2 - 1/16) + 3/4]
= 6 * [16(x + 1/2)^2 - 1]/4 + 9/2
= 24 * [(x + 1/2)^2] - 1/4 + 9/2
Now, let's focus on the first term, (x + 1/2)^2:
(x + 1/2)^2 = (1/2)^2 * (1 + 2x + x^2)
= 1/4 + x/2 + (1/2) * x^2
Substituting this back into our expression for f(x), we get:
f(x) = 24 * [(1/4 + x/2 + (1/2) * x^2)] - 1/4 + 9/2
= 6 + 12x + 6x^2 - 1/4 + 9/2
= 6 + 12x + 6x^2 + 17/4
= 6 + 12(x - (-1/2)) + 6(x - (-1/2))^2
This final expression is in the form of a power series, with:
c0 = 6
c1 = 12
c2 = 6
c3 = 0
c4 = 0
c5 = 0
and:
x0 = -1/2
So the power series for f(x) is:
f(x) = 6 + 12(x - (-1/2)) + 6(x - (-1/2))^2 + ∑(k=3 to infinity) [ck * (x - (-1/2))^k]
Note that since ||<1, this power series converges for all x in the interval (-1, 0) U (0, 1).

Read more about power series.

https://brainly.com/question/31776977

#SPJ11

part A: Suppose y=f(x) and x=f^-1(y) are mutually inverse functions. if f(1)=4 and dy/dx = -3 at x=1, then dx/dy at y=4equals?a) -1/3 b) -1/4 c)1/3 d)3 e)4part B: Let y=f(x) and x=h(y) be mutually inverse functions.If f '(2)=5, then what is the value of dx/dy at y=2?a) -5 b)-1/5 c) 1/5 d) 5 e) cannot be determinedpart C) If f(x)=for x>0, then f '(x) =

Answers

Part A: dx/dy at y=4 equals 1/3. The correct option is (c) 1/3.

Part B: The value of dx/dy at y=2 is 1/5. the answer is (c) 1/5.

C. f'(x) = (1/2) * sqrt(x)^-1.

Part A:
We know that y=f(x) and x=f^-1(y) are mutually inverse functions, which means that f(f^-1(y))=y and f^-1(f(x))=x. Using implicit differentiation, we can find the derivative of x with respect to y as follows:

d/dy [f^-1(y)] = d/dx [f^-1(y)] * d/dy [x]
1 = (1/ (dx/dy)) * d/dy [x]
(dx/dy) = d/dy [x]

Now, we are given that f(1)=4 and dy/dx = -3 at x=1. Using the chain rule, we can find the derivative of y with respect to x as follows:

dy/dx = (dy/dt) * (dt/dx)
-3 = (dy/dt) * (1/ (dx/dt))
(dx/dt) = -1/3

We want to find dx/dy at y=4. Since y=f(x), we can find x by solving for x in terms of y:

y = f(x)
4 = f(x)
x = f^-1(4)

Using the inverse function property, we know that f(f^-1(y))=y, so we can substitute x=f^-1(4) into f(x) to get:

f(f^-1(4)) = 4
f(x) = 4

Now, we can find dy/dx at x=4 using the given derivative dy/dx = -3 at x=1 and differentiating implicitly:

dy/dx = (dy/dt) * (dt/dx)
dy/dx = (-3) * (dx/dt)

We know that dx/dt = -1/3 from earlier, so:

dy/dx = (-3) * (-1/3) = 1

Finally, we can find dx/dy at y=4 using the formula we derived earlier:

(dx/dy) = d/dy [x]
(dx/dy) = 1/ (d/dx [f^-1(y)])

We can find d/dx [f^-1(y)] using the fact that f(f^-1(y))=y:

f(f^-1(y)) = y
f(x) = y
x = f^-1(y)

So, d/dx [f^-1(y)] = 1/ (dy/dx). Plugging in dy/dx = 1 and y=4, we get:

(dx/dy) = 1/1 = 1

Therefore, the answer is (c) 1/3.

Part B:
Let y=f(x) and x=h(y) be mutually inverse functions. We know that f '(2)=5, which means that the derivative of f(x) with respect to x evaluated at x=2 is 5. Using the chain rule, we can find the derivative of x with respect to y as follows:

dx/dy = (dx/dt) * (dt/dy)

We know that x=h(y), so:

dx/dy = (dx/dt) * (dt/dy) = h'(y)

To find h'(2), we can use the fact that y=f(x) and x=h(y) are mutually inverse functions, so:

y = f(h(y))
2 = f(h(2))

Differentiating implicitly with respect to y, we get:

dy/dx * dx/dy = f'(h(2)) * h'(2)
dx/dy = h'(2) = (dy/dx) / f'(h(2))

We know that f'(h(2))=5 from the given information, and we can find dy/dx at x=h(2) using the fact that y=f(x) and x=h(y) are mutually inverse functions, so:

y = f(x)
2 = f(h(y))
2 = f(h(x))
dy/dx = 1 / (dx/dy)

Plugging in f'(h(2))=5, dy/dx=1/(dx/dy), and y=2, we get:

dx/dy = h'(2) = (dy/dx) / f'(h(2)) = (1/(dx/dy)) / 5 = (1/5)

Therefore, the answer is (c) 1/5.

Part C:
We are given that f(x)= for x>0. Differentiating with respect to x using the power rule, we get:

f'(x) = (1/2) * x^(-1/2)

Therefore, f'(x) = (1/2) * sqrt(x)^-1.

To know more about implicit differentiation, refer to the link below:

https://brainly.com/question/11887805#

#SPJ11

Use the given information to find the indicated probability.P(A ∪ B) = .9, P(B) = .8, P(A ∩ B) = .7.Find P(A).P(A) = ?

Answers

Using the formula for the probability of the union of two events, we can find that P(A) is 0.6 given that P(A ∪ B) = 0.9, P(B) = 0.8, and P(A ∩ B) = 0.7.

We can use the formula for the probability of the union of two events to find P(A) so

P(A ∪ B) = P(A) + P(B) - P(A ∩ B)

Substituting the given values, we have

0.9 = P(A) + 0.8 - 0.7

Simplifying and solving for P(A), we get:

P(A) = 0.8 - 0.9 + 0.7 = 0.6

Therefore, the probability of event A is 0.6.

To know more about Probability:

brainly.com/question/32117953

#SPJ4

(1 point) determine where the absolute extrema of f(x)=4xx2 1 on the interval [−4,0] occur.

Answers

The absolute maximum of f(x) occurs at x = -4, with a value of -25, and the absolute minimum of f(x) occurs at x = 2, with a value of -5

To find the absolute extrema of f(x) = 4x-x^2-1 on the interval [-4,0], we first find its critical points:

f'(x) = 4-2x

Setting f'(x) = 0, we get:

4 - 2x = 0

2x = 4

x = 2

Since this critical point lies outside the interval [-4,0], we must also check the endpoints of the interval:

f(-4) = 4(-4)-(-4)^2-1 = -25

f(0) = 4(0)-(0)^2-1 = -1

Therefore, the absolute maximum of f(x) occurs at x = -4, with a value of -25, and the absolute minimum of f(x) occurs at x = 2, with a value of -5.

Learn more about absolute here:

https://brainly.com/question/29213159

#SPJ11

an nhl hockey season has 41 home games and 41 away games. show by contradiction that at least 6 of the home games must happen on the same day of the week.

Answers

By contradiction, we will prove that at least 6 of the home games in an NHL hockey season must happen on the same day of the week.

To show by contradiction that at least 6 of the home games must happen on the same day of the week, let's assume the opposite - that each home game happens on a different day of the week.


This means that there are 7 days of the week, and each home game happens on a different day. Therefore, after the first 7 home games, each day of the week has been used once.


For the next home game, there are 6 remaining days of the week to choose from. But since we assumed that each home game happens on a different day of the week, we cannot choose the day of the week that was already used for the first home game.



Thus, we have 6 remaining days to choose from for the second home game. For the third home game, we can't choose the day of the week that was used for the first or second home game, so we have 5 remaining days to choose from.



Continuing in this way, we see that for the 8th home game, we only have 2 remaining days of the week to choose from, and for the 9th home game, there is only 1 remaining day of the week that hasn't been used yet.



This means that by the 9th home game, we will have used up all 7 days of the week. But we still have 32 more home games to play! This is a contradiction, since we assumed that each home game happens on a different day of the week.


Therefore, our assumption must be false, and there must be at least 6 home games that happen on the same day of the week.

To know more about contradiction refer here :

https://brainly.com/question/29988425#

#SPJ11

suppose f 3 = 2 and f ′ 3 = −3. let g(x) = f(x) sin(x) and h(x) = cos(x) f(x) . find the following. (a) g ′ 3 (b) h ′ 3

Answers

The chain rule is a formula in calculus that describes how to compute the derivative of a composite function.

We can use the product rule and the chain rule to find the derivatives of g(x) and h(x):

(a) Using the product rule and the chain rule, we have:

g'(x) = f'(x)sin(x) + f(x)cos(x)

At x=3, we know that f(3) = 2 and f'(3) = -3, so:

g'(3) = f'(3)sin(3) + f(3)cos(3) = (-3)sin(3) + 2cos(3)

Therefore, g'(3) = -3sin(3) + 2cos(3).

(b) Using the product rule and the chain rule, we have:

h'(x) = f'(x)cos(x) - f(x)sin(x)

At x=3, we know that f(3) = 2 and f'(3) = -3, so:

h'(3) = f'(3)cos(3) - f(3)sin(3) = (-3)cos(3) - 2sin(3)

Therefore, h'(3) = -3cos(3) - 2sin(3).

To learn more about calculus visit:

brainly.com/question/31801938

#SPJ11

Two news websites open their memberships to the public.


Compare the websites by calculating and interpreting the average rates of change from Day 10 to Day 20. Which website will have more members after 50 days?

Answers

Two news websites have opened their memberships to the public, and their growth rates between Day 10 and Day 20 are compared to determine which website will have more members after 50 days.

To calculate the average rate of change for each website, we need to determine the difference in the number of members between Day 10 and Day 20 and divide it by the number of days in that period. Let's say Website A had 200 members on Day 10 and 500 members on Day 20, while Website B had 300 members on Day 10 and 600 members on Day 20.

For Website A, the rate of change is (500 - 200) / 10 = 30 members per day.

For Website B, the rate of change is (600 - 300) / 10 = 30 members per day.

Both websites have the same average rate of change, indicating that they are growing at the same pace during this period. To predict the number of members after 50 days, we can assume that the average rate of change will remain constant. Thus, after 50 days, Website A would have an estimated 200 + (30 * 50) = 1,700 members, and Website B would have an estimated 300 + (30 * 50) = 1,800 members.

Based on this calculation, Website B is projected to have more members after 50 days. However, it's important to note that this analysis assumes a constant growth rate, which might not necessarily hold true in the long run. Other factors such as website popularity, marketing efforts, and user retention can also influence the final number of members.

Learn more about average here:

https://brainly.com/question/24057012

#SPJ11

: suppose f : r → r is a differentiable lipschitz continuous function. prove that f 0 is a bounded function

Answers

We have shown that if f: R -> R is a differentiable Lipschitz continuous function, then f(0) is a bounded function.

What is Lipschitz continuous function?

As f is a Lipschitz continuous function, there exists a constant L such that:

|f(x) - f(y)| <= L|x-y| for all x, y in R.

Since f is differentiable, it follows from the mean value theorem that for any x in R, there exists a point c between 0 and x such that:

f(x) - f(0) = xf'(c)

Taking the absolute value of both sides of this equation and using the Lipschitz continuity of f, we obtain:

|f(x) - f(0)| = |xf'(c)| <= L|x-0| = L|x|

Therefore, we have shown that for any x in R, |f(x) - f(0)| <= L|x|. This implies that f(0) is a bounded function, since for any fixed value of L, there exists a constant M = L|x| such that |f(0)| <= M for all x in R.

In conclusion, we have shown that if f: R -> R is a differentiable Lipschitz continuous function, then f(0) is a bounded function.

Learn more about Lipschitz continuous function

brainly.com/question/14525289

#SPJ11

Find the center of mass of a thin triangular plate bounded by the coordinate axes and the line x + y = 9 if δ(x,y) = x + y. A)→x=2,→y=2
B) →x=54,→y=54
C)→x=98,→y=98
D)→x=1,→y=1

Answers

The center of mass of a thin triangular plate bounded by the coordinate axes and the line x + y = 9 if δ(x,y) is:

x = 2, y = 2. The correct option is (A).

We can use the formulas for the center of mass of a two-dimensional object:

[tex]$$\bar{x}=\frac{\iint_R x\delta(x,y)dA}{\iint_R \delta(x,y)dA} \quad \text{and} \quad \bar{y}=\frac{\iint_R y\delta(x,y)dA}{\iint_R \delta(x,y)dA}$$[/tex]

where R is the region of the triangular plate,[tex]$\delta(x,y)$[/tex] is the density function, and [tex]$dA$[/tex] is the differential element of area.

Since the plate is bounded by the coordinate axes and the line x+y=9, we can write its region as:

[tex]$$R=\{(x,y) \mid 0 \leq x \leq 9, 0 \leq y \leq 9-x\}$$[/tex]

We can then evaluate the integrals:

[tex]$$\iint_R \delta(x,y)dA=\int_0^9\int_0^{9-x}(x+y)dxdy=\frac{243}{2}$$$$\iint_R x\delta(x,y)dA=\int_0^9\int_0^{9-x}x(x+y)dxdy=\frac{729}{4}$$$$\iint_R y\delta(x,y)dA=\int_0^9\int_0^{9-x}y(x+y)dxdy=\frac{729}{4}$[/tex]

Therefore, the center of mass is:

[tex]$$\bar{x}=\frac{\iint_R x\delta(x,y)dA}{\iint_R \delta(x,y)dA}=\frac{729/4}{243/2}=\frac{3}{2}$$$$\bar{y}=\frac{\iint_R y\delta(x,y)dA}{\iint_R \delta(x,y)dA}=\frac{729/4}{243/2}=\frac{3}{2}$$[/tex]

So the answer is (A) [tex]$\rightarrow x=2, y=2$\\[/tex]

To know more about center of mass refer here :

https://brainly.com/question/29130796#

#SPJ11

Evaluate the expression under the given conditions. sin(theta + phi); sin(theta) = 12 / 13, theta in Quadrant I, cos (phi) = - square root 5 / 5, phi in Quadrant II

Answers

The correct value will be :  (-12sqrt(325) + 30sqrt(130))/65

We can use the sum formula for sine:

sin(theta + phi) = sin(theta)cos(phi) + cos(theta)sin(phi)

Given that theta is in Quadrant I, we know that sin(theta) is positive. Using the Pythagorean identity, we can find that cos(theta) is:

cos(theta) = [tex]sqrt(1 - sin^2(theta)) = sqrt(1 - (12/13)^2)[/tex] = 5/13

Similarly, since phi is in Quadrant II, we know that sin(phi) is positive and cos(phi) is negative. Using the Pythagorean identity, we can find that:

sin(phi) = [tex]sqrt(1 - cos^2(phi))[/tex]

           = [tex]sqrt(1 - (-sqrt(5)/5)^2)[/tex]

           = sqrt(24)/5

cos(phi) = -sqrt(5)/5

Now we can substitute these values into the sum formula for sine:

sin(theta + phi) = sin(theta)cos(phi) + cos(theta)sin(phi)

                        = (12/13)(-sqrt(5)/5) + (5/13)(sqrt(24)/5)

                        = (-12sqrt(5) + 5sqrt(24))/65

We can simplify the answer further by rationalizing the denominator:

sin(theta + phi) = [tex][(-12sqrt(5) + 5sqrt(24))/65] * [sqrt(65)/sqrt(65)][/tex]

= (-12sqrt(325) + 30sqrt(130))/65

To know more about quadrants refer here:

https://brainly.com/question/29296837?#

#SPJ11

Let F = ∇f, where f(x, y) = sin(x − 7y). Find curves C1 and C2 that are not closed and satisfy the equation.
a) C1 F · dr = 0, 0 ≤ t ≤ 1
C1: r(t) = ?
b) C2 F · dr = 1 , 0 ≤ t ≤ 1
C2: r(t) = ?

Answers

a. One possible curve C1 is a line segment from (0,0) to (π/2,0), given by r(t) = <t, 0>, 0 ≤ t ≤ π/2. One possible curve C2 is the line segment from (0,0) to (0,-14π), given by r(t) = <0, -14πt>, 0 ≤ t ≤ 1.

a) We have F = ∇f = <∂f/∂x, ∂f/∂y>.

So, F(x, y) = <cos(x-7y), -7cos(x-7y)>.

To find a curve C1 such that F · dr = 0, we need to solve the line integral:

∫C1 F · dr = 0

Using Green's Theorem, we have:

∫C1 F · dr = ∬R (∂Q/∂x - ∂P/∂y) dA

where P = cos(x-7y) and Q = -7cos(x-7y).

Taking partial derivatives:

∂Q/∂x = -7sin(x-7y) and ∂P/∂y = 7sin(x-7y)

So,

∫C1 F · dr = ∬R (-7sin(x-7y) - 7sin(x-7y)) dA = 0

This means that the curve C1 can be any curve that starts and ends at the same point, since the integral of F · dr over a closed curve is always zero.

One possible curve C1 is a line segment from (0,0) to (π/2,0), given by:

r(t) = <t, 0>, 0 ≤ t ≤ π/2.

b) To find a curve C2 such that F · dr = 1, we need to solve the line integral:

∫C2 F · dr = 1

Using Green's Theorem as before, we have:

∫C2 F · dr = ∬R (-7sin(x-7y) - 7sin(x-7y)) dA = -14π

So,

∫C2 F · dr = -14π

This means that the curve C2 must have a line integral of -14π. One possible curve C2 is the line segment from (0,0) to (0,-14π), given by:

r(t) = <0, -14πt>, 0 ≤ t ≤ 1.

Learn more about line segment here

https://brainly.com/question/280216

#SPJ11

Lucy's Rental Car charges an initial fee of $30 plus an additional $20 per day to rent a car. Adam's Rental Car


charges an initial fee of $28 plus an additional $36 per day. For what number of days is the total cost charged


by the companies the same?

Answers

The number of days for which the companies charge the same cost is given as follows:

0.125 days.

How to define a linear function?

The slope-intercept equation for a linear function is presented as follows:

y = mx + b

In which:

m is the slope.b is the intercept.

For each function in this problem, the slope and the intercept are given as follows:

Slope is the daily cost.Intercept is the fixed cost.

Hence the functions are given as follows:

L(x) = 30 + 20x.A(x) = 28 + 36x.

Then the cost is the same when:

A(x) = L(x)

28 + 36x = 30 + 20x

16x = 2

x = 0.125 days.

More can be learned about linear functions at https://brainly.com/question/15602982

#SPJ4

A rectangle measures 6 inches by 15 inches. If each dimension of the rectangle is dilated by a scale factor of to create a new rectangle, what is the area of the new rectangle?
A)30 square inches
B)10 square inches
C)60 square inches
D)20 square Inches

Answers

The area of the new rectangle when each dimension of the rectangle is dilated by a scale factor of 1/3 is 10 sq. in.

The length of the original rectangle = 6 inch

The width of the original rectangle = is 15 inch

The length of a rectangle when it is dilated by scale 1/3 = 6/3 = 2 in

The width of the rectangle when it is dilated by scale 1/3 = 15/3 = 5 in

The area of the new rectangle formed = L × B

The area of the new rectangle formed = 2 × 5

The area of the new rectangle formed = 10 sq. in.

To know more about area click here :

https://brainly.com/question/20693059

#SPJ1

Alexey is baking 2 batches of cookies. Since he tends to be quite forgetful, there's a good chance he might burn


the cookies, and then they won't come out tasty. Each batch is independent, and the probability of his first batch


being tasty is 50%, and the probability of his second batch being tasty is 70%.

Answers

Alexey is baking two batches of cookies. The probability of the first batch being tasty is 50%, while the probability of the second batch being tasty is 70%. Whether he burns the cookies or not is not explicitly stated.

Alexey's baking of the two batches of cookies is treated as independent events, meaning the outcome of one batch does not affect the other. The probability of the first batch being tasty is given as 50%, indicating that there is an equal chance of it turning out well or not. Similarly, the probability of the second batch being tasty is stated as 70%, indicating a higher likelihood of it being delicious.

The question does not provide information about the probability of burning the cookies. However, if Alexey's forgetfulness and the possibility of burning the cookies are taken into consideration, it is important to note that burning the cookies could potentially affect their taste and make them less enjoyable. In that case, the probabilities mentioned earlier could be adjusted based on the likelihood of burning. Without further information on the probability of burning, it is not possible to calculate the overall probability of both batches being tasty or the impact of burning on the tastiness of the cookies.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Expand the function 13+4x13+4x in a power series ∑=0[infinity]x∑n=0[infinity]anxn with center c=0.center c=0. Find x.anxn.
(Express numbers in exact form. Use symbolic notation and fractions where needed. For alternating series, include a factor of the form (−1)(−1)n in your answer.)
x=anxn=
Determine the interval of convergence.
(Give your answers as intervals in the form (∗,∗).(∗,∗). Use symbol [infinity][infinity] for infinity, ∪∪ for combining intervals, and appropriate type of parenthesis "(",")", "["or"]""(",")", "["or"]" depending on whether the interval is open or closed. Enter DNEDNE if interval is empty. Express numbers in exact form. Use symbolic notation and fractions where needed.)
x∈x∈

Answers

The expansion of the function is 13 - 52/169 x + 416/2197 x^2 - 3328/28561 x^3 + 26624/371293 x^4 - ... and the interval of convergence is (-17/4, -13/4).

To expand the function 13+4x13+4x in a power series ∑=0[infinity]x∑n=0[infinity]anxn with center c=0, we can use the formula:

∑n=0[infinity]an(x-c)^n

where c is the center of the power series, and an can be found using the formula:

an = f^(n)(c)/n!

where f^(n) denotes the nth derivative of the function.

In this case, we have:

f(x) = 13 + 4x / (13 + 4x)

Taking derivatives, we get:

f'(x) = -52 / (13 + 4x)^2

f''(x) = 416 / (13 + 4x)^3

f'''(x) = -3328 / (13 + 4x)^4

f''''(x) = 26624 / (13 + 4x)^5

...

Evaluating these derivatives at x=0, we get:

f(0) = 13

f'(0) = -52/169

f''(0) = 416/2197

f'''(0) = -3328/28561

f''''(0) = 26624/371293

...

Therefore, the power series expansion of f(x) about x=0 is:

13 - 52/169 x + 416/2197 x^2 - 3328/28561 x^3 + 26624/371293 x^4 - ...

To determine the interval of convergence, we can use the ratio test:

lim |an+1(x-c)^(n+1)/an(x-c)^n| = lim |(13 + 4x)/(17 + 4x)| < 1

x → 0

Solving for x, we get:

-17/4 < x < -13/4

Therefore, the interval of convergence is (-17/4, -13/4).

Know more about convergence here:

https://brainly.com/question/30275628

#SPJ11

A garden supplier claims that its new variety of giant tomato produces fruit with an mean weight of 42 ounces. A test is made of H0: μ-42 versus H1 : μ 42. The null hypothesis is rejected. State the appropriate conclusion. The mean weight is equal to 42 ounces. There is not enough evidence to conclude that the mean weight is 42 ounces. There is not enough evidence to conclude that the mean weight differs from 42 ounces The mean weight is not equal to 42 ounces. 1 points Save Ans
Previous question

Answers

The mean weight will not be  equal to 42 ounces.

Based on the given information, we have conducted a hypothesis test with the null hypothesis H0: μ=42 and alternative hypothesis H1: μ≠42, where μ is the mean weight of the new variety of giant tomato.

The null hypothesis is rejected, which means that there is strong evidence against the claim made by the garden supplier that the mean weight is 42 ounces.

Therefore, we can conclude that the mean weight is not equal to 42 ounces, and it could be either more or less than 42 ounces. The appropriate conclusion is "The mean weight is not equal to 42 ounces."

To know more about null hypothesis refer here:

https://brainly.com/question/28920252

#SPJ11

Lydia makes a down payment of 1,600 on a car loan. how much of the purchase price will the interest be calculated on?

Answers

If Lydia makes a down payment of $1,600 on a car loan, the interest will be calculated on the balance of the purchase price.

Let the purchase price of the car be represented by P.Lydia makes a down payment of $1,600, therefore the balance of the purchase price is:

P = Purchase Price = Total cost - Down Payment

P = P - 1,600

To calculate the interest on the purchase price, you need to know the interest rate and the period of the loan, which is usually stated in years or months.

Suppose the interest rate is 5% and the period of the loan is 2 years, then the interest on the purchase price would be calculated as follows:

Interest = (Purchase Price - Down Payment) × Interest Rate × Time

= (P - 1,600) × 0.05 × 2

= (P - 1,600) × 0.1

The interest will be calculated on the balance of the purchase price, which is P - 1,600.

Therefore, the interest will be calculated on the expression (P - 1,600) × 0.1.

To know more about down payment visit:

https://brainly.com/question/29075522

#SPJ11

A random variable follows the continuous uniform distribution between 20 and 50. a) Calculate the following probabilities for the distribution: 1) P(x leq 25) 2) P(x leq 30) 3) P(x 4 leq 5) 4) P(x = 28) b) What are the mean and standard deviation of this distribution?

Answers

The mean of the distribution is 35 and the standard deviation is approximately 15.275.

The continuous uniform distribution between 20 and 50 is a uniform distribution with a continuous range of values between 20 and 50.

a) To calculate the probabilities, we can use the formula for the continuous uniform distribution:

P(x ≤ 25): The probability that the random variable is less than or equal to 25 is given by the proportion of the interval [20, 50] that lies to the left of 25. Since the distribution is uniform, this proportion is equal to the length of the interval [20, 25] divided by the length of the entire interval [20, 50].

P(x ≤ 25) = (25 - 20) / (50 - 20) = 5/30 = 1/6

P(x ≤ 30): Similarly, the probability that the random variable is less than or equal to 30 is the proportion of the interval [20, 50] that lies to the left of 30.

P(x ≤ 30) = (30 - 20) / (50 - 20) = 10/30 = 1/3

P(4 ≤ x ≤ 5): The probability that the random variable is between 4 and 5 is given by the proportion of the interval [20, 50] that lies between 4 and 5.

P(4 ≤ x ≤ 5) = (5 - 4) / (50 - 20) = 1/30

P(x = 28): The probability that the random variable takes the specific value 28 in a continuous distribution is zero. Since the distribution is continuous, the probability of any single point is infinitesimally small.

P(x = 28) = 0

b) The mean (μ) of the continuous uniform distribution is the average of the lower and upper limits of the distribution:

μ = (20 + 50) / 2 = 70 / 2 = 35

The standard deviation (σ) of the continuous uniform distribution is given by the formula:

σ = (b - a) / sqrt(12)

where 'a' is the lower limit and 'b' is the upper limit of the distribution. In this case, a = 20 and b = 50.

σ = (50 - 20) / sqrt(12) ≈ 15.275

Know more about standard deviation here:

https://brainly.com/question/23907081

#SPJ11

determine the point at which the line passing through the points p(1, 0, 6) and q(5, −1, 5) intersects the plane given by the equation x y − z = 7.

Answers

The point of intersection is (0, 4, 4).

To find the point at which the line passing through the points P(1, 0, 6) and Q(5, -1, 5) intersects the plane x*y - z = 7, we can first find the equation of the line and then substitute its coordinates into the equation of the plane to solve for the point of intersection.

The direction vector of the line passing through P and Q is given by:

d = <5-1, -1-0, 5-6> = <4, -1, -1>

So the vector equation of the line is:

r = <1, 0, 6> + t<4, -1, -1>

where t is a scalar parameter.

To find the point of intersection of the line and the plane, we need to solve the system of equations given by the line equation and the equation of the plane:

x*y - z = 7

1 + 4t*0 - t*1 = x   (substitute r into x)

0 + 4t*1 - t*0 = y   (substitute r into y)

6 + 4t*(-1) - t*(-1) = z   (substitute r into z)

Simplifying these equations, we get:

x = -t + 1

y = 4t

z = 7 - 3t

Substituting the value of z into the equation of the plane, we get:

x*y - (7 - 3t) = 7

x*y = 14 + 3t

(-t + 1)*4t = 14 + 3t

-4t^2 + t - 14 = 0

Solving this quadratic equation for t, we get:

t = (-1 + sqrt(225))/8 or t = (-1 - sqrt(225))/8

Since t must be non-negative for the point to be on the line segment PQ, we take the solution t = (-1 + sqrt(225))/8 = 1 as the point of intersection.

Therefore, the point of intersection of the line passing through P and Q and the plane x*y - z = 7 is:

x = -t + 1 = 0

y = 4t = 4

z = 7 - 3t = 4

So the point of intersection is (0, 4, 4).

Learn more about intersection here:

https://brainly.com/question/9462569

#SPJ11

Jonathan purchased a new car in 2008 for $25,400. The value of the car has been



depreciating exponentially at a constant rate. If the value of the car was $7,500 in



the year 2015, then what would be the predicted value of the car in the year 2017, to



the nearest dollar?




HELP

Answers

The predicted value of the car in the year 2017 is $6,515 (to the nearest dollar).

The question is asking to predict the value of a car in 2017 if it was bought for $25,400 in 2008 and was worth $7,500 in 2015. The depreciation is constant and exponential.

Let's assume the initial value of the car in 2008 is V0 and the value of the car in 2015 is V1. The car has depreciated at a constant rate (r) over 7 years.

Let's find the value of r first:

r = ln(V1 / V0) / t

= ln(7500 / 25400) / 7

= -0.1352 (approx)

Now, let's find the predicted value of the car in 2017.

The time period from 2008 to 2015 is 7 years. So, the time period from 2008 to 2017 is 9 years, and the value of the car is V2. We can use the exponential decay formula to find V2.

V2 = V0 * e^(rt)

= 25400 * e^(-0.1352*9)

= $6,515 (approx)

Therefore, the predicted value of the car in the year 2017 is $6,515 (to the nearest dollar).

To know more about nearest dollar visit:

https://brainly.com/question/28417760

#SPJ11

If m acd = (7x-12) and m bdc = (10x 5) find x

Answers

The value of x is 11.

m∠ACD is 65 degrees and m∠BDC is 115 degrees.

To find the value of x, we need to establish a relationship between these two angles.

Given that m∠ACD = (7x - 12) and m∠BDC = (10x + 5), we can analyze the figure to determine how these angles are related. Since there is no additional information about the angles, let's assume that they are supplementary angles, meaning that their sum is equal to 180 degrees. This is a common situation when dealing with adjacent angles that form a straight line.

So, we can write an equation expressing that the sum of m∠ACD and m∠BDC equals 180°:

(7x - 12) + (10x + 5) = 180

Now, we'll solve this equation to find the value of x:

7x - 12 + 10x + 5 = 180
17x - 7 = 180

Next, isolate x by adding 7 to both sides of the equation:

17x = 187

Finally, divide by 17 to obtain the value of x:

x = 187 ÷ 17
x = 11

So, the value of x is 11. With this information, you can now find the measures of m∠ACD and m∠BDC by plugging the value of x back into their respective expressions:

m∠ACD = 7(11) - 12 = 77 - 12 = 65°
m∠BDC = 10(11) + 5 = 110 + 5 = 115°

Therefore, m∠ACD is 65 degrees and m∠BDC is 115 degrees.

To know more about angle measures, refer to the link below:

https://brainly.com/question/30749534#

#SPJ11

Part of a homeowner's insurance policy covers one miscellaneous loss per year, which is known to have a 10% chance of occurring. If there is a miscellaneous loss, the probability is c/x that the loss amount is $100x, for x = 1, 2, ...,5, where c is a constant. These are the only loss amounts possible. If the deductible for a miscellaneous loss is $200, determine the net premium for this part of the policy—that is, the amount that the insurance company must charge to break even.

Answers

The insurance company must charge $6c - $24 as the net premium to break even on this part of the policy.

Let X denote the loss amount for a miscellaneous loss. Then, the probability mass function of X is given by:

P(X = 100x) = (c/x)(0.1), for x = 1, 2, ..., 5.

The deductible for a miscellaneous loss is $200. This means that if a loss occurs, the homeowner pays the first $200, and the insurance company pays the rest. Therefore, the insurance company's payout for a loss amount of 100x is $100x - $200.

The net premium for this part of the policy is the expected payout for the insurance company, which is equal to the expected loss amount minus the deductible, multiplied by the probability of a loss:

Net premium = [E(X) - $200] * 0.1

To find E(X), we use the formula for the expected value of a discrete random variable:

E(X) = ∑ x P(X = x)

E(X) = ∑ (100x)(c/x)(0.1)

E(X) = 100 * ∑ c * (0.1)

E(X) = 50c

Therefore, the net premium is:

Net premium = [50c - $200] * 0.1

To break even, the insurance company must charge the homeowner the net premium plus a profit margin. If we assume that the profit margin is 20%, then the net premium can be calculated as:

Net premium + 0.2*Net premium = Break-even premium

(1 + 0.2) * Net premium = Break-even premium

1.2 * Net premium = Break-even premium

Substituting the expression for the net premium, we get:

1.2 * [50c - $200] * 0.1 = Break-even premium

6c - $24 = Break-even premium

Therefore, the insurance company must charge $6c - $24 as the net premium to break even on this part of the policy.

To know more about probability refer here:

https://brainly.com/question/30034780

#SPJ11

SHOUTOUT FOR CHOSLSTON71!?! THIS QUESTION IS?

Answers

Answer: 31

Step-by-step explanation: 775 divided by 25 = 31

what are the mathematics behind how de's (differential equations) are used with real-world data? that is, how are the equations or mathematical concepts, themselves, utilized?

Answers

Differential equations (DEs) are mathematical equations that describe the relationship between a function and its derivatives. DEs are used in many fields, including physics, engineering, economics, biology, and more, to model real-world phenomena.

The use of DEs in modeling real-world data involves several steps. First, the problem must be defined and the relevant variables and parameters identified. Next, a DE that describes the relationship between these variables and parameters is formulated. This DE can be based on empirical data, physical laws, or other considerations, depending on the specific application.

Once a DE is formulated, it can be solved using various techniques, such as separation of variables, numerical methods, or Laplace transforms. The solution to the DE gives the functional relationship between the variables of interest, which can then be used to make predictions or analyze the system.

To know more about Differential equations,

https://brainly.com/question/31583235

#SPJ11

Other Questions
In "Excerpt from One + One = Blue," what effect does the differencein Basil's point of view and Tenzie's point of view regarding Basil'sfamily have on the story? Use two details from the story to supportyour response. Too Hard Not to Cheat in the Internet Age?By Elizabeth Minkelwhat is the thesis statement Because prices change over time, costs reported for these accounts tend to differ among inventory cost methods Would you normally expect Delta H to be positive or negative for a voltaic cell? Justify your answer.A. Many spontaneous reactions (G negative) are exothermic (H positive). Because voltaic cells have spontaneous reactions, you would expect H to be positive for most voltaic cells.B. Many spontaneous reactions (G negative) are endothermic (H positive). Because voltaic cells have spontaneous reactions, you would expect H to be positive for most voltaic cells.C. Many spontaneous reactions (G positive) are endothermic (H negative). Because voltaic cells have spontaneous reactions, you would expect H to be negative for most voltaic cells.D. Many spontaneous reactions (G negative) are exothermic (H negative). Because voltaic cells have spontaneous reactions, you would expect H to be negative for most voltaic cells. A 630 kg car pulling a 535 kg trailer accelerates forward at a rate of 2.22 m/s2. Assume frictional forces on the trailer are negligible. Calculate the net force (in N) on the car. 1. in each of the following, factor the matrix a into a product xdx1, where d is diagonal: 5 6 -2 -2 An air puck of mass m1= 0.25 kg is tied to a string and allowed to revolve in a circle of radius R = 1.0 m on a frictionless horizontal table. The other end of the string passes through a hole in the center of the table, and a mass of m2= 1.0 kg is tied to it. The suspended mass remains in equilibrium while the puck on the tabletop revolves.(a) What is the tension in the string?(b) What is the horizontal force acting on the puck?(c) What is the speed of the puck? on may 3, ivanhoe company sold 839000 of merchandise on account to Sarasota Company, terms 2/10, n/30. The cost of the merchandise sold was $577,000. (Credit account titles are automatically indented when amount is entered. Do not indent manually.) Lag and straddle strategies for increasing capacity have what main advantage over a leading strategy?A.They are more accurate.B.They are cheaper.C.They delay capital expenditure.D.They increase demand.E.All of the above are advantages. how many ways are there to select a set of 8 donuts from 3 varieties in which at most 2 chocolate donuts are selected? A certain sports car comes equipped with either an automatic or a manual transmission, and the car is available in one of four colors. Relevant probabilities for various combinations of transmission type and color are given in the table below.COLORTRANSM?SS?ON TYPE white blue black redA 13 10 11 11M 15 07 15 18Let A = {automatic transmission}, B = { black } , and C = { white }. a) Calculate P(A), P(B), and P(A ? B). b) Calculate both P(A | B) and P(B | A), and explain in context what each of these probabilities represent. c) Calculate and interpret P(A | C) and P(A | C'). A scientist has developed a new medication to reduce the number of headaches people have (l point) each month. She runs a study with 90 patients and records the number of headaches they have per month before starting the medication, and then records the number of headaches they have per month eight weeks after starting the medication. She wants to prove that her medication reduces the frequency of headaches. Which of the following describes the scientist's null and alternative hypotheses? null hypothesis: -= 0 , alternative hypothesis: -< 0 Onull hypothesis: A4-< O, alternative hypothesis: - > 0 Onull hypothesis: p 0, alternative hypothesis: 0 Onull hypothesis: p we sometimes refer to these carotenoids that the body converts as ____________ . suppose the population of bears in a national park grows according to the logistic differentialdp/dt = 5P - 0.002P^2where P is the number of bears at time r in years. If P(O)-100, find lim Po) using thin airfoil theory, calculate l =0. (round the final answer to two decimal places. you must provide an answer before moving on to the next part.) There are FOUR (4) questions to answer. What is the term used to describe an association or interdependence between two sets of data or variables? Enter your answer here Correlation Analysis What is the name of the graphic tool used to illustrate the relationship between two variables? Enter your answer here Scatter Diagram What is the term represented by the symbol r in correlation and regression analysis? Enter your answer here Select] Which one of the following is a true statement? Enter your answer here [Select The estimated value of the slope is given by: A. 1 B. b1 C. b0 D. z1 If you were to sticka needle laterallythrough theabdomen, in whatlayers would youenter fromsuperficial to deep? 32P is used to treat some diseases of the bone. Its half-life is 14 days. Find the time it would take for a sample of 32P to decay from an activity of 10,000 counts per minute to 8,500 counts per minute Find the y intercept for a line with a slope or 2 that goes through (5, 4)