Answer:
- Was the car speeding?
Yes, the car was speeding as its current speed of 57.65 mph was more than the speed limit of that freeway.
- Do you agree with Nico or with Katya?
I agree somewhat with both Nico and Katya, but, I agree more with Nico.
- Explain your reasoning.
Like I said, I agree more with Nico's method of rounding the speed to the nearest whole number. This is because in this question, the standard speed we want to compare the calculated speed with is given as a whole number. Hence, it is more proper to estimate the calculated speed to its nearest whole number too.
Step-by-step explanation:
Speed during a travel is given as distance travelled divided by time taken
Speed = (Distance/time)
Distance = 98 miles
Time = 1.7 hours
Speed = (98/1.7) = 57.6470588235 = 57.65 mph = 58 mph
- Was the car speeding?
The speed limit for the road is 55 mph and the current speed of the car = 57.65 mph
Since 57.65 > 55
The car was overspeeding.
- Nico says it's okay to round what his calculator says to the nearest whole number. Katya says that because the calculator displays eight numbers after the decimal point, they shouldn't round. She says they should write down exactly what the calculator shows. Do you agree with Nico or with Katya?
I agree somewhat with both Nico and Katya as the both methods of recording the speed ate right, depending on what the speed is required for.
Although, I agree more with Nico's method as it seems like a better fit for the situation described in the question.
- explain who you agree with and provide the reasons why.
Like I said earlier, I agree more with Nico's method of rounding the speed to the nearest whole number. This is because in this question, the standard speed we want to compare the calculated speed with is given as a whole number. Hence, it is more proper to estimate the calculated speed to its nearest whole number too.
Katya's method of writing the calculated speed as is will be correct in cases where extreme accuracy is required, not an estimate. For this question, the estimate will do.
Hope this Helps!!!
Answer:
Yes, the car was speeding as its current speed of 57.65 mph was more than the speed limit of that freeway.
Step-by-step explanation:
Nico and Katya i agree with.
Clara writes the following proof for the theorem: If the diagonals of a quadrilateral bisect each other, the quadrilateral is a parallelogram:
Answer:
CPCTC
Step-by-step explanation:
Statements 3 and 4 show the top and bottom triangles are congruent, and the left and right triangles are congruent. Statement 5 is making use of these facts to claim that the alternate interior angles are congruent. This claim is valid because ...
Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
find the value of k if x minus 2 is a factor of P of X that is X square + X + k
Answer:
k = -6
Step-by-step explanation:
hello
saying that (x-2) is a factor of [tex]x^2+x+k[/tex]
means that 2 is a zero of
[tex]x^2+x+k=0 \ so\\2^2+2+k=0\\<=> 4+2+k=0\\<=> 6+k =0\\<=> k = -6[/tex]
and we can verify as
[tex](x^2+x-6)=(x-2)(x+3)[/tex]
so it is all good
hope this helps
Consider circle T with radius 24 in. and θ = StartFraction 5 pi Over 6 EndFraction radians. Circle T is shown. Line segments S T and V T are radii with lengths of 24 inches. Angle S T V is theta. What is the length of minor arc SV?
Answer:
20π inStep-by-step explanation:
Length of an arc is expressed as [tex]L = \frac{\theta}{2\pi } * 2\pi r\\[/tex]. Given;
[tex]\theta = \frac{5\pi }{6} rad\\ radius = 24in\\[/tex]
The length of the minor arc SV is expressed as:
[tex]L = \frac{\frac{5\pi }{6} }{2\pi } * 2\pi (24)\\L = \frac{5\pi }{12\pi } * 48\pi \\L = \frac{5}{12} * 48\pi \\L = \frac{240\pi }{12} \\L = 20\pi \ in[/tex]
Hence, The length of the arc SV is 20π in
Answer:
20 pi
Step-by-step explanation:
Find the area of this parallelogram.
6 cm
11 cm
Step-by-step explanation:
given,
base( b) = 6cm
height (h)= 11cm
now, area of parallelogram (a)= b×h
or, a = 6cm ×11cm
therefore the area of parallelogram (p) is 66cm^2.
hope it helps...
Convert into the following unit into 30 cm into miter
Answer:
it we'll be 0.3
Step-by-step explanation:
trust me man I like to explain but it's long
Answer:
0.3 meter or 3/10 meter
Step-by-step explanation:
As there are 100cm in 1 meter and you want to find 30cm in terms of meters.
It will be as
100cm = 1 meter (rule/lax)
100/100 cm = 1/100 meter (divide both sides of equation with 100)
1 cm = 1/100 meter
1 *30 cm = (1/100)*30 meter (multiply both sides with 30)
30 cm = 30/100 meter
30/100 more shortly can be written as 3/10 meter or in decimals 0.3 meter.
Suppose the sequence StartSet a Subscript n Baseline EndSet is defined by the recurrence relation a Subscript n plus 1equalsnegative 2na Subscript n, for nequals1, 2, 3,..., where a1equals5. Write out the first five terms of the sequence.
Answer:
-10, 40, -240, 1,920 and -19, 200
Step-by-step explanation:
Given the recurrence relation of the sequence defined as aₙ₊₁ = -2naₙ for n = 1, 2, 3... where a₁ = 5, to get the first five terms of the sequence, we will find the values for when n = 1 to n =5.
when n= 1;
aₙ₊₁ = -2naₙ
a₁₊₁ = -2(1)a₁
a₂ = -2(1)(5)
a₂ = -10
when n = 2;
a₂₊₁ = -2(2)a₂
a₃ = -2(2)(-10)
a₃ = 40
when n = 3;
a₃₊₁ = -2(3)a₃
a₄ = -2(3)(40)
a₄ = -240
when n= 4;
a₄₊₁ = -2(4)a₄
a₅ = -2(4)(-240)
a₅ = 1,920
when n = 5;
a₅₊₁ = -2(5)a₅
a₆ = -2(5)(1920)
a₆ = -19,200
Hence, the first five terms of the sequence is -10, 40, -240, 1,920 and -19, 200
Please help! V^2 = 25/81
Answer:
C and D
Step-by-step explanation:
khan acedemy
An equation is formed when two equal expressions. The solutions to the given equation are A, B, and C.
What is an equation?An equation is formed when two equal expressions are equated together with the help of an equal sign '='.
The solution of the given equation v²=25/81 can be found as shown below.
v²=25/81
Taking the square root of both sides of the equation,
√(v²) = √(25/81)
v = √(25/81)
v = √(5² / 9²)
v = ± 5/9
Hence, the solutions of the given equation are A, B, and C.
Learn more about Equation here:
https://brainly.com/question/2263981
#SPJ2
Alexandra has $15 to buy drinks for her friends at the baseball game. Soda
costs $2.75 and bottled water costs $2.00. This relationship can be
represented by the inequality 2758+2w $ 15. Three of Alexandra's friends
asked for water. Which inequality represents the number of sodas she can
buy?
A. OS 85 3.27
B. 85 3.27
C. OSSS3
D. 853
Answer:
C
Step-by-step explanation:
write an equation for the costs:
if x is the number of sodas
and y is the number of waters
2.75x + 2y <= 15
(<= is less than or equal to)
if we substitute 3 for y
we get 2.75x + 2(3) <= 15
2.75x + 6 <= 15
2.75x <= 9
9 / 2.75 = 3.2727
however, you cannot buy part of a soda
so, round to 3
you also cannot buy negative sodas
so, the answer is C
Diagramming Percents
Percents
Total
An item was marked down 60% from its original price.
The amount of the discount was $30. Fill in the
numbers that belong in the diagram to find the original
price
20%
20%
20%
20%
20%
A=
B=
C=
Answer:
see below
Step-by-step explanation:
Let x be the original price
x* discount rate = discount
x * 60% = 30
Change to decimal form
x * .60 = 30
Divide each side by .60
x = 30/.60
x =50
The original price was 50 dollars
Answer:
A-30 B-20 C-50
Step-by-step explanation:
A fair die is rolled repeatedly. Calculate to at least two decimal places:__________
a) the chance that the first 6 appears before the tenth roll
b) the chance that the third 6 appears on the tenth roll
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
d) the expected number of rolls until six 6's appear
e) the expected number of rolls until all six faces appear
Answer:
a. 0.34885
b. 0.04651
c. 0.02404
d. 36
e. 14.7, say 15 trials
Step-by-step explanation:
Q17070205
Note:
1. In order to be applicable to established probability distributions, each roll is considered a Bernouilli trial, i.e. has only two outcomes, success or failure, and are all independent of each other.
2. use R to find the probability values from the respective distributions.
a) the chance that the first 6 appears before the tenth roll
This means that a six appears exactly once between the first and the nineth roll.
Using binomial distribution, p=1/6, n=9, x=1
dbinom(1,9,1/6) = 0.34885
b) the chance that the third 6 appears on the tenth roll
This means exactly two six's appear between the first and 9th rolls, and the tenth roll is a six.
Again, we have a binomial distribution of p=1/6, n=9, x=2
p1 = dbinom(2,9,1/6) = 0.27908
The probability of the tenth roll being a 6 is, evidently, p2 = 1/6.
Thus the probability of both happening, by the multiplication rule, assuming independence
P(third on the tenth roll) = p1*p2 = 0.04651
c) the chance of seeing three 6's among the first ten rolls given that there were six 6's among the first twenty roles.
Again, using binomial distribution, probability of 3-6's in the first 10 rolls,
p1 = dbinom(3,10,1/6) = 0.15504
Probability of 3-6's in the NEXT 10 rolls
p1 = dbinom(3,10,1/6) = 0.15504
Probability of both happening (multiplication rule, assuming both events are independent)
= p1 * p1 = 0.02404
d) the expected number of rolls until six 6's appear
Using the negative binomial distribution, the expected number of failures before n=6 successes, with probability p = 1/6
= n(1-p)/p
Total number of rolls by adding n
= n(1-p)/p + n = n(1-p+p)/p = n/p = 6/(1/6) = 36
e) the expected number of rolls until all six faces appear
P1 = 6/6 because the firs trial (roll) can be any face with probability 1
P2 = 6/5 because the second trial for a different face has probability 5/6, so requires 6/5 trials
P3 = 6/4 ...
P4 = 6/3
P5 = 6/2
P6 = 6/1
So the total mean (expected) number of trials is 6/6+6/5+6/4+6/3+6/2+6/1 = 14.7, say 15 trials
What is the discontinuity of x2+7x+1/x2+2x-15?
The discontinuity occurs when x is either -5 or 3.
That is determined by solving denominator = 0 quadratic equation for x.
Hope this helps.
Two balls are drawn in succession out of a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw.
Answer:
With replacement = 14/49without replacement = 3/7Step-by-step explanation:
Since there are 2 red and 5 white balls in the box, the total number of balls in the bag = 2+5 = 7balls.
Probability that at least 1 ball was red, given that the first ball was replaced before the second can be calculated as shown;
Since at least 1 ball picked at random, was red, this means the selection can either be a red ball first then a white ball or two red balls.
Probability of selecting a red ball first then a white ball with replacement = (2/7*5/7) = 10/49
Probability of selecting two red balls with replacement = 2/7*2/7 = 4/49
The probability that at least 1 ball was red given that the first ball was replaced before the second draw= 10/49+4/49 = 14/49
If the balls were not replaced before the second draw
Probability of selecting a red ball first then a white ball without replacement = (2/7*5/6) = 10/42 = 5/21
Probability of selecting two red balls without replacement = 2/7*2/6 = 4/42 = 2/21
The probability that at least 1 ball was red given that the first ball was not replaced before the second draw = 5/21+4/21 = 9/21 = 3/7
The probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.
Since two balls are drawn in succession out of a box containing 2 red and 5 white balls, to find the probability that at least 1 ball was red, given that the first ball was A) replaced before the second draw; and B) not replaced before the second draw; the following calculations must be performed:
2 + 5 = X7 = X
(2/7 + 2/7) / 2 = X (0.285 + 0.285) / 2 = X 0.285 = X
(2/7 + 1/6) / 2 = X (0.28 + 0.16) / 2 = X 0.451 / 2 = X 0.225 = X
Therefore, the probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.
Learn more about probability in https://brainly.com/question/14393430
Will anyone help me with geometry ASAP!? Please!? In desperate help!!!
Answer:
14. C 41
15. k = 72
Step-by-step explanation:
14.
For parallel lines, alternate exterior angles must be congruent.
3x - 43 = 80
3x = 123
x = 41
15.
The sum of the measures of the angles of a triangle is 180 deg.
k + 33 + 75 = 180
k + 108 = 180
k = 72
Answer:
1. 32
2. 41
3. 72
Step-by-step explanation:
Find the area of a circle with a diameter of 8yards. Use 3.14. The area of the circle is approximate
Answer:
50.24 yd²
Step-by-step explanation:
pi r² = (3.14)(4)² = 50.24
What is the value of x in the equation 0.7 x - 1.4 = -3.5
Answer:
x=12.5
Step-by-step explanation:
0.7x times (-1.4)=-3.5
-0.28x=-3.5 (divide both sides)
Ans:12.5
Perform the operation 3/a^2+2/ab^2
Answer:
Step-by-step explanation:
Least common denominator = a²b²
[tex]\frac{3}{a^{2}}+\frac{2}{ab^{2}}=\frac{3*b^{2}}{a^{2}*b^{2}}+\frac{2*a}{ab^{2}*a}\\\\=\frac{3b^{2}}{a^{2}b^{2}}+\frac{2a}{a^{2}b^{2}}\\\\=\frac{3b^{2}+2a}{a^{2}b^{2}}[/tex]
whats 1 and 1/2 + 2 and 3/10
Answer:
[tex]3\frac{4}{5}[/tex]
Step-by-step explanation:
You first need to make the denominators the same and the LCM (least Common Multiple of this equation is 10.
10/10-->1
1/2--> 5/10
2--> 20/10
3/10, the denominator is already 10, so don't need to change.
10/10+5/10+20/10+3/10=38/10=[tex]3\frac{8}{10}[/tex]=[tex]3\frac{4}{5}[/tex]
Answer:
3 4/5
Step-by-step explanation:
hopefully this helped :3
Factor the trinomial!! PLEASE HELP and if possible please explain how to do this!!
Answer:
d. a = 39
Step-by-step explanation:
Question:
for which value of "a" will the trinomial be factorizable.
x^2+ax-40
For the expression to have integer factors, a = sum of the pairs of factors of -40.
-40 has following pairs of factors
{(1,-40), (2,-20, (4,-10), (5,-8), (8, -5), (10,-4), (20,-2), (40,-1) }
meaning that the possible values of a are
+/- 39, +/- 18, +/- 6, +/- 3
out of which only +39 appears on answer d. a=39
You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately σ = 58.2 σ=58.2. You would like to be 99% confident that your estimate is within 1 of the true population mean. How large of a sample size is required? Do not round mid-calculation.
Answer:
[tex]n=(\frac{2.58(58.2)}{1})^2 =22546.82 \approx 22547[/tex]
So the answer for this case would be n=22547 rounded up to the nearest integer
Step-by-step explanation:
Let's define some notation
[tex]\bar X[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
[tex]\sigma=58.2[/tex] represent the population standard deviation
n represent the sample size
[tex] ME =1[/tex] represent the margin of error desire
The margin of error is given by this formula:
[tex] ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex] (a)
And on this case we have that ME =+1 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=(\frac{z_{\alpha/2} \sigma}{ME})^2[/tex] (b)
The critical value for 99% of confidence interval now can be founded using the normal distribution. The significance would be [tex]\alpha=0.01[/tex] and the critical value [tex]z_{\alpha/2}=2.58[/tex], replacing into formula (b) we got:
[tex]n=(\frac{2.58(58.2)}{1})^2 =22546.82 \approx 22547[/tex]
So the answer for this case would be n=22547 rounded up to the nearest integer
Suppose 150 students are randomly sampled from a population of college students. Among sampled students, the average IQ score is 115 with a standard deviation of 10. What is the 99% confidence interval for the average IQ of college students? Possible Answers: 1) A) E =1.21 B) E = 1.25 C) E =2.52 D) E = 2.11 2) A) 112.48 < μ < 117.52 B) 113.79 < μ < 116.21 C) 112.9 < μ < 117.10 D) 113.75 < μ < 116.3
Answer:
99% confidence interval for the mean of college students
A) 112.48 < μ < 117.52
Step-by-step explanation:
step(i):-
Given sample size 'n' =150
mean of the sample = 115
Standard deviation of the sample = 10
99% confidence interval for the mean of college students are determined by
[tex](x^{-} -t_{0.01} \frac{S}{\sqrt{n} } , x^{-} + t_{0.01} \frac{S}{\sqrt{n} } )[/tex]
Step(ii):-
Degrees of freedom
ν = n-1 = 150-1 =149
t₁₄₉,₀.₀₁ = 2.8494
99% confidence interval for the mean of college students are determined by
[tex](115 -2.8494 \frac{10}{\sqrt{150} } , 115 + 2.8494\frac{10}{\sqrt{150} } )[/tex]
on calculation , we get
(115 - 2.326 , 115 +2.326 )
(112.67 , 117.326)
find the LCM and solve, it's very very urgent.
Answers:
1. 10502. 12003. 12004. 33605. 10806. 480please see the attached picture for full solution..
Hope it helps....
Good luck on your assignment...
The heights of American men are normally distributed. If a random sample of American men is taken and the confidence interval is (65.3,73.7), what is the sample mean x¯? Give just a number for your answer. For example, if you found that the sample mean was 12, you would enter 12.
Answer:
69.5Step-by-step explanation:
Given the confidence interval of the heights of american heights given as (65.3,73.7);
Lower confidence interval L = 65.3 and Upper confidence interval U = 73.7
Sample mean will be the average of both confidence interval . This is expressed mathematically as [tex]\overline x = \frac{L+U}{2}[/tex]
[tex]\overline x = \frac{65.3+73.7}{2}\\\overline x = \frac{139}{2}\\\overline x = 69.5[/tex]
Hence, the sample mean is 69.5
Factor completely 2x3y + 18xy - 10x2y - 90y. I need this done today in a few minutes.
Answer:
2y (x^2+9) ( x-5)
Step-by-step explanation:
2x^3y + 18xy - 10x^2y - 90y
Factor out the common factor of 2y
2y(x^3+9x-5x^2-45)
Then factor by grouping
2y(x^3+9x -5x^2-45)
Taking x from the first group and -5 from the second
2y( x (x^2+9) -5(x^2+9))
Now factor out (x^2+9)
2y (x^2+9) ( x-5)
Irvin buys a car for $21 comma 804. It depreciates 25% each year that he owns it. What is the depreciated value of the car after 1 yr? after 2 yr? The depreciated value of the car after 1 yr is $? The depreciated value of the car after 2 yr is $?
Answer:
The depreciated value of the car after 1 yr is $16,353
The depreciated value of the car after 2 yr is $12,264.75
Step-by-step explanation:
Given
purchase amount P= $21,804
rate of depreciation R= 25%
applying the formula for the car deprecation we have
[tex]A= P*(1-\frac{R}{100} )^n[/tex]
Where,
A is the value of the car after n years,
P is the purchase amount,
R is the percentage rate of depreciation per annum,
n is the number of years after the purchase.
1. The depreciated value of the car after 1 yr is
n=1
[tex]A= 21,804*(1-\frac{25}{100} )^1\\\\A= 21,804*(1-0.25 )^1\\\\A= 21,804*0.75\\\\A= 16353[/tex]
The depreciated value of the car after 1 yr is $16,353
2. The depreciated value of the car after 2 yr is
n=2
[tex]A= 21,804*(1-\frac{25}{100} )^2\\\\A= 21,804*(1-0.25 )^2\\\\A= 21,804*0.75^2\\\\A= 21,804*0.5625\\\\A= 12264.75[/tex]
The depreciated value of the car after 2 yr is $12,264.75
If 2x+9<32 then x could be
Answer:
x < 11.5
Step-by-step explanation:
2x + 9 < 32
(2x + 9) - 9 < 32 - 9
2x < 23
2x/2 < 23/2
x < 11.5
Answer:
x < 11 1/2
Step-by-step explanation:
2x+9<32
Subtract 9 from each side
2x+9-9 < 32-9
2x<23
Divide by 2
2x/2 <23/2
x < 11 1/2
X is any number less than 11 1/2
The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 51 households is monitored for one year to determine aluminum usage. If the population standard deviation of annual usage is 12.2 pounds, what is the probability that the sample mean will be each of the following? Appendix A Statistical Tables a. More than 61 pounds
Answer:
0.007
Step-by-step explanation:
We were told in the above question that a random sample of 51 households is monitored for one year to determine aluminum usage
Step 1
We would have to find the sample standard deviation.
We use the formula = σ/√n
σ = 12.2 pounds
n = number of house holds = 51
= 12.2/√51
Sample Standard deviation = 1.7083417025.
Step 2
We find the z score for when the sample mean is more than 61
z-score formula is z = (x-μ)/σ
where:
x = raw score = 61 pounds
μ = the population mean = 56.8 pounds
σ = the sample standard deviation = 1.7083417025
z = (x-μ)/σ
z = (61 - 56.8)/ 1.7083417025
z = 2.45852
Finding the Probability using the z score table
P(z = 2.45852) = 0.99302
P(x>61) = 1 - P(z = 2.45852) = 0.0069755
≈ 0.007
Therefore,the probability that the sample mean will be more than 61 pounds is 0.007
Profit Function for Producing Thermometers The Mexican subsidiary of ThermoMaster manufactures an indoor-outdoor thermometer. Management estimates that the profit (in dollars) realizable by the company for the manufacture and sale of x units of thermometers each week is represented by the function below, where x ≥ 0. Find the interval where the profit function P is increasing and the interval where P is decreasing. (Enter your answer using interval notation.) P(x) = −0.004x2 + 6x − 5,000 Increasing: Decreasing:
Answer:
Increasing: [tex](0, 750)[/tex]
Decreasing: [tex](750, \infty)[/tex]
Step-by-step explanation:
Critical points:
The critical points of a function f(x) are the values of x for which:
[tex]f'(x) = 0[/tex]
For any value of x, if f'(x) > 0, the function is increasing. Otherwise, if f'(x) < 0, the function is decreasing.
The critical points help us find these intervals.
In this question:
[tex]P(x) = -0.004x^{2} + 6x - 5000[/tex]
So
[tex]P'(x) = -0.008x + 6[/tex]
Critical point:
[tex]P'(x) = 0[/tex]
[tex]-0.008x + 6 = 0[/tex]
[tex]0.008x = 6[/tex]
[tex]x = \frac{6}{0.008}[/tex]
[tex]x = 750[/tex]
We have two intervals:
(0, 750) and [tex](750, \infty)[/tex]
(0, 750)
Will find P'(x) when x = 1
[tex]P'(x) = -0.008x + 6 = -0.008*1 + 6 = 5.992[/tex]
Positive, so increasing.
Interval [tex](750, \infty)[/tex]
Will find P'(x) when x = 800
[tex]P'(x) = -0.008x + 6 = -0.008*800 + 6 = -0.4[/tex]
Negative, then decreasing.
Answer:
Increasing: [tex](0, 750)[/tex]
Decreasing: [tex](750, \infty)[/tex]
The area of a rectangular horse pasture is 268,500 square yards. The length of the pasture is 5 yards less than three times the width. What is the width of the pasture in yards? Do not include units in your answer. Please help right away! Thank you very much!
Answer: width = 300
Step-by-step explanation:
Area (A) = Length (L) x width (w)
Given: A = 268,500
L = 3w - 5
w = w
268,500 = (3w - 5) x (w)
268,500 = 3w² - 5w
0 = 3w² - 5w - 268,500
0 = (3w + 895) (w - 300)
0 = 3w + 895 0 = w - 300
-985/3 = w 300 = w
Since width cannot be negative, disregard w = -985/3
So the only valid answer is: w = 300
Suppose you just purchased a digital music player and have put 12 tracks on it. After listening to them you decide that you like 2 of the songs. With the random feature on your player, each of the 12 songs is played once in random order. Find the probability that among the first two songs played (a) You like both of them. Would this be unusual? (b) You like neither of them. (c) You like exactly one of them. (d) Redo (a)-(c) if a song can be replayed before all 12 songs are played.
Answer:
The answer is below
Step-by-step explanation:
We have the following information:
Number of songs you like = 2
Total number of songs = 12
a) P(you like both of them) = 2/12 x 1/11 = 0.015
This is unusual because the probability of the event is less than 0.05
b) P(you like neither of them) = 10/12 x 9/11 = 0.68
c) P(you like exactly one of them) = 2 x 2/12 x 10/11 = 0.30
d) If a song can be replayed before all 12,
P(you like both of them) = 2/12 x 2/12 =0.027
This is unusual because the probability of the event is less than 0.05
P(you like neither of them) = 9/12 x 9/12 = 0.5625
P(you like exactly one of them) = 2 x 2/12 x 9/12 = 0.25
Find the indicated conditional probability
using the following two-way table:
P( Drive to school | Sophomore ) = [?]
Round to the nearest hundredth.
Answer:
0.07
Step-by-step explanation:
The number of sophmores is 2+25+3 = 30.
Of these sophmores, 2 drive to school.
So the probability that a student drives to school, given that they are a sophmore, is 2/30, or approximately 0.07.
Answer:
[tex]\large \boxed{0.07}[/tex]
Step-by-step explanation:
The usual question is, "What is the probability of A, given B?"
They are asking, "What is the probability that you are driving to school if you are a sophomore (rather than taking the bus or walking)?"
We must first complete your frequency table by calculating the totals for each row and column.
The table shows that there are 30 students, two of whom drive to school.
[tex]P = \dfrac{2}{30}= \mathbf{0.07}\\\\\text{The conditional probability is $\large \boxed{\mathbf{0.07}}$}[/tex]