Answer:
20 years old.
Step-by-step explanation:
Let us say that the man's age is represented by x and the son's age is represented by y.
As of now, x = 2y.
In 20 years, both ages will increase by 20. We can have an equation where the son's age increased by 20 equals 2/3 of the man's age plus 20.
(y + 20) = 2/3(x + 20)
Since x = 2y...
y + 20 = 2/3(2y + 20)
3/2y + 30 = 2y + 20
2y + 20 = 3/2y + 30
1/2y = 10
y = 20
To check our work, the man's age is currently double his son's, so the man is 40 and the son is 20. In 20 years, the man will be 60 and the son will be 40. 40 / 60 = 2/3, so the son's age is 2/3 of his father's.
So, the son's present age is 20 years old.
Hope this helps!
Simplify the expression (5j+5) – (5j+5)
Answer:
0
Step-by-step explanation:
multiply the negative thru the right part of the equation so, 5j+5-5j-5. The 5j and the 5 than cancel out with each other. Hope this helps!
Answer:
0
Explanation:
step 1 - remove the parenthesis from the expression
(5j + 5) - (5j + 5)
5j + 5 - 5j - 5
step 2 - combine like terms
5j + 5 - 5j - 5
5j - 5j + 5 - 5
0 + 0
0
therefore, the simplified form of the given expression is 0.
[!] Urgent [!] Find the domain of the graphed function.
Which of the following relations is a function?
A{(3,-1), (2, 3), (3, 4), (1,7)}
B{(1, 2), (2, 3), (3, 4), (4, 5)}.
C{(3, 0), (4, -3), (6, 7), (4,4)}
D{(1, 2), (1, 3), (2, 8), (3, 9)}
Answer:
B
Step-by-step explanation:
A is not a function because the same x value is repeated twice with different y values. The same goes for C and D so the answer is C.
Answer:
B.
Step-by-step explanation:
Well a relation is a set of points and a function is a relation where every x value corresponds to only 1 y value.
So lets see which x values in these relations have only 1 y value.
A. Well a isn’t a function because the number 3 which is a x value had two y values which are -1 and 4.
B. This relation is a function because there are no similar x values.
C. This is not a function because the x value 4 has two y values which are 4 and -3.
D. This is not a function because the number 1 has 2 and 3 as y values.
The dimensions of a closed rectangular box are measured as 96 cm, 58 cm, and 48 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.
Answer:
161.6 cm²Step-by-step explanation:
Surface Area of the rectangular box = 2(LW+LH+WH)
L is the length of the box
W is the width of the box
H is the height of the box
let dL, dW and dH be the possible error in the dimensions L, W and H respectively.
Since there is a possible error of 0.2cm in each dimension, then dL = dW = dH = 0.2cm
The surface Area of the rectangular box using the differentials is expressed as shown;
S = 2{(LdW+WdL)+(LdH+HdL)+(WdH+HdW)]
Also given L = 96cm W = 58cm and H = 48cm, on substituting this given values and the differential error, we will have;
S = 2{(96*0.2+58*0.2) + (96*0.2+48*0.2)+(58*0.2+48*0.2)}
S = 2{19.2+11.6+19.2+9.6+11.6+9.6}
S = 2(80.8)
S = 161.6 cm²
Hence, the surface area of the box is 161.6 cm²
Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year. Which of the following choices is the correct function? a p(s) = 114000• 0.985x b p(s) = 114000x c p(s) = 114000x + 0.985 d None of these choices are correct.
Answer: D
Step-by-step explanation:
According to the question, Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year
The initial population Po = 114000
Rate = 1.5% = 0.015
The declining population formula will be:
P = Po( 1 - R%)x^2
The decay formula
Since the population is decreasing, take away 0.015 from 1
1 - 0.015 = 0.985
Substitutes all the parameters into the formula
P(s) = 114000(0.985)x^2
P(s) = 114000× 0985x^2
The correct answer is written above.
Since option A does not have square of x, we can therefore conclude that the answer is D - non of the choices is correct.
find the value of k if x minus 2 is a factor of P of X that is X square + X + k
Answer:
k = -6
Step-by-step explanation:
hello
saying that (x-2) is a factor of [tex]x^2+x+k[/tex]
means that 2 is a zero of
[tex]x^2+x+k=0 \ so\\2^2+2+k=0\\<=> 4+2+k=0\\<=> 6+k =0\\<=> k = -6[/tex]
and we can verify as
[tex](x^2+x-6)=(x-2)(x+3)[/tex]
so it is all good
hope this helps
a) Al usar un microscopio el microscopio se amplía una célula 400 veces. Escribe el factor de ampliación como cociente o como escala.
b) La imagen de una célula usando dicho microscopio mide 1,5 mm ¿ Cuánto mide la célula en la realidad?
Answer:
x = 0,00375 mm
Step-by-step explanation:
a) El factor de ampliación es 400/1 es decir el tamaño real se verá ampliado 400 veces mediante el uso del microscopio
b) De acuerdo a lo establecido en la respuesta a la pregunta referida en a (anterior) podemos establecer una regla de tres, según:
Si al microscopio el tamaño de la célula es 1,5 mm, cual será el tamaño verdadero ( que es reducido 400 en relación al que veo en el microscopio)
Es decir 1,5 mm ⇒ 400
x (mm) ⇒ 1 (tamaño real de la célula)
Entonces
x = 1,5 /400
x = 0,00375 mm
Good Morning can I get some help please?
Answer:
5x + 10 = 25
Subtract 10 on each side to make x alone
5x = 15
divide by 5 on each side
x=3 so x=3
3x + 12 = 48
48-12=36
3x=36
divide by 3
x=12
4x + 8 = 16
4x = 8
x=2
2x + 15=25
2x=10
x=5
5x + 20 = 50
5x=30
x=6
hope this helps
1. 3
2.12
3.2
4.5
5.6
Step-by-step explanation:
Answer:
x = 3x = 12x = 2x = 5x = 6Step by step explanation
First:
Move the constant to the Right Hand Side and change its signCalculate the differenceDivideCalculateSolution,
1. 5x + 10 = 25
Move constant to the R.H.S and change its sign:
5x = 25 - 10
Calculate the difference
5x = 15
Divide both sides by 5
5x/5 = 15/5
calculate
X = 3
2. 3x + 12 = 48
or, 3x = 48 - 12
or, 3x = 36
or, 3x/x = 36/3
x = 12
3. 4x + 8 = 16
or, 4x = 16 - 8
or, 4x = 8
or, 4x/x = 8/4
x = 2
4. 2x + 15 = 25
or, 2x = 25 - 15
or, 2x = 10
or, 2x/x= 10/2
x = 5
5. 5x + 20 = 50
or, 5x = 50-20
or, 5x = 30
or, 5x/x = 30/5
x = 6
Hope this helps...
Good luck on your assignment...
An instructor asks students to rate their anxiety level on a scale of 1 to 100 (1 being low anxiety and 100 being high anxiety) just before the students take their final exam. The responses are shown below. Construct a relative frequency table for the instructor using five classes. Use the minimum value from the data set as the lower class limit for the first row, and use the lowest possible whole-number class width that will allow the table to account for all of the responses. Use integers or decimals for all answers.
48,50,71,58,56,55,53,70,63,74,64,33,34,39,49,60,65,84,54,58
Provide your answer below:
Lower Class Limit Upper Class Limit Relative Frequency
Answer:
The frequency table is shown below.
Step-by-step explanation:
The data set arranged ascending order is:
S = {33 , 34 , 39 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 58, 60 , 63 , 64 , 65 , 70 , 71 , 74 , 84}
It is asked to use the minimum value from the data set as the lower class limit for the first row.
So, the lower class limit for the first class interval is 33.
To determine the class width compute the range as follows:
[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]
[tex]=84-33\\=51[/tex]
The number of classes requires is 5.
The class width is:
[tex]\text{Class width}=\frac{Range}{5}=\frac{51}{2}=10.2\approx 10[/tex]
So, the class width is 10.
The classes are:
33 - 42
43 - 52
53 - 62
63 - 72
73 - 82
83 - 92
Compute the frequencies of each class as follows:
Class Interval Values Frequency
33 - 42 33 , 34 , 39 3
43 - 52 48 , 49 , 50 3
53 - 62 53 , 54 , 55 , 56 , 58 , 58, 60 7
63 - 72 63 , 64 , 65 , 70 , 71 5
73 - 82 74 1
83 - 92 84 1
TOTAL 20
Compute the relative frequencies as follows:
Class Interval Frequency Relative Frequency
33 - 42 3 [tex]\frac{3}{20}\times 100\%=15\%[/tex]
43 - 52 3 [tex]\frac{3}{20}\times 100\%=15\%[/tex]
53 - 62 7 [tex]\frac{7}{20}\times 100\%=35\%[/tex]
63 - 72 5 [tex]\frac{5}{20}\times 100\%=25\%[/tex]
73 - 82 1 [tex]\frac{1}{20}\times 100\%=5\%[/tex]
83 - 92 1 [tex]\frac{1}{20}\times 100\%=5\%[/tex]
TOTAL 20 100%
Two balls are drawn in succession out of a box containing 2 red and 5 white balls. Find the probability that at least 1 ball was red, given that the first ball was (Upper A )Replaced before the second draw. (Upper B )Not replaced before the second draw.
Answer:
With replacement = 14/49without replacement = 3/7Step-by-step explanation:
Since there are 2 red and 5 white balls in the box, the total number of balls in the bag = 2+5 = 7balls.
Probability that at least 1 ball was red, given that the first ball was replaced before the second can be calculated as shown;
Since at least 1 ball picked at random, was red, this means the selection can either be a red ball first then a white ball or two red balls.
Probability of selecting a red ball first then a white ball with replacement = (2/7*5/7) = 10/49
Probability of selecting two red balls with replacement = 2/7*2/7 = 4/49
The probability that at least 1 ball was red given that the first ball was replaced before the second draw= 10/49+4/49 = 14/49
If the balls were not replaced before the second draw
Probability of selecting a red ball first then a white ball without replacement = (2/7*5/6) = 10/42 = 5/21
Probability of selecting two red balls without replacement = 2/7*2/6 = 4/42 = 2/21
The probability that at least 1 ball was red given that the first ball was not replaced before the second draw = 5/21+4/21 = 9/21 = 3/7
The probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.
Since two balls are drawn in succession out of a box containing 2 red and 5 white balls, to find the probability that at least 1 ball was red, given that the first ball was A) replaced before the second draw; and B) not replaced before the second draw; the following calculations must be performed:
2 + 5 = X7 = X
(2/7 + 2/7) / 2 = X (0.285 + 0.285) / 2 = X 0.285 = X
(2/7 + 1/6) / 2 = X (0.28 + 0.16) / 2 = X 0.451 / 2 = X 0.225 = X
Therefore, the probability that at least 1 ball was red, given that the first ball was replaced before the second draw is 28.5%; and the probability that at least 1 ball was red, given that the first ball was not replaced before the second draw is 22.5%.
Learn more about probability in https://brainly.com/question/14393430
Find the indicated conditional probability
using the following two-way table:
P( Drive to school | Sophomore ) = [?]
Round to the nearest hundredth.
Answer:
0.07
Step-by-step explanation:
The number of sophmores is 2+25+3 = 30.
Of these sophmores, 2 drive to school.
So the probability that a student drives to school, given that they are a sophmore, is 2/30, or approximately 0.07.
Answer:
[tex]\large \boxed{0.07}[/tex]
Step-by-step explanation:
The usual question is, "What is the probability of A, given B?"
They are asking, "What is the probability that you are driving to school if you are a sophomore (rather than taking the bus or walking)?"
We must first complete your frequency table by calculating the totals for each row and column.
The table shows that there are 30 students, two of whom drive to school.
[tex]P = \dfrac{2}{30}= \mathbf{0.07}\\\\\text{The conditional probability is $\large \boxed{\mathbf{0.07}}$}[/tex]
Suppose 150 students are randomly sampled from a population of college students. Among sampled students, the average IQ score is 115 with a standard deviation of 10. What is the 99% confidence interval for the average IQ of college students? Possible Answers: 1) A) E =1.21 B) E = 1.25 C) E =2.52 D) E = 2.11 2) A) 112.48 < μ < 117.52 B) 113.79 < μ < 116.21 C) 112.9 < μ < 117.10 D) 113.75 < μ < 116.3
Answer:
99% confidence interval for the mean of college students
A) 112.48 < μ < 117.52
Step-by-step explanation:
step(i):-
Given sample size 'n' =150
mean of the sample = 115
Standard deviation of the sample = 10
99% confidence interval for the mean of college students are determined by
[tex](x^{-} -t_{0.01} \frac{S}{\sqrt{n} } , x^{-} + t_{0.01} \frac{S}{\sqrt{n} } )[/tex]
Step(ii):-
Degrees of freedom
ν = n-1 = 150-1 =149
t₁₄₉,₀.₀₁ = 2.8494
99% confidence interval for the mean of college students are determined by
[tex](115 -2.8494 \frac{10}{\sqrt{150} } , 115 + 2.8494\frac{10}{\sqrt{150} } )[/tex]
on calculation , we get
(115 - 2.326 , 115 +2.326 )
(112.67 , 117.326)
helpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
━━━━━━━☆☆━━━━━━━
▹ Answer
0.25 = 1/4 because 25/100 = 1/4
▹ Step-by-Step Explanation
0.25 to a fraction → 25/100
25/100 = 1/4
Therefore, this statement is true. (0.25 = 1/4 because 25/100 = 1/4)
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
Please help with this
Answer:
C) 42
Step-by-step explanation:
The parallel lines divide the transversals proportionally.
x/35 = 30/25
x = 35(6/5) . . . . multiply by 35, reduce the fraction
x = 42
Which value of x makes 7+5(x-3)=227+5(x−3)=227, plus, 5, left parenthesis, x, minus, 3, right parenthesis, equals, 22 a true statement? Choose 1 answer:
Answer:
7 + 5(x - 3) = 22
5(x - 3) = 15
x - 3 = 3
x = 6
Answer:
x = 6
Step-by-step explanation:
Step 1: Distribute 5
7 + 5x - 15 = 22
Step 2: Combine like terms
5x - 8 = 22
Step 3: Add 8 to both sides
5x = 30
Step 4: Divide both sides by 5
x = 6
A triangular plot of land has one side along a straight road measuring 147147 feet. A second side makes a 2323degrees° angle with the road, and the third side makes a 2222degrees° angle with the road. How long are the other two sides?
Answer:
81.23 ft and 77.88 ft long
Step-by-step explanation:
The sum of the internal angles of a triangle is 180 degrees, the missing angle is:
[tex]a+b+c=180\\a+23+22=180\\a=135^o[/tex]
According to the Law of Sines:
[tex]\frac{A}{sin(a)}= \frac{B}{sin(b)}= \frac{C}{sin(c)}[/tex]
Let A be the side that is 147 feet long, the length of the other two sides are:
[tex]\frac{A}{sin(a)}= \frac{B}{sin(b)}\\B=\frac{sin(23)*147}{sin(135)}\\B=81.23\ ft\\\\\frac{A}{sin(a)}= \frac{C}{sin(c)}\\C=\frac{sin(22)*147}{sin(135)}\\C=77.88\ ft[/tex]
The other two sides are 81.23 ft and 77.88 ft long
The length of a rectangle is 5M more than twice the width and the area of the rectangle is 63M to find the dimension of the rectangle
Answer:
width = 4.5 m
length = 14 m
Step-by-step explanation:
okay so first you right down that L = 5 + 2w
then as you know that Area = length * width so you replace the length with 5 + 2w
so it's A = (5 +2w) * w = 63
then 2 w^2 + 5w - 63 =0
so we solve for w which equals 4.5 after that you solve for length : 5+ 2*4.5 = 14
Find the area of this parallelogram.
6 cm
11 cm
Step-by-step explanation:
given,
base( b) = 6cm
height (h)= 11cm
now, area of parallelogram (a)= b×h
or, a = 6cm ×11cm
therefore the area of parallelogram (p) is 66cm^2.
hope it helps...
1. Growth of Functions (11 points) (1) (4 points) Determine whether each of these functions is O(x 2 ). Proof is not required but it may be good to try to justify it (a) 100x + 1000 (b) 100x 2 + 1000
Answer:
See explanation
Step-by-step explanation:
To determine whether each of these functions is [tex]O(x^2)[/tex], we apply these theorems:
A polynomial is always O(the term containing the highest power of n)Any O(x) function is always [tex]O(x^2)[/tex].(a)Given the function: f(x)=100x+1000
The highest power of n is 1.
Therefore f(x) is O(x).
Since any O(x) function is always [tex]O(x^2)[/tex], 100x+1000 is [tex]O(x^2)[/tex].
[tex](b) f(x)=100x^ 2 + 1000[/tex]
The highest power of n is 2.
Therefore the function is [tex]O(x^2)[/tex].
Answer:
i think its 2000
Step-by-step explanation:
Perform the operation 3/a^2+2/ab^2
Answer:
Step-by-step explanation:
Least common denominator = a²b²
[tex]\frac{3}{a^{2}}+\frac{2}{ab^{2}}=\frac{3*b^{2}}{a^{2}*b^{2}}+\frac{2*a}{ab^{2}*a}\\\\=\frac{3b^{2}}{a^{2}b^{2}}+\frac{2a}{a^{2}b^{2}}\\\\=\frac{3b^{2}+2a}{a^{2}b^{2}}[/tex]
Which proportion would convert 18 ounces into pounds?
Answer:
16 ounces = 1 pound
Step-by-step explanation:
You would just do 18/16 = 1.125 pounds. There are always 16 ounces in a pound, so it always works like this
answer if u love cats & dogs
Answer:
(7, 5.25) lies on the graph.
Step-by-step explanation:
We are given the following values
x = 4, 6, 8, 12 and corresponding y values are:
y = 3, 4.5, 6, 9
Let us consider two points (4, 6) and (6, 4.5) and try to find out the equation of line.
Equation of a line passing through two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given as:
[tex]y=mx+c[/tex]
where m is the slope.
(x,y) are the coordinates from where the line passes.
c is the y intercept.
Here,
[tex]x_{1} = 4\\x_{2} = 6\\y_{1} = 3\\y_{2} = 4.5[/tex]
Formula for slope is:
[tex]m = \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]m = \dfrac{4.5-3}{6-4}\\\Rightarrow m = \dfrac{1.5}{2}\\\Rightarrow m = \dfrac{3}{4}[/tex]
Now, the equation of line becomes:
[tex]y=\dfrac{3}{4}x+c[/tex]
Putting the point (4,3) in the above equation to find c:
[tex]3=\dfrac{3}{4}\times 4+c\\\Rightarrow 3=3+c\\\Rightarrow c =0[/tex]
So, final equation of given function is:
[tex]y=\dfrac{3}{4}x[/tex]
OR
[tex]4y=3x[/tex]
As per the given options, the point (7, 5.25) satisfies the equation.
So correct answer is [tex](7, 5.25)[/tex].
If 2x+9<32 then x could be
Answer:
x < 11.5
Step-by-step explanation:
2x + 9 < 32
(2x + 9) - 9 < 32 - 9
2x < 23
2x/2 < 23/2
x < 11.5
Answer:
x < 11 1/2
Step-by-step explanation:
2x+9<32
Subtract 9 from each side
2x+9-9 < 32-9
2x<23
Divide by 2
2x/2 <23/2
x < 11 1/2
X is any number less than 11 1/2
the ellipse is centered at the origin, has axes of lengths 8 and 4, its major axis is horizontal. how do you write an equation for this ellipse?
Answer:
The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].
Step-by-step explanation:
The standard equation of the ellipse is described by the following expression:
[tex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1[/tex]
Where [tex]a[/tex] and [tex]b[/tex] are the horizontal and vertical semi-axes, respectively. Given that major semi-axis is horizontal, [tex]a > b[/tex]. Then, the equation for this ellipse is written in this way: (a = 8, b = 4)
[tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex]
The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].
The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 51 households is monitored for one year to determine aluminum usage. If the population standard deviation of annual usage is 12.2 pounds, what is the probability that the sample mean will be each of the following? Appendix A Statistical Tables a. More than 61 pounds
Answer:
0.007
Step-by-step explanation:
We were told in the above question that a random sample of 51 households is monitored for one year to determine aluminum usage
Step 1
We would have to find the sample standard deviation.
We use the formula = σ/√n
σ = 12.2 pounds
n = number of house holds = 51
= 12.2/√51
Sample Standard deviation = 1.7083417025.
Step 2
We find the z score for when the sample mean is more than 61
z-score formula is z = (x-μ)/σ
where:
x = raw score = 61 pounds
μ = the population mean = 56.8 pounds
σ = the sample standard deviation = 1.7083417025
z = (x-μ)/σ
z = (61 - 56.8)/ 1.7083417025
z = 2.45852
Finding the Probability using the z score table
P(z = 2.45852) = 0.99302
P(x>61) = 1 - P(z = 2.45852) = 0.0069755
≈ 0.007
Therefore,the probability that the sample mean will be more than 61 pounds is 0.007
The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?
Answer:
a) Mean = 0.125 inch
Standard deviation = 0.13975 inch
b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673
c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673
Step-by-step explanation:
Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)
Let the distribution of the width of the door be X₂ (μ₂, σ₂²)
The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂
when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with
Mean = Σλᵢμᵢ
λᵢ = coefficient of each disteibution in the manner that they are combined
μᵢ = Mean of each distribution
Combined variance = σ² = Σλᵢ²σᵢ²
λ₁ = 1, λ₂ = -1
μ₁ = 24 inches
μ₂ = 23 7/8 inches = 23.875 inches
σ₁² = (1/8)² = (1/64) = 0.015625
σ₂ ² = (1/16)² = (1/256) = 0.00390625
Combined mean = μ = 24 - 23.875 = 0.125 inch
Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125
Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch
b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)
This is a normal distribution problem
Mean = μ = 0.125 inch
Standard deviation = σ = 0.13975 inch
We first normalize/standardize 0.25 inch
The standardized score of any value is that value minus the mean divided by the standard deviation.
z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89
P(X > 0.25) = P(z > 0.89)
Checking the tables
P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673
c) Probability that the door does not fit in the casing
If X₂ > X₁, X < 0
P(X < 0)
We first normalize/standardize 0 inch
z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89
P(X < 0) = P(z < -0.89)
Checking the tables
P(X < 0) = P(z < -0.89) = 0.18673
Hope this Helps!!!
You spend 6,380.00 a year for rent. This is 22% of your income. What is your income?
Answer: 29,000.00
Step-by-step explanation:
Let the income=x. 22%=0.22.
So 6380/x=0.22
x=6380/0.22=29,000.00
An industrial psychologist conducted an experiment in which 40 employees that were identified as "chronically tardy" by their managers were divided into two groups of size 20. Group 1 participated in the new "It's Great to be Awake!" program, while Group 2 had their pay docked. The following data represent the number of minutes that employees in Group 1 were late for work after participating in the program.
Does the probability plot suggest that the sample was obtained from a population that is normally distributed? Provide TWO reasons for your classification.
Answer:
The probability plot of this distribution shows that it is approximately normally distributed..
Check explanation for the reasons.
Step-by-step explanation:
The complete question is attached to this solution provided.
From the cumulative probability plot for this question, we can see that the plot is almost linear with no points outside the band (the fat pencil test).
The cumulative probability plot for a normal distribution isn't normally linear. It's usually fairly S shaped. But, when the probability plot satisfies the fat pencil test, we can conclude that the distribution is approximately linear. This is the first proof that this distribution is approximately normal.
Also, the p-value for the plot was obtained to be 0.541.
For this question, we are trying to check the notmality of the distribution, hence, the null hypothesis would be that the distribution is normal and the alternative hypothesis would be that the distribution isn't normal.
The interpretation of p-valies is that
When the p-value is greater than the significance level, we fail to reject the null hypothesis (normal hypothesis) and but if the p-value is less than the significance level, we reject the null hypothesis (normal hypothesis).
For this distribution,
p-value = 0.541
Significance level = 0.05 (Evident from the plot)
Hence,
p-value > significance level
So, we fail to reject the null or normality hypothesis. Hence, we can conclude that this distribution is approximately normal.
Hope this Helps!!!
¿Cuál serie numérica tiene como regla general Xn = 2n +1?
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5
Answer:
The series of numbers that correspond to the general rule of [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.
Step-by-step explanation:
We are given with the following series options below;
a. 3, 5, 7, 9
b. 2, 4, 5, 8
c. 4, 6, 8,10
d. 2, 3, 4, 5
And we have to identify what number series has a general rule as [tex]X_n=2n+1[/tex].
For this, we will put the values of n in the above expression and then will see which series is obtained as a result.
So, the given expression is ; [tex]X_n=2n+1[/tex]
If we put n = 1, then;
[tex]X_1=(2\times 1)+1[/tex]
[tex]X_1 = 2+1 = 3[/tex]
If we put n = 2, then;
[tex]X_2=(2\times 2)+1[/tex]
[tex]X_2 = 4+1 = 5[/tex]
If we put n = 3, then;
[tex]X_3=(2\times 3)+1[/tex]
[tex]X_3 = 6+1 = 7[/tex]
If we put n = 4, then;
[tex]X_4=(2\times 4)+1[/tex]
[tex]X_4 = 8+1 = 9[/tex]
Hence, the series of numbers that correspond to the general rule of [tex]X_n=2n+1[/tex] is {3, 5, 7, 9}.
Legal descriptions tend to prefer neat straight lines from point to point, regardless of describing a square, rectangle, triangle or even a smooth circle. When might a property boundary end up being a squiggly line?
Answer:
When describing a property line drawn down the center of a creek bed