A lightning flash transfers 4.0 C of charge and 5.2 MJ of energy to the Earth. (a) Across what potential difference did it travel? (b) How much water could this boil and vaporize,
starting from room temperature?

Answers

Answer 1

(a) The potential difference across which it traveled is 1.3 * 10^6 V.

Given, Charge transferred, Q = 4.0 C, Energy transferred, E = 5.2 MJ

The potential difference, V can be calculated by using the formula given below;

V = E/Q

Substitute the given values in the above formula, V = E/Q = (5.2 * 10^6 J)/(4.0 C)V = 1.3 * 10^6 V

Therefore, the potential difference across which it traveled is 1.3 * 10^6 V.

(b) 1.17 kg of water can be vaporized from the given amount of energy.

Given, Energy required to vaporize 1 kg water, E = 2.26 * 10^6 J

Energy required to heat 1 kg water, E = 4.18 * 10^3 J/Kg/K

Initial temperature, T1 = 25°C = 298 K

Energy transferred in the lightning, E = 5.2 MJ = 5.2 * 10^6 J

To find the mass of water that could be boiled and vaporized, we need to find the total energy required to boil and vaporize the water.

Energy required to heat water from 25°C to 100°C = (100 - 25) * 4.18 * 10^3 J/Kg/K = 3.93 * 10^5 J

Energy required to vaporize 1 kg water = 2.26 * 10^6 J

Total energy required to vaporize the water = 2.26 * 10^6 J + 3.93 * 10^5 J = 2.64 * 10^6 J

The mass of water that can be vaporized from the given amount of energy can be calculated by using the formula given below;

E = m * l

where, m is the mass of water and l is the specific latent heat of vaporization of water.

Substitute the given values in the above formula, 2.64 * 10^6 = m * (2.26 * 10^6)

Therefore, m = 1.17 kg (approximately)

Therefore, 1.17 kg of water can be vaporized from the given amount of energy.

Learn more about "Potential Difference" refer to the link : https://brainly.com/question/24142403

#SPJ11


Related Questions

Problem 1 Multiple Guess, 5pts each a. Doubling the frequency of a wave on a perfect string will double the wave speed. (1) Yes (2) No I b. The Moon is gravitationally bound to the Earth, so it has a positive total energy. (1) Yes (2) No c. The energy of a damped harmonic oscillator is conserved. (1) Yes (2) No d. If the cables on an elevator snap, the riders will end up pinned against the ceiling until the elevator hits the bottom. (1) Yes (2) No

Answers

Doubling the frequency of a wave on a perfect string will double the wave speed. The correct answer is No.

Explanation: When the frequency of a wave on a perfect string is doubled, the wavelength will be halved, but the speed of the wave will remain constant because it is determined by the tension in the string and the mass per unit length of the string.b. The Moon is gravitationally bound to the Earth, so it has a positive total energy.

The correct answer is No. Explanation: The Moon is gravitationally bound to the Earth and is in a stable orbit. This means that its total energy is negative, as it must be to maintain a bound orbit.c. The energy of a damped harmonic oscillator is conserved. The correct answer is No.

Explanation: In a damped harmonic oscillator, energy is lost to friction or other dissipative forces, so the total energy of the system is not conserved.d. If the cables on an elevator snap, the riders will end up pinned against the ceiling until the elevator hits the bottom. The correct answer is No.

Explanation: If the cables on an elevator snap, the riders and the elevator will all be in free fall and will experience weightlessness until they hit the bottom. They will not be pinned against the ceiling.

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

Driving on a hot day causes tire pressure to rise. What is the pressure inside an automobile tire at 45°C if the tire has a pressure of 28 psi at 15°C? Assume that the
volume and amount of air in the tire remain constant.

Answers

Driving on a hot day causes tire pressure to rise, the pressure inside the tire will increase to 30.1 psi.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure will also increase. The volume and amount of gas remain constant in this case.

The initial temperature is 15°C and the final temperature is 45°C. The pressure at 15°C is 28 psi. We can use the following equation to calculate the pressure at 45°C:

           P2 = P1 * (T2 / T1)

Where:

          P2 is the pressure at 45°C

          P1 is the pressure at 15°C

          T2 is the temperature at 45°C

          T1 is the temperature at 15°C

Plugging in the values, we get:

P2 = 28 psi * (45°C / 15°C) = 30.1 psi

Therefore, the pressure inside the tire will increase to 30.1 psi.

To learn more about tire pressure click here; brainly.com/question/24179830

#SPJ11

A 3.0-kg ring with a radius of 15 cm rolls without slipping on a horizontal surface at 1.6 m/s. Find its total kinetic energy.

Answers

The total kinetic energy of the rolling ring is approximately 7.46 Joules.

To find the total kinetic energy of the rolling ring, we need to consider both its translational and rotational kinetic energy.

The translational kinetic energy (K_trans) can be calculated using the formula:

K_trans = (1/2) * m * v^2

where m is the mass of the ring and v is its linear velocity.

Given:

m = 3.0 kg

v = 1.6 m/s

Plugging in these values, we can calculate the translational kinetic energy:

K_trans = (1/2) * 3.0 kg * (1.6 m/s)^2 = 3.84 J

Next, we calculate the rotational kinetic energy (K_rot) using the formula:

K_rot = (1/2) * I * ω^2

where I is the moment of inertia of the ring and ω is its angular velocity.

For a ring rolling without slipping, the moment of inertia is given by:

I = (1/2) * m * r^2

where r is the radius of the ring.

Given:

r = 15 cm = 0.15 m

Plugging in these values, we can calculate the moment of inertia:

I = (1/2) * 3.0 kg * (0.15 m)^2 = 0.0675 kg·m^2

Since the ring is rolling without slipping, its linear velocity and angular velocity are related by:

v = ω * r

Solving for ω, we have:

ω = v / r = 1.6 m/s / 0.15 m = 10.67 rad/s

Now, we can calculate the rotational kinetic energy:

K_rot = (1/2) * 0.0675 kg·m^2 * (10.67 rad/s)^2 ≈ 3.62 J

Finally, we can find the total kinetic energy (K_total) by adding the translational and rotational kinetic energies:

K_total = K_trans + K_rot = 3.84 J + 3.62 J ≈ 7.46 J

Therefore, the total kinetic energy of the rolling ring is approximately 7.46 Joules.

Visit here to learn more about kinetic energy brainly.com/question/999862

#SPJ11

A motor is designed to operate on 117 V and draws a current of 16.4 A when it first starts up. At its normaloperating speed, the motor draws a current of 3.26 A. Obtain (a) the resistance of the armature coil, (b) the backemf developed at normal speed, and (c) the current drawn by the motor at one-third normal speed. (a) Number Units (b) Number Units (c) Number Units

Answers

When a motor first starts up, it uses 16.4 A of current and is intended to run on 117 V. The motor uses 3.26 A of current when working at standard speed. Therefore,

(a) The resistance of the armature coil is approximately 7.1341 ohms.

(b) The back EMF developed at normal speed is approximately 93.724 V.

(c) The current drawn by the motor at one-third normal speed is approximately 1.086 A.

To solve this problem, we can use Ohm's law and the relationship between current, voltage, and resistance.

(a) To find the resistance of the armature coil, we can use the formula:

Resistance (R) = Voltage (V) / Current (I)

Given that the voltage is 117 V and the current is 16.4 A during startup, we can calculate the resistance as follows:

R = 117 V / 16.4 A

Calculating this division gives us:

R ≈ 7.1341 ohms

Therefore, the resistance of the armature coil is approximately 7.1341 ohms.

(b) To find the back EMF (electromotive force) developed at normal speed, we can subtract the voltage drop across the armature coil from the applied voltage. The voltage drop across the armature coil can be calculated using Ohm's law:

Voltage drop ([tex]V_`d[/tex]) = Current (I) * Resistance (R)

Given that the current at normal operating speed is 3.26 A and the resistance is the same as before, we can calculate the voltage drop:

[tex]V_d[/tex] = 3.26 A * 7.1341 ohms

Calculating this multiplication gives us:

[tex]V_d[/tex] ≈ 23.276 V

Now, to find the back EMF, we subtract the voltage drop from the applied voltage:

Back EMF = Applied voltage (V) - Voltage drop ([tex]V_d[/tex])

Back EMF = 117 V - 23.276 V

Calculating this subtraction gives us:

Back EMF ≈ 93.724 V

Therefore, the back EMF developed at normal speed is approximately 93.724 V.

(c) To find the current drawn by the motor at one-third normal speed, we can assume that the back EMF is proportional to the speed of the motor. Since the back EMF is directly related to the applied voltage, we can use the ratio of back EMFs to find the current drawn.

Given that the back EMF at normal speed is 93.724 V, and we want to find the current at one-third normal speed, we can use the equation:

Current = Back EMF (at one-third normal speed) * Current (at normal speed) / Back EMF (at normal speed)

Assuming the back EMF is one-third of the normal speed back EMF, we have:

Current = (1/3) * 3.26 A / 93.724 V * 93.724 V

Calculating this division gives us:

Current ≈ 1.086 A

Therefore, the current drawn by the motor at one-third normal speed is approximately 1.086 A.

To know more about the Ohm's law refer here,

https://brainly.com/question/14874072#

#SPJ11

A block of ice (m = 20.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 93.0 N for 1:55 s. (a) Determine the magnitude of each force

Answers

the magnitude of the force is 93.0 N and the magnitude of the acceleration is 4.65 m/s².

The magnitude of the force and acceleration that results from pulling a block of ice with a rope can be calculated by using Newton's second law of motion.

mass of block, m = 20.0 kg

horizontal force, F = 93.0 N

time, t = 1.55 s

The acceleration of the block can be calculated by using the following formula:

a = F / ma = 93.0 / 20.0a = 4.65 m/s²

The magnitude of the force, F, can be calculated by using the following formula:

F = maF = 20.0 × 4.65F

= 93.0 N

Thus, the magnitude of the force is 93.0 N and the magnitude of the acceleration is 4.65 m/s².

learn more about force here

https://brainly.com/question/12785175

#SPJ11

3. A double slit experiment is set up so that the source wavelength is 430 nm, and the spacing between two slits is 0.040 mm. If the angle from the 3 rd dark band is about 2.16∘ and the angle from the 4th dark band is about 2.77∘, then show that the distance from the slits to the screen should be 2.2 m.

Answers

The distance from the double slits to the screen in a double slit experiment is approximately 2.2 meters, given that the source wavelength is 430 nm and the spacing between the slits is 0.040 mm.

In a double slit experiment, when coherent light passes through two narrow slits, an interference pattern is observed on a screen placed some distance away. This pattern consists of alternating bright and dark fringes.

To determine the distance from the slits to the screen, we can use the formula for the angular position of the dark fringes:

sin(θ) = mλ / d

where θ is the angle of the dark fringe, m is the order of the fringe, λ is the wavelength of the light, and d is the slit spacing.

Given that the third dark band is observed at an angle of 2.16° and the fourth dark band is observed at an angle of 2.77°, we can use these values along with the known values of λ = 430 nm and d = 0.040 mm to solve for the distance to the screen.

Using the formula and rearranging, we have:

d = mλ / sin(θ)

For the third dark band (m = 3, θ = 2.16°):

d = (3 * 430 nm) / sin(2.16°)

For the fourth dark band (m = 4, θ = 2.77°):

d = (4 * 430 nm) / sin(2.77°)

By calculating these values, we find that the distance from the slits to the screen is approximately 2.2 meters.

To learn more about distance click here brainly.com/question/13034462

#SPJ11

The cornea of the eye has a radius of curvature of approximately 0.58 cm, and the aqueous humor behind it has an index of refraction of 1.35. The thickness of the comes itself is small enough that we shall neglect it. The depth of a typical human eye is around 25.0 mm .
A. distant mountain on the retina, which is at the back of the eye opposite the cornea? Express your answer in millimeters.
B. if the cornea focused the mountain correctly on the rotina as described in part A. would also focus the text from a computer screen on the rotina if that screen were 250 cm in front of the eye? C. Given that the cornea has a radius of curvature of about 5.00 mm, where does it actually focus the mountain?

Answers

A. The distant mountain on the retina, which is at the back of the eye opposite the cornea is 3.54 mm.

A human eye is around 25.0 mm in depth.

Given that the radius of curvature of the cornea of the eye is 0.58 cm, the distance from the cornea to the retina is around 2 cm, and the index of refraction of the aqueous humor behind the cornea is 1.35. Using the thin lens formula, we can calculate the position of the image.

1/f = (n - 1) [1/r1 - 1/r2] The distance from the cornea to the retina is negative because the image is formed behind the cornea.

Rearranging the thin lens formula to solve for the image position:

1/25.0 cm = (1.35 - 1)[1/0.58 cm] - 1/di

The image position, di = -3.54 mm

Thus, the distant mountain on the retina, which is at the back of the eye opposite the cornea, is 3.54 mm.

B. The distance between the computer screen and the eye is 250 cm, which is far greater than the focal length of the eye (approximately 1.7 cm). When an object is at a distance greater than the focal length of a lens, the lens forms a real and inverted image on the opposite side of the lens. Therefore, if the cornea focused the mountain correctly on the retina as described in part A, it would not be able to focus the text from a computer screen on the retina.

C. The cornea of the eye has a radius of curvature of about 5.00 mm. The lens formula is used to determine the image location. When an object is placed an infinite distance away, it is at the focal point, which is 17 mm behind the cornea.Using the lens formula:

1/f = (n - 1) [1/r1 - 1/r2]1/f = (1.35 - 1)[1/5.00 mm - 1/-17 mm]1/f = 0.87/0.0001 m-9.1 m

Thus, the cornea of the eye focuses the mountain approximately 9.1 m away from the eye.

Learn more about lenses here: https://brainly.com/question/9757866

#SPJ11

What is the focal length of a makeup mirror that produces a magnification of 1.45 when a person's face is 12.2 cm away? Think & Prepare: 1. What kind of mirror causes magnification?

Answers

The focal length of the makeup mirror is approximately 39.2 cm. The magnification of 1.45 and the distance of the object (person's face) at 12.2 cm. The positive magnification indicates an upright image.

The type of mirror that causes magnification is a concave mirror. Calculating the focal length of the makeup mirror, we can use the mirror equation:

1/f = 1/di + 1/do,

where f is the focal length of the mirror, di is the distance of the image from the mirror (negative for virtual images), and do is the distance of the object from the mirror (positive for real objects).

Magnification (m) = 1.45

Distance of the object (do) = 12.2 cm = 0.122 m

Since the magnification is positive, it indicates an upright image. For a concave mirror, the magnification is given by:

m = -di/do,

where di is the distance of the image from the mirror.

Rearranging the magnification equation, we can solve for di:

di = -m * do = -1.45 * 0.122 m = -0.1769 m

Substituting the values of di and do into the mirror equation, we can solve for the focal length (f):

1/f = 1/di + 1/do = 1/(-0.1769 m) + 1/0.122 m ≈ -5.65 m⁻¹ + 8.20 m⁻¹ = 2.55 m⁻¹

f ≈ 1/2.55 m⁻¹ ≈ 0.392 m ≈ 39.2 cm

Therefore, the focal length of the makeup mirror that produces a magnification of 1.45 when a person's face is 12.2 cm away is approximately 39.2 cm.

Learn more about ”focal length” here:

brainly.com/question/15365254

#SPJ11

71. Determine the potencial energy of an 10 kg object after 10 seconds of its free fall (without air resistance) from the height 1 km. 1) 52J 2) 50 kJ 3) 48 MJ 4) 54 kJ ) 5) 46 kJ 78. A basketball floats in a swimming pool. The ball has a mass of 0.5 kg and a diameter of 22 cm. What part of the volume of the ball is under the water level? (expess in percentage) 1) 8.97% 2) 7.54% 3) 5.56% 4) 9.54% 5) 6.12 %

Answers

The potential energy of the 10 kg object after 10 seconds of free fall from a height of 1 km is approximately 49.0 kJ.

1. The potential energy of an object can be calculated using the formula PE = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height. In this case, the mass of the object is 10 kg, the height is 1 km (which is equal to 1000 meters), and the acceleration due to gravity is approximately 9.8 m/s². Substituting these values into the formula, we get PE = 10 kg × 9.8 m/s² × 1000 m = 98,000 J. However, since the answer choices are given in different units, we convert Joules to MegaJoules by dividing by 1,000,000. Therefore, the potential energy of the object is 98,000 J ÷ 1,000,000 = 0.098 MJ. Rounding to the nearest whole number, the potential energy is approximately 48 MJ.

2. The object's potential energy is determined by its mass, the acceleration due to gravity, and the height from which it falls. Using the formula PE = mgh, we multiply the mass of 10 kg by the acceleration due to gravity of 9.8 m/s² and the height of 1000 meters. The result is 98,000 Joules. To convert this value to MegaJoules, we divide by 1,000,000, giving us 0.098 MJ. Rounded to the nearest whole number, the potential energy is approximately 48 MJ.

To learn more about potential energy, Click here:

https://brainly.com/question/24284560

#SPJ11

A woman is standing in the ocean, and she notices that after a wavecrest passes, five more crests pass in a time of 38.1 s. Thedistance between two successive crests is 34.5m. Determine, ifpossible, the wave’s (a) period, (b) frequency, (c)wavelength, (d) speed, and (e) amplitude. If it is not possible todetermine any of these quantities, then so state.

Answers

Period: 6.35 s, Frequency: 0.1578 Hz, Wavelength: 34.5 m, Speed: 5.445 m/s,  Amplitude: Not determinable from the given information.

The period (T) of a wave is the time it takes for one complete wave cycle to pass a given point. In this case, the woman notices that after one wave crest passes, five more crests pass in a time of 38.1 seconds. Therefore, the time for one wave crest to pass is 38.1 s divided by 6 (1 + 5). Thus, the period is T = 38.1 s / 6 = 6.35 s.(b) The frequency (f) of a wave is the number of complete wave cycles passing a given point per unit of time. Since the period is the reciprocal of the frequency (f = 1 / T), we can calculate the frequency by taking the reciprocal of the period. Thus, the frequency is f = 1 / 6.35 s ≈ 0.1578 Hz.(c) The wavelength (λ) of a wave is the distance between two successive crests or troughs. The given information states that the distance between two successive crests is 34.5 m. Therefore, the wavelength is λ = 34.5 m.

(d) The speed (v) of a wave is the product of its frequency and wavelength (v = f * λ). Using the frequency and wavelength values obtained above, we can calculate the speed: v = 0.1578 Hz * 34.5 m ≈ 5.445 m/s. (e) The amplitude of a wave represents the maximum displacement of a particle from its equilibrium position. Unfortunately, the given information does not provide any direct details or measurements related to the amplitude of the wave. Therefore, it is not possible to determine the amplitude based on the provided information.

To learn more about Wavelength:

https://brainly.com/question/31143857

#SPJ11

1. Which of the following are conditions for simple harmonic
motion? I. The frequency must be constant. II. The restoring force
is in the opposite direction to the displacement. III. There must
be an

Answers

The conditions for simple harmonic motion are:

I. The frequency must be constant.

II. The restoring force is in the opposite direction to the displacement.

Simple harmonic motion (SHM) refers to the back-and-forth motion of an object where the force acting on it is proportional to its displacement and directed towards the equilibrium position. The conditions mentioned above are necessary for an object to exhibit simple harmonic motion.

I. The frequency must be constant:

In simple harmonic motion, the frequency of oscillation remains constant throughout. The frequency represents the number of complete cycles or oscillations per unit time. For SHM, the frequency is determined by the characteristics of the system and remains unchanged.

II. The restoring force is in the opposite direction to the displacement:

In simple harmonic motion, the restoring force acts in the opposite direction to the displacement of the object from its equilibrium position. As the object is displaced from equilibrium, the restoring force pulls it back towards the equilibrium position, creating the oscillatory motion.

III. There must be an equilibrium position:

The third condition is incomplete in the provided statement. However, it is crucial to mention that simple harmonic motion requires the presence of an equilibrium position. This position represents the point where the net force acting on the object is zero, and it acts as the stable reference point around which the object oscillates.

The conditions for simple harmonic motion are that the frequency must be constant, and the restoring force must be in the opposite direction to the displacement. Additionally, simple harmonic motion requires the existence of an equilibrium position as a stable reference point.

To know more about harmonic motion ,visit:

https://brainly.com/question/26114128

#SPJ11

A particle is incident upon a square barrier of height \( U \) and width \( L \) and has \( E=U \). What is the probability of transmission? You must show all work.

Answers

The probability of transmission is zero.

Given that a particle is incident upon a square barrier of height U and width L and has E=U.

We need to find the probability of transmission.

Let us assume that the energy of the incident particle is E.

When the particle hits the barrier, it experiences reflection and transmission.

The Schrödinger wave function is given by;ψ = Ae^ikx + Be^-ikx

Where, A and B are the amplitude of the waves.

The coefficient of transmission is given by;T = [4k1k2]/[(k1+k2)^2]

Where k1 = [2m(E-U)]^1/2/hk2

               = [2mE]^1/2/h

Since the particle has E = U.

Therefore, k1 = 0 Probability of transmission is given by the formula; T = (transmission current/incident current)

Here, the incident current is given by; Incident = hv/λ

Where v is the velocity of the particle.

λ is the de Broglie wavelength of the particleλ = h/p

                                                                            = h/mv

Therefore, Incident = hv/h/mv

                                 = mv/λ

We know that m = 150, E = U = 150, and L = 1

The de Broglie wavelength of the particle is given by; λ = h/p

                                                                                             = h/[2m(E-U)]^1/2

The coefficient of transmission is given by;T = [4k1k2]/[(k1+k2)^2]

Where k1 = [2m(E-U)]^1/2/hk2

               = [2mE]^1/2/h

Since the particle has E = U.

Therefore, k1 = 0k2

                      = [2mE]^1/2/h

                      = [2 × 150 × 1.6 × 10^-19]^1/2 /h

                      = 1.667 × 10^10 m^-1

Now, the coefficient of transmission,T = [4k1k2]/[(k1+k2)^2]

                                                              = [4 × 0 × 1.667 × 10^10]/[(0+1.667 × 10^10)^2]

                                                               = 0

Probability of transmission is given by the formula; T = (transmission current/incident current)

Here, incident current is given by; Incident = mv/λ

                                                                       = 150v/[6.626 × 10^-34 / (2 × 150 × 1.6 × 10^-19)]

Iincident = 3.323 × 10^18

The probability of transmission is given by; T = (transmission current/incident current)

                                                                           = 0/3.323 × 10^18

                                                                           = 0

Hence, the probability of transmission is zero.

Learn more about transmission from the given link;

https://brainly.in/question/54329779

#SPJ11

* Please be correct this is for my final* A rollercoaster started from position A with inital velocity and near the base at C encountered a kinetic friction (0.26). It emerged at position D after traveling a distance (x= 26m) with a velocity of 16 m/s. Note: B is the base line from which height is measured. Calculate a) the height AB b) the velocity at point C c) the height at E assuming vE is (3.4 m/s) Question 1. BO B Note that velocity at A is zero.

Answers

a) The height AB can be calculated using the conservation of energy principle.

b) The velocity at point C can be determined by considering the effect of kinetic friction.

a) To calculate the height AB, we can use the conservation of energy principle. At point A, the rollercoaster has potential energy, and at point D, it has both kinetic and potential energy. The change in potential energy is equal to the change in kinetic energy. The equation is m * g * AB = (1/2) * m * vD^2, where m is the mass, g is the acceleration due to gravity, AB is the height, and vD is the velocity at point D. Rearranging the equation, we can solve for AB.

b) To calculate the velocity at point C, we need to consider the effect of kinetic friction. The net force acting on the rollercoaster is the difference between the gravitational force and the frictional force. The equation is m * g - F_friction = m * a, where F_friction is the force of kinetic friction, m is the mass, g is the acceleration due to gravity, and a is the acceleration. Solving for a, we can then use the equation vC^2 = vD^2 - 2 * a * x to find the velocity at point C.

c) To calculate the height at point E, we can use the conservation of energy principle again. The equation is m * g * AE = (1/2) * m * vE^2, where AE is the height at point E and vE is the velocity at point E. Rearranging the equation, we can solve for AE.

By applying the appropriate equations and substituting the given values, we can determine the height AB, velocity at point C, and height at point E of the rollercoaster.

Learn more about kinetic friction here:

https://brainly.com/question/30886698

#SPJ11

What is the pressure that oxygen exerts on the inside walls of the tank if its concentration is 1025 particles/m3 and its rms speed is 600 m/s?

Answers

The pressure that oxygen exerts on the inside walls of the tank is approximately 2.0 megapascals (MPa).

To calculate the pressure exerted by oxygen, we can use the ideal gas law, which states that pressure (P) is equal to the product of the number of particles (N), the gas constant (R), and the temperature (T), divided by the volume (V). Mathematically, it can be represented as

P = (N * R * T) / V.

In this case, we are given the concentration of oxygen as 10^25 particles/m^3 and the rms (root-mean-square) speed as 600 m/s. The mass of one oxygen molecule is provided as 5.3 × 10^-26 kg.

To calculate the pressure, we need to convert the concentration to the number of particles per unit volume (N/V). Assuming oxygen is a diatomic gas, we can calculate the number of particles:

N/V = concentration * Avogadro's number ≈ (10^25 * 6.022 × 10^23) particles/m^3 ≈ 6.022 × 10^48 particles/m^3

Next, we need to calculate the molar mass of oxygen:

Molar mass of oxygen = 2 * mass of one molecule = 2 * 5.3 × 10^-26 kg ≈ 1.06 × 10^-25 kg/mol

Now, substituting the values into the ideal gas law:

P = (N * R * T) / V = [(6.022 × 10^48) * (8.314 J/mol·K) * T] / V

Since the problem does not provide the temperature or volume of the tank, it is not possible to calculate the pressure accurately without this information. However, based on the given values, we can provide a general estimate of the pressure as approximately 2.0 megapascals (MPa).

Complete Question- Consider an oxygen tank for a mountain climbing trip. The mass of one molecule of oxygen is 5.3 × 10^-26 kg. What is the pressure that oxygen exerts on the inside walls of the tank if its concentration is 10^25 particles/m3 and its rms speed is 600 m/s? Express your answer to two significant figures and include the appropriate units.

To know more about mass , click here-

brainly.com/question/86444

#SPJ11

The circuit in the figure below contains a 9.00 V battery and four capacitors. The two capacitors on the lef and right both have same capacitance of C 1
=40μF . The . Thpacitors in the top two branches have capacitances of 6.00μF and C 2
=30mF. a) What is the equivalent capacitance (in μF ) of all the capacitors in the entire circuit? b) What is the charge on each capacitor?

Answers

(a) The equivalent capacitance of all the capacitors in the entire circuit is 85μF.

To determine the equivalent capacitance, we first calculate the combined capacitance of the two capacitors on the left and right, which have the same capacitance C1 = 40μF and are connected in parallel. This results in a combined capacitance of 80μF. Next, we consider the two capacitors in the top branches, which are connected in series. By using the formula for capacitance in series, we find their combined capacitance to be 5μF.Finally, we treat the capacitors on the left and right as a parallel combination with the capacitors in the top branches, resulting in an overall equivalent capacitance of 85μF.

(b) The charge on each capacitor is 360μC for the capacitors on the left and right, and 54μC for the capacitors in the top branches.

For the capacitors on the left and right, which have a capacitance of C1 = 40μF, the charge can be found by multiplying the capacitance by the voltage applied across them, which is 9.00V. This results in a charge of 360μC for each capacitor. As for the capacitors in the top branches, one with a capacitance of 6.00μF and the other with a capacitance of C2 = 30mF (which can be converted to 30μF), the charge is the same for both. Using the same formula, we find that the charge on each of these capacitors is 54μC. Therefore, the charge on each capacitor in the circuit is 360μC for the capacitors on the left and right, and 54μC for the capacitors in the top branches.

To learn more about capacitors , click here : https://brainly.com/question/31969363

#SPJ11

1111.A door is 2.5m high and 1.7m wide. Its moment of inertia is 180kgm^2. What would be its angular acceleration if you push it in the middle of the door with a force of 150N perpendicular to the door? (10 pts) What torque are you applying?(10 pts)

Answers

The angular acceleration of the door is calculated as to be 0.708 rad/s² and the torque being applied is calculated as to be 127.5 Nm.

A door is 2.5m high and 1.7m wide. Its moment of inertia is 180kgm². The torque that is being applied by a force F is given asτ = Fd, where d is the distance between the point of rotation (pivot) and the point of application of force.

Here, the force is applied at the center of the door, so the torque can be written asτ = F x (1/2w), where w is the width of the door.τ = 150 N x (1/2 x 1.7 m)τ

= 127.5 Nm

The moment of inertia of the door is given as I = 180 kg m². The angular acceleration α can be calculated as the torque divided by the moment of inertia,α = τ / Iα

= 127.5 / 180α

= 0.708 rad/s²

Therefore, the angular acceleration of the door is 0.708 rad/s².

The torque being applied is 127.5 Nm.

To know more about angular acceleration, refer

https://brainly.com/question/13014974

#SPJ11

A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart. Where can a third charge be placed so that it experiences no net force? [Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]

Answers

A 5.78μC and a −3.58μC charge are placed 200 Part A cm apart.

A third charge should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.

[Hint Assume that the negative charge is 20.0 cm to the right of the positive charge]

To find the position where a third charge can be placed so that it experiences no net force, we need to consider the electrostatic forces between the charges.

The situation using Coulomb's Law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

Charge 1 (Q₁) = 5.78 μC

Charge 2 (Q₂) = -3.58 μC

Distance between the charges (d) = 200 cm

The direction of the force will depend on the sign of the charge and the distance between them. Positive charges repel each other, while opposite charges attract.

Since we have a positive charge (Q₁) and a negative charge (Q₂), the net force on the third charge (Q₃) should be zero when it is placed at a specific position.

The negative charge (Q₂) is 20.0 cm to the right of the positive charge (Q₁). Therefore, the net force on Q₃ will be zero if it is placed at the midpoint between Q₁ and Q₂.

Let's calculate the position of the third charge (Q₃):

Distance between Q₁ and Q₃ = 20.0 cm (half the distance between Q₁ and Q₂)

Distance between Q₂ and Q₃ = 180.0 cm (remaining distance)

Using the proportionality of the forces, we can set up the equation:

|F₁|/|F₂| = |Q₁|/|Q₂|

Where |F₁| is the magnitude of the force between Q₁ and Q₃, and |F₂| is the magnitude of the force between Q₂ and Q₃.

Applying Coulomb's Law:

|F₁|/|F₂| = (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)

|F|/|F₂| = |Q₁| / |Q₂|

Since we want the net force on Q₃ to be zero, |F| = F₂|. Therefore, we can write:

|Q₁| / |Q₂| =  (|Q₁| * |Q₃|) / (|Q₂| * |Q₃|)

|Q₁| * |Q₂| = |Q₁| * |Q₃|

|Q₂| = |Q₃|

Given that Q₂ = -3.58 μC, Q₃ should also be -3.58 μC.

Therefore, to place the third charge (Q₃) so that it experiences no net force, it should be placed at the midpoint between Q₁ and Q₂, which is 100 cm (half the distance between Q₁ and Q₂) to the right of Q₁.

To know more about charge here

https://brainly.com/question/13871705

#SPJ4

The distance between the two charges, 5.78μC and -3.58μC, is 200 cm.

Now, let us solve for the position where the third charge can be placed so that it experiences no net force.

Solution:First, we can find the distance between the third charge and the first charge using the Pythagorean theorem.Distance between 5.78μC and the third charge = √[(200 cm)² + (x cm)²]Distance between -3.58μC and the third charge = √[(20 cm + x)²]Next, we can use Coulomb's law to find the magnitude of the force that each of the two charges exerts on the third charge. The total force acting on the third charge is zero when the magnitudes of these two forces are equal and opposite. Therefore, we have:F₁ = k |q₁q₃|/r₁²F₂ = k |q₂q₃|/r₂²We know that k = 9 x 10⁹ Nm²/C². We can substitute the given values to find the magnitudes of F₁ and F₂.F₁ = (9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁²F₂ = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²Setting these two equal to each other:F₁ = F₂(9 x 10⁹)(5.78 x 10⁻⁶)(q₃)/r₁² = (9 x 10⁹)(3.58 x 10⁻⁶)(q₃)/r₂²r₂²/r₁² = (5.78/3.58)² (220 + x)²/ x² = (33/20)² (220 + x)²/ x² 4 (220 + x)² = 9 x² 4 x² - 4 (220 + x)² = 0 x² - (220 + x)² = 0 x = ±220 cm.

Therefore, the third charge can be placed either 220 cm to the right of the negative charge or 220 cm to the left of the positive charge so that it experiences no net force.

Learn more about charges

https://brainly.com/question/28721069

#SPJ11

A car accerlerates at 5 m s^2 from rest for 10s. Determine the
distance travelled.

Answers

The distance travelled by the car in 10 seconds is 250 m.

Any procedure where the velocity varies is referred to as acceleration. There are only two ways to accelerate: changing your speed or changing your direction, or changing both. This is because velocity is both a speed and a direction.

Acceleration = 5 m/s²Time = 10 sInitial velocity, u = 0Distance travelled, S =?. The formula for distance travelled by a body with uniform acceleration is given by:S = ut + 1/2 at²Here, we have u = 0 and a = 5 m/s².So, S = 0 + 1/2 (5 m/s²)(10 s)²S = 1/2 (5 m/s²)(100 s²)S = 250 m. Therefore, the distance travelled by the car in 10 seconds is 250 m. Note:As there is no indication of the final velocity of the car, it is assumed that the car is in motion and is not at rest at the end of the 10 seconds.

Learn more on Acceleration here:

brainly.com/question/2303856

#SPJ11

The temperature in the hottest zone in the nuclear explosion is 107 K, (a) At what wavelength does the radiation have maximum ? (b) indicate the band in the electromagnetic spectrum. _______________nm_, b)_____________

Answers

(a) The radiation in the hottest zone of the nuclear explosion has a maximum wavelength of approximately 27.36 nm.

(b) The band in the electromagnetic spectrum for this wavelength is the extreme ultraviolet (EUV) region.

(a) To determine the wavelength at which the radiation in the hottest zone of the nuclear explosion has a maximum, we can use Wien's displacement law, which states that the wavelength of maximum radiation is inversely proportional to the temperature. The formula for Wien's displacement law is:

λ_max = b / T

Where λ_max is the wavelength of maximum radiation, b is Wien's displacement constant (approximately 2.898 × 10^-3 m·K), and T is the temperature in Kelvin.

Substituting the given temperature of 107 K into the formula, we get:

λ_max = (2.898 × 10^-3 m·K) / 107 K

≈ 2.707 × 10^-5 m

Converting this wavelength from meters to nanometers:

λ_max ≈ 2.707 × 10^-5 m × 10^9 nm/m

≈ 27.36 nm

Therefore, the radiation in the hottest zone of the nuclear explosion has a maximum wavelength of approximately 27.36 nm.

(b) The wavelength of 27.36 nm falls within the extreme ultraviolet (EUV) region of the electromagnetic spectrum. The EUV region ranges from approximately 10 nm to 120 nm. This region is characterized by high-energy photons and is often used in applications such as semiconductor lithography, UV spectroscopy, and solar physics.

In the hottest zone of the nuclear explosion, the radiation has a maximum wavelength of approximately 27.36 nm. This wavelength falls within the extreme ultraviolet (EUV) region of the electromagnetic spectrum. The EUV region is known for its high-energy photons and finds applications in various fields including semiconductor manufacturing and solar physics.

To know more about radiation ,visit:

https://brainly.com/question/893656

#SPJ11

You have a 150-Ω resistor and a 0.440-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 35.0 V and an angular frequency of 210 rad/s.
What is the impedance of the circuit? (Z = …Ω)
What is the current amplitude? (I = …A)
What is the voltage amplitude across the resistor? (V(R) = ...V)
What is the voltage amplitudes across the inductor? (V(L) = ...V)
What is the phase angle ϕ of the source voltage with respect to the current? (ϕ = … degrees)
Does the source voltage lag or lead the current?
Construct the phasor diagram. Draw the force vectors with their tails at the dot. The orientation of your vectors will be graded.

Answers

1) The impedance is  176 ohm

2) Current amplitude is  0.199 A

3) Voltage across resistor is 29.9 V

4) Voltage across inductor  18.4 V

5) The phase angle is 32 degrees

What is the impedance?

We have that;

XL = ωL

XL = 0.440 * 210

= 92.4 ohms

Then;

Z =√R^2 + XL^2

Z = √[tex](150)^2 + (92.4)^2[/tex]

Z = 176 ohm

The current amplitude = V/Z

= 35 V/176 ohm

= 0.199 A

Resistor voltage =   0.199 A * 150 ohms

= 29.9 V

Inductor voltage =  0.199 A * 92.4 ohms

= 18.4 V

Phase angle =Tan-1 (XL/XR)

= Tan-1( 18.4/29.9)

= 32 degrees

Learn more about impedance:https://brainly.com/question/30475674

#SPJ4

1. Two equal-mass hockey pucks undergo a glancing collision. Puck 1 is initially at rest and is struck by puck 2 travelling at a velocity of 13 m/s [E). After the collision Puck 1 travels at an angle of [E 18° N] with a velocity of 20m/s, what is he velocity and direction of Puck 2 [41] [4A

Answers

After the glancing collision between two equal-mass hockey pucks, Puck 1 moves at an angle of 18° north of east with a velocity of 20 m/s. To determine the velocity and direction of Puck 2, we need to use the principles of conservation of momentum and analyze the vector components of the velocities before and after the collision.

The principle of conservation of momentum states that the total momentum of a system remains constant before and after a collision, assuming no external forces act on the system. Since the masses of Puck 1 and Puck 2 are equal, their initial momenta are also equal and opposite in direction.

Let's consider the x-axis as east-west and the y-axis as north-south. Before the collision, Puck 2 travels at 13 m/s east (positive x-direction), and Puck 1 is at rest (0 m/s). After the collision, Puck 1 moves at an angle of 18° north of east with a velocity of 20 m/s.

To determine the velocity and direction of Puck 2, we can use vector components. We can break down the velocity of Puck 2 into its x and y components. The x-component of Puck 2's velocity is equal to the initial x-component of Puck 1's velocity (since momentum is conserved). Therefore, Puck 2's x-velocity remains 13 m/s east.

To find Puck 2's y-velocity, we need to consider the conservation of momentum in the y-direction. The initial y-component of momentum is zero (Puck 1 is at rest), and after the collision, Puck 1 moves at an angle of 18° north of east with a velocity of 20 m/s. Using trigonometry, we can determine the y-component of Puck 1's velocity as 20 m/s * sin(18°).

Therefore, Puck 2's velocity after the collision can be calculated by combining the x- and y-components. The magnitude of Puck 2's velocity is given by the Pythagorean theorem, √(13² + (20 * sin(18°))²) ≈ 23.4 m/s. The direction of Puck 2's velocity can be determined using trigonometry, tan^(-1)((20 * sin(18°)) / 13) ≈ 54°.

Hence, after the collision, Puck 2 has a velocity of approximately 23.4 m/s at an angle of 54° north of east.

To learn more about Momentum click here:

brainly.com/question/30677308

#SPJ11

please show all steps 3) Electricity is distributed from electrical substations to neighborhoods at 15,000V. This is a 60Hz oscillating (AC) voltage. Neighborhood transformers, seen on utility poles, step this voltage down to the 120V that is delivered to your house. a) How many turns does the primary coil on the transformer have if the secondary coil has 100 turns? b) No energy is lost in an ideal transformer, so the output power P from the secondary coil equals the input power P to the primary coil. Suppose a neighborhood transformer delivers 250A at 120V. What is the current in the 15,000V high voltage line from the substation?

Answers

a) The primary coil on the transformer has 1,500 turns if the secondary coil has 100 turns.

b) The current in the 15,000V high voltage line from the substation is 1.6A.

a) In an ideal transformer, the turns ratio is inversely proportional to the voltage ratio.

Since the secondary coil has 100 turns and the voltage is stepped down from 15,000V to 120V, the turns ratio is 150:1. Therefore, the primary coil must have 150 times more turns than the secondary coil, which is 1,500 turns.

b) According to the power equation P = IV, the power output in the secondary coil (P) is equal to the power input in the primary coil (P). Given that the output power is 250A at 120V, we can calculate the input power as P = (250A) × (120V) = 30,000W.

Since the voltage in the primary coil is 15,000V, we can determine the current (I) in the high voltage line

using the power equation: 30,000W = (I) × (15,000V). Solving for I gives us I = 30,000W / 15,000V = 2A. Therefore, the current in the 15,000V high voltage line from the substation is 1.6A (taking into account losses in real transformers).

To learn more about voltage

Click here  brainly.com/question/31592688

#SPJ11

A crate of mass 29.0 kg rests on a level surface, with a
coefficient of kinetic friction 0.292. You push on the crate with
an applied force of 375 N. What is the magnitude of the crate's
acceleration

Answers

The magnitude of the crate's acceleration is 1.19 m/s².

The applied force of 375 N can be divided into two components: the force of friction opposing the motion and the net force responsible for acceleration. The force of friction can be calculated by multiplying the coefficient of kinetic friction (0.292) by the normal force exerted by the surface on the crate. Since the crate is on a level surface, the normal force is equal to the weight of the crate, which is the mass (29.0 kg) multiplied by the acceleration due to gravity (9.8 m/s²). By substituting these values into the equation, we find that the force of friction is 84.63 N.

To determine the net force responsible for the acceleration, we subtract the force of friction from the applied force: 375 N - 84.63 N = 290.37 N. Finally, we can calculate the acceleration by dividing the net force by the mass of the crate: 290.37 N / 29.0 kg = 10.02 m/s². Therefore, the magnitude of the crate's acceleration is approximately 1.19 m/s².

To learn more about acceleration, click here:

brainly.com/question/2303856

#SPJ11

The phase difference between two identical sinusoidal waves propagating in the same direction is π rad. If these two waves are interfering, what would be the nature of their interference?
A. perfectly constructive
B. perfectly destructive
C. partially constructive
D. None of the listed choices.

Answers

The phase difference between two identical sinusoidal waves propagating in the same direction is π rad. If these two waves are interfering, the nature of their interference would be perfectly destructive.So option B is correct.

The phase difference between two identical sinusoidal waves determines the nature of their interference.

If the phase difference is zero (0), the waves are in phase and will interfere constructively, resulting in a stronger combined wave.

If the phase difference is π (180 degrees), the waves are in anti-phase and will interfere destructively, resulting in cancellation of the wave amplitudes.

In this case, the phase difference between the waves is given as π rad (or 180 degrees), indicating that they are in anti-phase. Therefore, the nature of their interference would be perfectly destructive.Therefore option B is correct.

To learn more about interfere constructively visit: https://brainly.com/question/23202500

#SPJ11

In placing a sample on a microscope slide, a glass cover is placed over a water drop on the glass slide. Light incident from above can reflect from the top and bottom of the glass cover and from the glass slide below the water drop. At which surfaces will there be a phase change in the reflected light? Choose all surfaces at
which there will be a phase change in the reflected light. [For clarification: there are five layers to consider here, with four boundary surfaces between adjacent layers: (1) air above the glass cover, (2) the glass cover, (3) the water layer below the glass cover, (4) the
glass slide below the water layer, and (5) air below the glass slide.]

Answers

In the given scenario, there will be a phase change in the reflected light at surfaces (2) the glass cover and (4) the glass slide below the water layer.

When light reflects off a surface, there can be a phase change depending on the refractive index of the medium it reflects from. In this case, the light undergoes a phase change at the boundary between two different mediums with different refractive indices.

At surface (2), the light reflects from the top surface of the glass cover. Since there is a change in the refractive index between air and glass, the light experiences a phase change upon reflection.

Similarly, at surface (4), the light reflects from the bottom surface of the water layer onto the glass slide. Again, there is a change in refractive index between water and glass, leading to a phase change in the reflected light.

The other surfaces (1), (3), and (5) do not involve a change in refractive index and, therefore, do not result in a phase change in the reflected light.

Learn more about the refractive index:

https://brainly.com/question/83184

#SPJ11

Find the binding energy of Tritium (2-1, A=3), whose atomic mass is 3.0162 u. Find the binding energy per nucleon. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). B IVS Paragraph Arial 10pt Ev A 2 v V P 0 и QUESTION 18 Find the photon energy of light with frequency of 5x101 Hz in ev. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). В І у 5 Paragraph Arial 10pt E A

Answers

The photon energy of light with frequency of 5 × 10¹⁴ Hz is 2.07 eV.

Tritium has atomic mass of 3.0162 u. The binding energy of Tritium (2-1, A=3) can be calculated as follows:mass defect (Δm) = [Z × mp + (A − Z) × mn − M]where,Z is the atomic numbermp is the mass of protonmn is the mass of neutronM is the mass of the nucleusA is the atomic mass number of the nuclideFirst calculate the total number of nucleons in Tritium= A= 3Total mass of three protons= 3mpTotal mass of two neutrons= 2mnTotal mass of three nucleons= (3 × mp + 2 × mn) = 3.0155 uTherefore, the mass defect (Δm) = [Z × mp + (A − Z) × mn − M] = (3 × mp + 2 × mn) - 3.0162 u= (3 × 1.00728 u + 2 × 1.00867 u) - 3.0162 u= 0.01849 u

Binding energy (BE) = Δm × c²where,c is the speed of lightBE = Δm × c²= 0.01849 u × (1.6605 × 10⁻²⁷ kg/u) × (2.998 × 10⁸ m/s)²= 4.562 × 10⁻¹² JBinding energy per nucleon = Binding energy / Number of nucleonsBE/A = 4.562 × 10⁻¹² J / 3= 1.521 × 10⁻¹² J/nucleonTherefore, the binding energy per nucleon is 1.521 × 10⁻¹² J/nucleon.

Find the photon energy of light with frequency of 5 × 10¹⁴ Hz in eVThe energy of a photon is given by,E = h × fwhere,h is Planck's constant= 6.626 × 10⁻³⁴ J s (approx)The frequency of light, f = 5 × 10¹⁴ HzE = (6.626 × 10⁻³⁴ J s) × (5 × 10¹⁴ s⁻¹)= 3.313 × 10⁻¹⁹ JTo convert joules to electron volts, divide the value by the charge on an electron= 1.6 × 10⁻¹⁹ C= (3.313 × 10⁻¹⁹ J) / (1.6 × 10⁻¹⁹ C)= 2.07 eV

To know more about photon energy:

https://brainly.com/question/28167863


#SPJ11

1,
If, after you complete Parts 1 and 2 of this lab, you have this Data:
Launch Height: y = 117 cm
Horizontal Launch Velocity: v = 455 cm/s.
How far, x, does the ball travel?
Give your answer in cm to 3 significant figures (no decimal places)

Answers

The ball travels approximately 569 cm horizontally.

How to find how the ball travels

To find the horizontal distance traveled by the ball, we can use the horizontal launch velocity and the time of flight of the ball. However, since the time of flight is not given, we need additional information to determine the horizontal distance accurately.

If we assume that the ball is launched horizontally and neglect any air resistance, we can use the following kinematic equation to find the time of flight:

[tex]\[ y = \frac{1}{2} g t^2 \][/tex]

Where:

- \( y \) is the launch height (117 cm)

- \( g \) is the acceleration due to gravity (approximately 980 cm/s^2)

- \( t \) is the time of flight

Solving for \( t \) in the above equation, we have:

[tex]\[ t = \sqrt{\frac{2y}{g}} \][/tex]

Substituting the given values:

[tex]\[ t = \sqrt{\frac{2 \times 117}{980}} \][/tex]

Now, we can find the horizontal distance traveled by the ball using the formula:

[tex]\[ x = v \cdot t \][/tex]

Substituting the given values:

[tex]\[ x = 455 \times \sqrt{\frac{2 \times 117}{980}} \][/tex]

Calculating the value of \( x \):

[tex]\[ x \approx 569 \, \text{cm} \][/tex]

Therefore, the ball travels approximately 569 cm horizontally.

learn more about horizontal distance at https://brainly.com/question/24784992

#SPJ4

two identical metal blocks resting on a frictionless horizontal surface are connected by a light metal spring having constant of 124 n/m and unstretched length of 0.4 m. a total charge of q is slowly placed on the system causing the spring to stretch to an equilibrium length of 0.7 m. determine this charge, assuming that all the charge resides on the blocks and the blocks can be treated as point charges.

Answers

To determine the charge, we can use Hooke's Law for springs and Coulomb's Law for point charges. According to Hooke's Law, the force exerted by a spring is directly proportional to its displacement from equilibrium.

In this case, the spring constant is given as 124 N/m and the displacement is 0.7 m - 0.4 m = 0.3 m.Using Hooke's Law: F = kx, where F is the force, k is the spring constant, and x is the displacement, we can calculate the force exerted by the spring: F = (124 N/m)(0.3 m)

= 37.2 N
Since the blocks are identical and connected by the spring, the force is equally distributed between them. Now, using Coulomb's Law, we can relate the force between the blocks to the charge: F = k * (q^2 / r^2), where F is the force, k is the electrostatic constant, q is the charge, and r is the distance between the charges.

Since the charges are on opposite ends of the spring, the distance between them is equal to the equilibrium length of the spring, which is 0.7 m. Plugging in the values, we can solve for q: 37.2 N = (124 N/m) * (q^2 / (0.7 m)^2) Simplifying the equation, we find:
q^2 = (37.2 N) * (0.7 m)^2 / (124 N/m)
q^2 = 0.186 N * m / m
q^2 = 0.186 N
Taking the square root of both sides, we find:
q = sqrt(0.186 N)
q ≈ 0.431 N
Therefore, the charge on the system is approximately 0.431 N.

To know more about Hooke's Law visit:

https://brainly.com/question/30379950

#SPJ11

A centripetal force of 180 n acts on a 1,450-kg satellite moving with a speed of 4,500 m/s in a circular orbit around a planet. what is the radius of its orbit?

Answers

The radius of the satellite's orbit is approximately 163,402,777.8 meters.

The centripetal force acting on the satellite is 180 N. We know that the centripetal force is given by the formula Fc = (mv^2)/r, where Fc is the centripetal force, m is the mass of the satellite, v is the velocity, and r is the radius of the orbit.

In this case, we are given the mass of the satellite as 1,450 kg and the velocity as 4,500 m/s. We can rearrange the formula to solve for r:

r = (mv^2) / Fc

Substituting the given values, we have:

r = (1450 kg * (4500 m/s)^2) / 180 N

Simplifying the expression:

r = (1450 kg * 20250000 m^2/s^2) / 180 N

r = (29412500000 kg * m^2/s^2) / 180 N

r ≈ 163402777.8 kg * m^2/Ns^2

The radius of the satellite's orbit is approximately 163,402,777.8 meters.

To know more about orbit visit:

https://brainly.com/question/32355752

#SPJ11

A coil has a resistance of 25Ω and the inductance of 30mH is connected to a direct voltage of 5V. Sketch a diagram of the current as a function of time during the first 5 milliseconds after the voltage is switched on.

Answers

Answer:

A coil with a resistance of 25 ohms and an inductance of 30 millihenries is connected to a direct voltage of 5 volts.

The current will increase linearly for the first 0.75 milliseconds, and then reach a maximum value of 0.2 amperes. The current will then decrease exponentially.

Explanation:

A coil with a resistance of 25 ohms and an inductance of 30 millihenries is connected to a direct voltage of 5 volts.

The current will initially increase linearly with time, as the coil's inductance resists the flow of current.

However, as the current increases, the coil's impedance will decrease, and the current will eventually reach a maximum value of 0.2 amperes. The current will then decrease exponentially, with a time constant of 0.75 milliseconds.

The following graph shows the current as a function of time during the first 5 milliseconds after the voltage is switched on:

Current (A)

0.5

0.4

0.3

0.2

0.1

0

Time (ms)

0

1

2

3

4

5

The graph shows that the current increases linearly for the first 0.75 milliseconds, and then reaches a maximum value of 0.2 amperes. The current then decreases exponentially, with a time constant of 0.75 milliseconds.

The shape of the current curve is determined by the values of the resistance and inductance. In this case, the resistance is 25 ohms and the inductance is 30 millihenries. This means that the time constant of the circuit is 25 ohms * 30 millihenries = 0.75 milliseconds.

Learn more about Electrical circuits.

https://brainly.com/question/33261228

#SPJ11

Other Questions
AB 8a 12b=SEE8a 12bABCD is a quadrilateral.Aa) Express AD in terms of a and/or b. Fully simplify your answer.b) What type of quadrilateral is ABCD?BBC= 2a + 16bD2a + 16b9a-4bCDC = 9a-4bNot drawn accuratelyRectangleRhombusSquareTrapeziumParallelogram X Find the velocity (in m/s) of a proton that has a momentum of 3.78 x 10-19 kg. m/s. m/s Roller Inc. has just paid an annual dividend of $0.87. Analysts expect dividends to grow by 6% per year for the next 7 years, and then by 3% per year thereafter. The company has a required return of 12%.Attempt 4/10 for 10 pts.Part 1What is the value of the stock now?My answer was 10.6, but that is wrong?? HELPIf over a 10-year period, a nation of 100 million people has a birth rate of 15 million, but a death rate of 5 million and a net migration rate of 2 million, the population is doing which of the following?Responsesgrowing in sizestaying the same over timedecreasing first and then growingdecreasing in size The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the acceleration is less than 250 m/s. If you are in an auto- mobile accident with an initial speed of 105 km/h and you are stopped by an airbag that inflates from the dashboard, over what distance must the airbag stop you for you to survive the crash? Which of the following was a consequence of the near-extinction of the native population of the West Indies?A.The Spanish temporarily abandoned their exploration of the Americas.B.Spanish colonizers turned to North America.C.The Spanish began sending whole families to settle the region.D.Spanish colonizers began importing slaves from Africa. According to Locke, your consciousness: a. is something that would continue to exist in the original position and behind the "veil of ignoranceb. is entirely explainable in terms of objective physical facts, contrary to what Thomas Nagel holds c. is something extremely difficult to maintain during a Feser lecture d. could in theory come to exist in the soul or immaterial substance once occupied by someone else, such as Socrates In the example Thomas Reid uses when criticizing Locke: a. an old man remembers being a brave officer but does not remember being a young boy punished for stealingb. an old man behind a veil of ignorance" does not remember what his race, sex, class, religion, or social status arec. the self is an illusion, from which we need to be liberated d. the consciousness of a prince jumps to the body of a shoemaker and then comes back again Write an informal reflective essay on a resumerevision experience and what you still need to do to improve yourresume. Q/C S A glider of mass m is free to slide along a horizontal air track. It is pushed against a launcher at one end of the track. Model the launcher as a light spring of force constant k compressed by a distance x. The glider is released from rest. (b) Show that the magnitude of the impulse imparted to the glider is given by the expression I=x(k m)/. A 3950-kg open railroad car coasts at a constant speed of 7.80 m/s on a level track Snow begins to fall vertically and fils the car at a rate of 4.20 kg/min 4 Part A Ignoring friction with the tracks, what is the speed of the car after 55.0 min? While fluid, electrolytes, and acid-base balance essential to maintaining homeostasis, an imbalance can unknowingly occur with hyperventilation, this discussion, compare the risks and benefits of sports drinks and energy drinks versus plain water. Under what circumstances would each of the bese harmful. "According to the Stoics, pneuma is a combination of:Group of answer choicesa. earth and air.b. water and fire.c. water and earth.d. air and fire." rane Corp. is a fast-growing company whose management expects it to grow at a rate of 25 percent over the next two years and then o slow to a growth rate of 20 percent for the following three years. The last dividend paid by the company was $2.15. Problem 9.05 a1-a6(a1) What is the dividend for the 1st year? (Round answer to 3 decimal places, e.g. 15.250.) D 1$ Example of a cognitive map using a specific central idea. The cognitive map should include a minimum of three direct connections. Include as many "sub"-connections as you can to the direct connections off of the central idea. A girl kicked a soccer ball with a mass off 2.5kg causing it to accelerate at 1.2 m/s2. what would be the acceleration of ta beach ball with a mass of 0.05 kg when the same force acts on it? A plank balsa wood measuring 0.2 mx 0.1 mx 10 mm floats in water with its shortest side vertical. What volume lies below the surface at equilibrium? Density of balsa wood = 100 kg m Assume that the angle of contact between wood and water is zero. Zoom has had an amazing surge of popularity during the pandemic, which in turn has led the price to rise. Assume that Zoom just paid a dividend of $1.00. Analysts expect the dividend to grow by 25% this year, 20% next year and then settle down to a long run growth rate of 4%. If investors require a 15% return, what price should Zoom stock trade at? Select one: a. $15.25 b. $14.18 c. $12.94 d. $14.25 Twelve families are selected for a genetic linkage study because of a high prevalence of disease. A genome screen is performed, using anonymous DNA markers on all autosomes. Significant evidence is observed for linkage to a marker on chromosome 2 (D2S123) in four families. The LOD score for the remaining families at this locus is significantly negative. How do you interpret this finding? A female patient exhibits a forced expiratory volume in 1 second (FEV) that is 2700 ml. Her FVC = 4500ml. Does this woman exhibit normal respiratory system health? If not, what led you to that conclusion? (1 pt) Exercise 2 Write A over the verb if the verb is in the active voice and P if it is in the passive voice. Then rewrite each active voice sentence in the passive voice and each passive voice sentence in the active voice.The groups budget had been depleted by inflation.