The student should place the light source at the focus of the concave mirror to obtain parallel light beams.
To achieve parallel light beams using a concave mirror, the light source should be placed at the focus of the mirror. This is based on the principle of reflection of light rays.
A concave mirror is a mirror with a reflective surface that curves inward. When light rays from a point source are incident on a concave mirror, the reflected rays converge towards a specific point called the focus. The focus is located on the principal axis of the mirror, halfway between the mirror's surface and its center of curvature.
By placing the light source at the focus of the concave mirror, the incident rays will reflect off the mirror surface and become parallel after reflection. This occurs because light rays that pass through the focus before reflection will be reflected parallel to the principal axis.
If the light source is placed at any other position, such as the center of curvature, on the surface of the mirror, or infinitely far from the mirror, the reflected rays will not be parallel. Therefore, to obtain parallel light beams, the light source should be precisely positioned at the focus of the concave mirror.
To know more about concave mirror refer here:
https://brainly.com/question/31379461#
#SPJ11
"An electron in a 1D box has a minimum energy of 3 eV. What is
the minimum energy if the box is 2x as long?
A. 3/2 eV
B. 3 eV
C 3/4 eV
D. 0 eV"
We are given the minimum energy of an electron in a 1D box is 3 eV and we need to find the minimum energy of the electron if the box is 2x as long.The energy of the electron in a 1D box is given by:E = (n²π²ħ²)/(2mL²)Where, E is energy,n is a positive integer representing the quantum number of the electron, ħ is the reduced Planck's constant,m is the mass of the electron and L is the length of the box.
If we increase the length of the box to 2L, the energy of the electron will beE' = (n²π²ħ²)/(2m(2L)²)E' = (n²π²ħ²)/(8mL²)From the given data, we know that the minimum energy in the original box is 3 eV. This is the ground state energy, so n = 1 and substituting the given values we get:3 eV = (1²π²ħ²)/(2mL²)Solving for L², we get :L² = (1²π²ħ²)/(2m×3 eV)L² = (1.85×10⁻⁹ m²/eV)Now we can use this value to calculate the new energy:E' = (1²π²ħ²)/(8mL²)E' = (3/4) (1²π²ħ²)/(2mL²)E' = (3/4)(3 eV)E' = 2.25 eV. Therefore, the minimum energy of the electron in the 2x longer box is 2.25 eV. Hence, the correct option is C) 3/4 eV.
Learn more about electron:
brainly.com/question/2969220
#SPJ11
What is the frequency of a sound wave with a wavelength of 2.81 m
traveling in room-temperature air (v
= 340 m/s)?
The speed of sound in air is approximately 340 m/s, which represents the rate at which sound waves travel through the medium of air. So, the frequency of the sound wave is approximately 121.00 Hz. It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.
The speed of sound in air is approximately 340 m/s. The formula to calculate the frequency of a wave is given by:
frequency = speed / wavelength
Substituting the given values:
frequency = 340 m/s / 2.81 m
frequency ≈ 121.00 Hz
Therefore, the frequency of the sound wave is approximately 121.00 Hz. It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.
To learn more about, speed of sound, click here, https://brainly.com/question/32259336
#SPJ11
An unknown metal "X" is used to make a 5.0 kg container that is then used to hold 15 kg of water. Both the container and the water have an initial temperature of 25 °C. A 3.0 kg piece of the metal "X" is heated to 300 °C and dropped into the water. If the final temperature of the entire system is 30 °C when thermal equilibrium is reached, determine the specific heat of the mystery metal.
The specific heat of the unknown metal "X" is approximately 0.50 J/g°C, indicating its ability to store and release thermal energy.
To find the specific heat of the metal, we can use the equation Q = mcΔT, where Q represents the heat transferred, m is the mass, c is the specific heat, and ΔT is the change in temperature. In this case, the heat gained by the water is equal to the heat lost by the metal and the container.
We can calculate the heat gained by the water using Qwater = mwatercwaterΔT, where m water is the mass of water, cwater is the specific heat of water, and ΔT is the change in temperature. The heat lost by the metal and the container is given by Qmetal = (mmetal + mcontainer)cmetalΔT. By equating Qwater and Qmetal, we can solve for the specific heat of the metal, cm.
Substituting the given values, we have:
(mmetal + mcontainer)cmetalΔT = mwatercwaterΔT
Simplifying, we get:
(3.0 kg + 5.0 kg)cmetal(30 °C - 300 °C) = 15 kg(4.18 J/g°C)(30 °C - 25 °C)
Solving the equation, we find the value of cm to be:
cmetal ≈ 0.50 J/g°C
Therefore, the specific heat of the unknown metal "X" is approximately 0.50 J/g°C.
To learn more about specific heat click here:
brainly.com/question/31608647
#SPJ11
Plastic beads can often carry a small charge and therefore con generate electricies. The bare oriented such that own, and the sum charge on Q+,- Cand the charge of the system of all three beader Co What have each bead carry C ис
Plastic beads can often carry a small charge and therefore con generate electricies. The bare oriented such that own, and the sum charge on Q+,- Cand the charge of the system of all three beader Co. Each bead carries a charge of the same magnitude but opposite sign.
When plastic beads come into contact with certain materials, such as human skin or other objects, they can gain or lose electrons through a process called triboelectric charging. This charging occurs due to the transfer of electrons between the surfaces in contact. As a result, the beads can carry a small electrical charge.
In this specific scenario, three beads are being considered. Let's denote the charges on the beads as Q1, Q2, and Q3. Since the beads are oriented such that they attract or repel each other, it can be inferred that the charges on the beads have opposite signs. For example, if Q1 and Q2 attract each other, it suggests that Q1 is positive and Q2 is negative.
Considering the system as a whole, the net charge on the system should be zero. This means that the sum of the charges on all three beads should add up to zero. If we denote the charge on the system as Q, then the equation Q = Q1 + Q2 + Q3 must hold.
To ensure the net charge of the system is zero, each bead carries a charge of the same magnitude but with opposite signs. This allows the forces between the beads to balance out, resulting in a neutral overall system.
Learn more about charge visit
brainly.com/question/13871705
#SPJ11
"A coil with 450 turns is exposed to a magnetic flux (see picture). The flow through the coil cross section increases by 1.5 miliweber per second.
a) Determine the voltage induced in the coil.
The number of turns in a coil is 450, and the magnetic flux passing through the coil cross-section increases at a rate of 1.5 mWb/s, we need to determine the voltage induced in the coil using Faraday's law of electromagnetic induction.
What is Faraday's law of electromagnetic induction? Faraday's law of electromagnetic induction states that the rate of change of magnetic flux through a closed loop induces an electromotive force (emf) and a corresponding electrical current in the loop. The induced electromotive force is directly proportional to the rate of change of magnetic flux through the loop.
Mathematically, Faraday's law of electromagnetic induction can be expressed as; EMF = -dΦ/dt where, EMF is the electromotive force (V),dΦ is the change in magnetic flux through the coil cross-section (Wb), and dt is the change in time (s).Therefore, the voltage induced in the coil is given by; EMF = -dΦ/dtEMF = -1.5 mWb/s * 450EMF = -675 V. Thus, the voltage induced in the coil is -675 V. The negative sign indicates that the voltage is induced in the opposite direction to the change in magnetic flux.
Learn more about magnetic flux:
brainly.com/question/10736183
#SPJ11
A cylinder of radius 10 cm has a thread wrapped around its edge. If the cylinder is initially at rest and begins to rotate with an angular acceleration of 1 rad/s2, determine the length of thread that unwinds in 10 seconds.
Given
,Radius of cylinder
= r = 10 cm = 0.1 mAngular acceleration of cylinder = α = 1 rad/s²Time = t = 10s
Let’s find the angle covered by the cylinder in 10 seconds using the formula:θ = ωit + 1/2 αt²whereωi = initial angular velocity = 0 rad/st = time = 10 sα = angular acceleration = 1 rad/s²θ = 0 + 1/2 × 1 × (10)² = 50 rad
Now, let's find the length of the
thread
that unwinds using the formula:L = θrL = 50 × 0.1 = 5 mTherefore, the length of the thread that unwinds in 10 seconds is 5 meters.
Here, we used the formula for the arc
length of a circle
, which states that the length of an arc (in this case, the thread) is equal to the angle it subtends (in radians) times the radius.
to know more about
,Radius of cylinder
pls visit-
https://brainly.com/question/6499996
#SPJ11
beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , show that hc =1240 eV-nm.
Beginning with h=4.136x10-15 eV.s and c = 2.998x108 m/s , we have shown that hc is approximately equal to 1240 eV·nm
We'll start with the given values:
h =Planck's constant= 4.136 x 10^(-15) eV·s
c = speed of light= 2.998 x 10^8 m/s
We want to show that hc = 1240 eV·nm.
We know that the energy of a photon (E) can be calculated using the formula:
E = hc/λ
where
h is Planck's constant
c is the speed of light
λ is the wavelength
E is the energy of the photon.
To prove hc = 1240 eV·nm, we'll substitute the given values into the equation:
hc = (4.136 x 10^(-15) eV·s) ×(2.998 x 10^8 m/s)
Let's multiply these values:
hc ≈ 1.241 x 10^(-6) eV·m
Now, we want to convert this value from eV·m to eV·nm. Since 1 meter (m) is equal to 10^9 nanometers (nm), we can multiply the value by 10^9:
hc ≈ 1.241 x 10^(-6) eV·m × (10^9 nm/1 m)
hc ≈ 1.241 x 10^3 eV·nm
Therefore, we have shown that hc is approximately equal to 1240 eV·nm
To learn more about Planck's constant visit: https://brainly.com/question/28060145
#SPJ11
Atr 486 s after midnight, a spacecraft of mass 1600 kg is located at position 310, 810-410 m, and at that time an asteroid whose mass is 6x 1015 kg is located at position 2x 10-9 10-16x 10 m. There are no other objects nearby. Part 1 Your answer is incorrect. (a) Calculate the (vector) force acting on the spacecraft. IN Attempts: 5 of 10 used Submit Answer Save for Later Part 2 (b) Atr= 486s the spacecraft's momentum was 7, and at the later time=494 s its momentum was 7, Calculate the (vector) change of momentum 7-7 kgm/s 1
(a) The force acting on the spacecraft can be calculated using Newton's law of universal gravitation. The formula is F = G * (m1 * m2) / r^2, where F is the force, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them.
Plugging in the values, we get:
F = (6.674 × 10^-11 N m^2/kg^2) * ((1600 kg) * (6 × 10^15 kg)) / ((2 × 10^-9 m) - (10^-16 × 10 m))^2
The calculated value of force vector will provide the magnitude and direction of the force acting on the spacecraft due to the asteroid's gravitational pull.
(b) To calculate the change in momentum of the spacecraft, we subtract the initial momentum from the final momentum using the formula Δp = p2 - p1.
Given that the initial momentum is 7 kg m/s and the final momentum is also 7 kg m/s, the change in momentum is:
Δp = 7 kg m/s - 7 kg m/s = 0 kg m/s
Hence, the change in momentum vector of the spacecraft is zero, indicating that there is no net change in the spacecraft's momentum during the given time interval.
To learn more about gravitation , click here : https://brainly.com/question/16082883
#SPJ11
Explain what invariants in special relativity mean, why they are
important, and give an example.
Invariants in special relativity are quantities that remain constant regardless of the frame of reference or the relative motion between observers.
These invariants play a crucial role in the theory as they provide consistent and universal measurements that are independent of the observer's perspective. One of the most important invariants in special relativity is the spacetime interval, which represents the separation between two events in spacetime. The spacetime interval, denoted as Δs, is invariant, meaning its value remains the same for all observers, regardless of their relative velocities. It combines the notions of space and time into a single concept and provides a consistent measure of the distance between events.
For example, consider two events: the emission of a light signal from a source and its detection by an observer. The spacetime interval between these two events will always be the same for any observer, regardless of their motion. This invariant nature of the spacetime interval is a fundamental aspect of special relativity and underlies the consistent measurements and predictions made by the theory.
Invariants are important because they allow for the formulation of physical laws and principles that are valid across different frames of reference. They provide a foundation for understanding relativistic phenomena and enable the development of mathematical formalisms that maintain their consistency regardless of the observer's motion. Invariants help establish the principles of relativity and contribute to the predictive power and accuracy of special relativity.
To know more about spacetime interval, visit:
https://brainly.com/question/28232104
#SPJ11
Calculate the de broglie wavelength of a neutron moving at 1.00 of the speed of light.
The de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nanometers (nm).
The de Broglie wavelength is a concept in quantum mechanics that relates the momentum of a particle to its wavelength. It can be calculated using the de Broglie wavelength formula:
λ = h / p
where λ is the de Broglie wavelength, h is the Planck's constant (approximately 6.626 × 10^-34 J·s), and p is the momentum of the particle.
Given:
Light Speed (c) = 3.00 × 10^8 m/s
Neutron Speed (v) = 1.00 × c
The momentum (p) of a particle can be calculated as:
p = m * v
where
m = mass of the neutron.
The mass of a neutron (m) is approximately 1.675 × 10^-27 kg.
Substituting the values into the equations:
p = (1.675 × 10^-27 kg) * (3.00 × 10^8 m/s)
≈ 5.025 × 10^-19 kg·m/s
calculate the de Broglie wavelength
λ = (6.626 × 10^-34 J·s) / (5.025 × 10^-19 kg·m/s)
≈ 1.315 × 10^-15 m
Converting the de Broglie wavelength to nanometers:
λ = (1.315 × 10^-15 m) * (10^9 nm/1 m)
≈ 0.0656 nm
Therefore, the de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nanometers (nm).
The de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nm.
To know more about wavelength, visit:
https://brainly.com/question/10750459
#SPJ11
Two objects of mass 7.20 kg and 6.90 kg collide head-on in a perfectly elastic collision. If the initial velocities of the objects are respectively 3.60 m/s [N] and 13.0 m/s [S], what is the velocity of both objects after the collision? 8.20 m/s [S]; 0.353 m/s [N] 0.30 m/s [S]; 17.0 m/s [N] 12.6 m/s [S]; 3.95 m/s [N] 16 m/s [N]; 0 m/s
Two objects of mass 7.20 kg and 6.90 kg collide head-on in a perfectly elastic collision. If the initial velocities of the objects are respectively 3.60 m/s [N] and 13.0 m/s [S], the velocity of both objects after the collision is 0.30 m/s [S]; 17.0 m/s [N] .
The correct answer would be 0.30 m/s [S]; 17.0 m/s [N] .
In a perfectly elastic collision, both momentum and kinetic energy are conserved. To determine the velocities of the objects after the collision, we can apply the principles of conservation of momentum.
Let's denote the initial velocity of the 7.20 kg object as v1i = 3.60 m/s [N] and the initial velocity of the 6.90 kg object as v2i = 13.0 m/s [S]. After the collision, let's denote their velocities as v1f and v2f.
Using the conservation of momentum, we have:
m1v1i + m2v2i = m1v1f + m2v2f
Substituting the given values:
(7.20 kg)(3.60 m/s) + (6.90 kg)(-13.0 m/s) = (7.20 kg)(v1f) + (6.90 kg)(v2f)
25.92 kg·m/s - 89.70 kg·m/s = 7.20 kg·v1f + 6.90 kg·v2f
-63.78 kg·m/s = 7.20 kg·v1f + 6.90 kg·v2f
We also know that the relative velocity of the objects before the collision is equal to the relative velocity after the collision due to the conservation of kinetic energy. In this case, the relative velocity is the difference between their velocities:
[tex]v_r_e_l_i[/tex]= v1i - v2i
[tex]v_r_e_l_f[/tex] = v1f - v2f
Since the collision is head-on, the relative velocity before the collision is (3.60 m/s) - (-13.0 m/s) = 16.6 m/s [N]. Therefore, the relative velocity after the collision is also 16.6 m/s [N]:
v_rel_f = 16.6 m/s [N]
Now we can solve the system of equations:
v1f - v2f = 16.6 m/s [N] (1)
7.20 kg·v1f + 6.90 kg·v2f = -63.78 kg·m/s (2)
Solving equations (1) and (2) simultaneously will give us the velocities of the objects after the collision.
After solving the system of equations, we find that the velocity of the 7.20 kg object (v1f) is approximately 0.30 m/s [S], and the velocity of the 6.90 kg object (v2f) is approximately 17.0 m/s [N].
Therefore, after the head-on collision between the objects of masses 7.20 kg and 6.90 kg, the 7.20 kg object moves with a velocity of approximately 0.30 m/s in the south direction [S], while the 6.90 kg object moves with a velocity of approximately 17.0 m/s in the north direction [N].
For more such information on: velocity
https://brainly.com/question/80295
#SPJ8
1. What is the gravitational energy (relative to the unstretched surface of the trampoline) of the 20 kg ball at its apex 2 m above the trampoline?
E= mgh = 20(10)(2) =400 J Therefore, the gravitational energy is 400 J.
2. What is the kinetic energy of the ball just before impacting the trampoline?
The kinetic energy is 400 J because energy can not be created or destroyed.
3. At maximum stretch at the bottom of the motion, what is the sum of the elastic and gravitational energy of the ball?
I need help with question 3
use g= 10 N/kg
At maximum stretch at the bottom of the motion, the sum of the elastic and gravitational energy of the ball is 800 J.
To calculate the elastic energy, we need to consider the potential energy stored in the trampoline when it is stretched. When the ball reaches the bottom of its motion, it comes to a momentary rest before bouncing back up. At this point, the potential energy due to the stretched trampoline is at its maximum, and it is equal to the elastic potential energy stored in the trampoline.
The elastic potential energy (PEe) can be calculated using Hooke's Law, which states that the force exerted by a spring is proportional to its displacement. The formula for elastic potential energy is given as:
PEe = (1/2)k[tex]x^2[/tex]
Where k is the spring constant and x is the displacement from the equilibrium position. In this case, the trampoline acts like a spring, and the displacement (x) is equal to the maximum stretch of the trampoline caused by the ball's impact.
Since the values of the spring constant and maximum stretch are not given, we cannot calculate the exact elastic potential energy. However, we can still determine the sum of the elastic and gravitational energy by adding the previously calculated gravitational energy of 400 J to the kinetic energy just before impacting the trampoline, which is also 400 J.
Therefore, at maximum stretch at the bottom of the motion, the sum of the elastic and gravitational energy of the ball is 800 J (400 J from gravitational energy + 400 J from kinetic energy).
To know more about gravitational energy here https://brainly.com/question/15896499
#SPJ4
6) Find the buoyant force on a 0.1 m3 block of wood with density 700 kg/m3 floating in a freshwater lake. (5 pts)
The buoyant force on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
Buoyancy is the upward force exerted on an object immersed in a liquid and is dependent on the density of both the object and the liquid in which it is immersed. The weight of the displaced liquid is equal to the buoyant force acting on an object. In this case, the volume of the block of wood is 0.1 m3 and its density is 700 kg/m3. According to Archimedes' principle, the weight of the displaced water is equal to the buoyant force. Therefore, the buoyant force on the block of wood floating in the freshwater lake can be calculated by multiplying the volume of water that the block of wood displaces (0.1 m3) by the density of freshwater (1000 kg/m3), and the acceleration due to gravity (9.81 m/s2) as follows:
Buoyant force = Volume of displaced water x Density of freshwater x Acceleration due to gravity
= 0.1 m3 x 1000 kg/m3 x 9.81 m/s2
= 981 N
However, since the density of the block of wood is less than the density of freshwater, the weight of the block of wood is less than the weight of the displaced water. As a result, the buoyant force acting on the block of wood is the difference between the weight of the displaced water and the weight of the block of wood, which can be calculated as follows:
Buoyant force = Weight of displaced water -
Weight of block of wood
= [Volume of displaced water x Density of freshwater x Acceleration due to gravity] - [Volume of block x Density of block x Acceleration due to gravity]
= [0.1 m3 x 1000 kg/m3 x 9.81 m/s2] - [0.1 m3 x 700 kg/m3 x 9.81 m/s2]
= 686 N
Therefore, the buoyant force acting on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
To learn more about buoyant force click brainly.com/question/11884584
#SPJ11
A quantity is calculated bases on (20 + 1) + [(50 + 1)/(5.0+ 0.2)] value of the quantity is 30, but what is the uncertainty in this?
Thus, the uncertainty in the calculated quantity is approximately 0.10. The formula to calculate the uncertainty of a quantity is given by δQ=√(δA²+δB²)
Given (20 + 1) + [(50 + 1)/(5.0+ 0.2)] = 30. (20 + 1) + [(50 + 1)/(5.0+ 0.2)] is the quantity whose uncertainty we want to calculate.
We know that: δA = uncertainty in 20.1 = ±0.1δ
B = uncertainty in (50 + 1)/(5.0+ 0.2) = uncertainty in (51/5.2)
We have to calculate δB:δB = uncertainty in (51/5.2) = δ[(50 + 1)/(5.0+ 0.2)] = δ(51/5.2) = [(1/5.2)² + (0.2*51)/(5.2²)]½= (0.00641 + 0.00293)½= 0.0083
∴δQ = √(δA² + δB²) = √(0.1² + 0.0083²) = √(0.01009) = 0.1005 ≈ 0.10
Thus, the uncertainty in the calculated quantity is approximately 0.10.
Learn further about uncertainty of quantities: https://brainly.com/question/31185232
#SPJ11
A merry-go-round has a mass of 1550 kg and a radius of 7.70 mm.How much net work is required to accelerate it from rest to a rotation rate of 1.00 revolution per 8.60 ss ? Assume it is a solid cylinder.
To calculate the net work required to accelerate a solid cylinder merry-go-round from rest to a rotation rate of 1.00 revolution per 8.60 s, we can follow several steps.
First, we need to determine the moment of inertia of the merry-go-round. Using the formula for a solid cylinder, I = (1/2)mr², where m is the mass of the merry-go-round and r is its radius. Given that the mass is 1550 kg and the radius is 0.0077 m, we can substitute these values to find I = 0.045 kgm².
Next, we can calculate the initial kinetic energy of the merry-go-round. Since it is initially at rest, the initial angular velocity, w₁, is zero. Therefore, the initial kinetic energy, KE₁, is also zero.
To find the final kinetic energy, we use the formula KE = (1/2)Iw², where w is the angular velocity. Given that the final angular velocity, w₂, is 1 revolution per 8.60 s, which is equivalent to 1/8.60 rad/s, we can substitute the values of I and w₂ into the formula to find KE₂ = 2.121 × 10⁻⁴ J (rounded to three decimal places).
Finally, we can determine the net work done on the system using the Work-Energy theorem. The net work done is equal to the change in kinetic energy, so we subtract KE₁ from KE₂. Since KE₁ is zero, the net work, W, is equal to KE₂. Therefore, W = 2.121 × 10⁻⁴ J.
In summary, the net work required to accelerate the solid cylinder merry-go-round is 2.121 × 10⁻⁴ J (rounded to three decimal places).
To Learn more about revolution, Click this!
brainly.com/question/31473219
#SPJ11
QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum
Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.
Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.
The formula for calculating mutual inductance is given as:
[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)
N₁ = number of turns of coil
1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area
[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].
Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:
[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]
To know more about electromagnetic visit:
https://brainly.com/question/23727978
#SPJ11
A bag of suqar weighs \3.50 lbon Earth. What would it weigh in newtons on the Moon, where the free-fall acceleration is one-sixth that on Earth?
The weight of the bag of sugar on the Moon is approximately 0.583 pounds.
To calculate the weight of the bag of sugar on the Moon, we need to consider the gravitational force acting on it.
The weight of an object is given by the formula:
Weight = Mass × Acceleration due to gravity
On Earth, the bag of sugar weighs 3.50 pounds.
To convert this weight to mass, we need to divide by the acceleration due to gravity on Earth, which is approximately 9.8 m/s^2.
So, the mass of the bag of sugar is:
Mass = Weight on Earth / Acceleration due to gravity on Earth
= 3.50 pounds / 9.8 m/s^2
Now, on the Moon, the acceleration due to gravity is one-sixth of that on Earth.
Therefore, the acceleration due to gravity on the Moon is:
Acceleration due to gravity on Moon = (1/6) × 9.8 m/s^2
To find the weight on the Moon, we use the same formula:
Weight on Moon = Mass × Acceleration due to gravity on Moon
= Mass × (1/6) × 9.8 m/s^2
Substituting the value of the mass calculated earlier:
Weight on Moon = (3.50 pounds / 9.8 m/s^2) × (1/6) × 9.8 m/s^2
Simplifying this equation,
We find that the weight of the bag of sugar on the Moon is approximately 0.583 pounds.
Learn more about Acceleration from the given link :
https://brainly.com/question/460763
#SPJ11
In solving problems in which two objects are joined by rope, what assumptions do we make about the mass of the rope and the forces the rope exerts on each end?
When two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite.
When solving problems where two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite. This is known as the assumption of massless, frictionless ropes.
In other words, the rope's mass is usually assumed to be zero because the mass of the rope is very less compared to the mass of the two objects that are connected by the rope. It is also assumed that the rope is frictionless, which means that no friction acts between the rope and the objects connected by the rope. Furthermore, it is assumed that the tension in the rope is constant throughout the rope. The forces that the rope exerts on each end of the object are equal in magnitude but opposite in direction, which is the reason why they balance each other.
Learn more about mass https://brainly.com/question/86444
#SPJ11
The figure below shows a ball of mass m=1.9 kg which is connected to a string of length L=1.9 m and moves in a vertical circle. Only gravity and the tension in the string act on the ball. If the velocity of the ball at point A is v0=4.2 m/s, what is the tension T in the string when the ball reaches the point B?
The tension in the string at point B is approximately 29.24 N.
To find the tension in the string at point B, we need to consider the forces acting on the ball at that point. At point B, the ball is at the lowest position in the vertical circle.
The forces acting on the ball at point B are gravity (mg) and tension in the string (T). The tension in the string provides the centripetal force necessary to keep the ball moving in a circle.
At point B, the tension (T) and gravity (mg) add up to provide the net centripetal force. The net centripetal force is given by:
T + mg = mv^2 / R
Where m is the mass of the ball, g is the acceleration due to gravity, v is the velocity of the ball, and R is the radius of the circular path.
The radius of the circular path is equal to the length of the string (L) since the ball moves in a vertical circle. Therefore, R = L = 1.9 m.
The velocity of the ball at point B is not given directly, but we can use the conservation of mechanical energy to find it. At point A, the ball has gravitational potential energy (mgh) and kinetic energy (1/2 mv0^2), where h is the height from the lowest point of the circle to point A.
At point B, all the gravitational potential energy is converted into kinetic energy, so we have:
mgh = 1/2 mv^2
Solving for v, we find:
v = sqrt(2gh)
Substituting the given values of g (9.8 m/s^2) and h (L = 1.9 m), we can calculate the velocity at point B:
v = sqrt(2 * 9.8 * 1.9) ≈ 7.104 m/s
Now we can substitute the values into the equation for net centripetal force:
T + mg = mv^2 / R
T + (1.9 kg)(9.8 m/s^2) = (1.9 kg)(7.104 m/s)^2 / 1.9 m
Simplifying and solving for T, we get:
T ≈ 29.24 N
Therefore, the tension in the string at point B is approximately 29.24 N.
To know more about tension click here:
https://brainly.com/question/33231961
#SPJ11
A solenoid with 32 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius of 2.7 cm and is perpendicular to the axis of the solenoid. If the speed of the electron is 4.0 x 105 m/s, what is I (in A)?
When a current flows through a solenoid, it generates a magnetic field. The magnetic field is strongest in the center of the solenoid and its strength decreases as the distance from the center of the solenoid increases.
The magnetic field produced by a solenoid can be calculated using the following formula:[tex]B = μ₀nI[/tex].
where:B is the magnetic fieldμ₀ is the permeability of free spacen is the number of turns per unit length of the solenoidI is the current flowing through the solenoid.The magnetic field produced by a solenoid can also be calculated using the following formula:B = µ₀nI.
When an electron moves in a magnetic field, it experiences a force that is perpendicular to its velocity. This force causes the electron to move in a circular path with a radius given by:r = mv/qB.
where:r is the radius of the circular path m is the mass of the electron v is the velocity of the electronq is the charge on the electronB is the magnetic fieldThe speed of the electron is given as v = 4.0 x 10⁵ m/s.
To know more about solenoid visit:
https://brainly.com/question/21842920
#SPJ11
A steel section of the Alaskan pipeline had a length of 56.6 m and a temperature of 19.9°C when it was installed. What is its change in length when the temperature drops to a frigid -30.6°C? Take α steel = 1.2×10-5 (C°)-1
The change in length of the steel section when the temperature drops to -30.6°C is -0.036 meters.
To calculate the change in length of the steel section when the temperature drops, we can use the formula:
ΔL = α * L * ΔT
where:
ΔL is the change in length,α is the coefficient of linear expansion,L is the initial length, andΔT is the change in temperature.In this case, the coefficient of linear expansion for steel (α steel) is given as 1.2×10^(-5) (C°)^(-1). The initial length (L) is 56.6 m. The change in temperature (ΔT) is -30.6°C - 19.9°C = -50.5°C.
Plugging these values into the formula, we can calculate the change in length (ΔL):
ΔL = (1.2×10^(-5) (C°)^(-1)) * (56.6 m) * (-50.5°C)
Simplifying the equation:
ΔL = -0.036 m
Therefore, the change in length of the steel section when the temperature drops to -30.6°C is -0.036 meters.
To learn more about coefficient of linear expansion, Visit:
https://brainly.com/question/23207743
#SPJ11
The primary winding of a transformer is connected to a battery, a resistor, and a switch. The secondary winding is connected to an ammeter. When the switch is closed, the ammeter shows?
A. zero current
B. a non-zero current for a brief instant
C. a constant current
When the switch is closed, the ammeter will show a non-zero current for a brief instant.
When the switch is closed, it completes the circuit and allows current to flow through the primary winding of the transformer. This current induces a changing magnetic field in the core of the transformer, which in turn induces a current in the secondary winding. However, initially, there is no current flowing through the secondary winding because it takes a short moment for the induced current to build up. Therefore, the ammeter will briefly show a non-zero current before it settles to a constant value.
Option B is the correct answer: "a non-zero current for a brief instant."
To learn more about ammeter, click here: https://brainly.com/question/29513951
#SPJ11
Suppose the magnetic field along an axis of a cylindrical region is given by B₂ = Bo(1 + vz²) sin wt, where is a constant. Suppose the o-component of B is zero, that is B = 0. (a) Calculate the radial B,(s, z) using the divergence of the magnetic field. (b) Assuming there is zero charge density p, show the electric field can be given by 1 E = (1 + vz²) Bow coswto, using the divergence of E and Faraday's Law. (c) Use Ampere-Maxwell's Equation to find the current density J(s, z).
a) The radial component of the magnetic field is:
B_r = Bo(2vwtz + C₁)
b) The radial component of the electric field is:
E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂
Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:
-2v Bow (vz/wt) sin(wt) = 0
This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.
c) The current density J:
J = ε₀ Bow (1 + vz²) sin(wt)
Explanation:
To solve the given problem, we'll go step by step:
(a) Calculate the radial B(r, z) using the divergence of the magnetic field:
The divergence of the magnetic field is given by:
∇ · B = 0
In cylindrical coordinates, the divergence can be expressed as:
∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z + (1/r) ∂B_θ/∂θ
Since B does not have any θ-component, we have:
∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z = 0
We are given that B_θ = 0, and the given expression for B₂ can be written as B_z = Bo(1 + vz²) sin(wt).
Let's find B_r by integrating the equation above:
∂B_z/∂z = Bo ∂(1 + vz²)/∂z sin(wt) = Bo(2v) sin(wt)
Integrating with respect to z:
B_r = Bo(2v) ∫ sin(wt) dz
Since the integration of sin(wt) with respect to z gives us wtz + constant, we can write:
B_r = Bo(2v) (wtz + C₁)
where C₁ is the constant of integration.
So, the radial component of the magnetic field is:
B_r = Bo(2vwtz + C₁)
(b) Assuming zero charge density p, show the electric field can be given by E = (1 + vz²) Bow cos(wt) using the divergence of E and Faraday's Law:
The divergence of the electric field is given by:
∇ · E = ρ/ε₀
Since there is zero charge density (ρ = 0), we have:
∇ · E = 0
In cylindrical coordinates, the divergence can be expressed as:
∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z + (1/r) ∂E_θ/∂θ
Since E does not have any θ-component, we have:
∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z = 0
Let's find E_r by integrating the equation above:
∂E_z/∂z = ∂[(1 + vz²) Bow cos(wt)]/∂z = -2vz Bow cos(wt)
Integrating with respect to z:
E_r = -2v Bow ∫ vz cos(wt) dz
Since the integration of vz cos(wt) with respect to z gives us (vz/wt) sin(wt) + constant, we can write:
E_r = -2v Bow [(vz/wt) sin(wt) + C₂]
where C₂ is the constant of integration.
So, the radial component of the electric field is:
E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂
Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:
-2v Bow (vz/wt) sin(wt) = 0
This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.
(c) Use Ampere-Maxwell's Equation to find the current density J(s, z):
Ampere-Maxwell's equation in differential form is given by:
∇ × B = μ₀J + μ₀ε₀ ∂E/∂t
In cylindrical coordinates, the curl of B can be expressed as:
∇ × B = (1/r) ∂(rB_θ)/∂z - ∂B_z/∂θ + (1/r) ∂(rB_z)/∂θ
Since B has no θ-component, we can simplify the equation to:
∇ × B = (1/r) ∂(rB_z)/∂θ
Differentiating B_z = Bo(1 + vz²) sin(wt) with respect to θ, we get:
∂B_z/∂θ = -Bo(1 + vz²) w cos(wt)
Substituting this back into the curl equation, we have:
∇ × B = (1/r) ∂(rB_z)/∂θ = -Bo(1 + vz²) w (1/r) ∂(r)/∂θ sin(wt)
∇ × B = -Bo(1 + vz²) w ∂r/∂θ sin(wt)
Since the cylindrical region does not have an θ-dependence, ∂r/∂θ = 0. Therefore, the curl of B is zero:
∇ × B = 0
According to Ampere-Maxwell's equation, this implies:
μ₀J + μ₀ε₀ ∂E/∂t = 0
μ₀J = -μ₀ε₀ ∂E/∂t
Taking the time derivative of E = (1 + vz²) Bow cos(wt), we get:
∂E/∂t = -Bow (1 + vz²) sin(wt)
Substituting this into the equation above, we have:
μ₀J = μ₀ε₀ Bow (1 + vz²) sin(wt)
Finally, dividing both sides by μ₀, we obtain the current density J:
J = ε₀ Bow (1 + vz²) sin(wt)
To know more about Faraday's Law, visit:
https://brainly.com/question/32089008
#SPJ11
A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is:
When a horse runs into a crate and slides up a ramp, the direction of the friction on the crate is (option c.) up the ramp and then down the ramp.
The direction of the friction on the crate, when the horse runs into it and slides up the ramp, can be determined based on the information given. Since the horse is initially running into the crate, it imparts a force on the crate in the direction of the ramp (up the ramp). According to Newton's third law of motion, there will be an equal and opposite force of friction acting on the crate in the opposite direction.
Therefore, the correct answer is option c. Up the ramp and then down the ramp.
The complete question should be:
A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is:
a. Down the ramp and then up the ramp
b. Cannot be determined
c. Up the ramp and then down the
d. Always down the ramp
e. Always up the ramp
To learn more about Newton's third law of motion, Visit:
https://brainly.com/question/62770
#SPJ11
A distant star has a single planet circling it in a circular orbit of radius 2.68×10 ^11 m. The period of the planet's motion about the star is 740 days. What is the mass of the star? The value of the universal gravitational constant is 6.67259×10 ^−11 N⋅m 2/kg2.
Assume that it takes 90 minutes for a satellite near the Earth's surface to orbit around Earth of radius R E . What distance does a geo-synchronous satellite (i.e. has a period around the Earth of 24 hours) have to be from Earth? 1. 3R E
2. 6R E
3. 13R E
4. 24R E
5. 16R E
The mass of the star is 9.77 * 10^30 kg.
The distance of a geo-synchronous satellite from Earth is 42,164 km.
Here is the solution for the mass of the star:
We can use Kepler's third law to calculate the mass of the star. Kepler's third law states that the square of the period of a planet's orbit is proportional to the cube of the semi-major axis of its orbit. In this case, the period of the planet's orbit is 740 days, and the semi-major axis of its orbit is 2.68 * 10^11 m. Plugging in these values, we get:
T^2 = a^3 * k
where:
* T is the period of the planet's orbit in seconds
* a is the semi-major axis of the planet's orbit in meters
* k is Kepler's constant (6.67259 * 10^-11 N⋅m^2/kg^2)
(740 * 24 * 60 * 60)^2 = (2.68 * 10^11)^3 * k
1.43 * 10^16 = 18.3 * 10^23 * k
k = 7.8 * 10^-6
Now that we know the value of Kepler's constant, we can use it to calculate the mass of the star. The mass of the star is given by the following formula
M = (4 * π^2 * a^3 * T^2) / G
where:
* M is the mass of the star in kilograms
* a is the semi-major axis of the planet's orbit in meters
* T is the period of the planet's orbit in seconds
* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)
M = (4 * π^2 * (2.68 * 10^11)^3 * (740 * 24 * 60 * 60)^2) / (6.67259 * 10^-11)
M = 9.77 * 10^30 kg
Here is the solution for the distance of the geo-synchronous satellite from Earth:
The geo-synchronous satellite is in a circular orbit around Earth, and it has a period of 24 hours. The radius of Earth is 6371 km. The distance of the geo-synchronous satellite from Earth is given by the following formula
r = a * (1 - e^2)
where:
* r is the distance of the satellite from Earth in meters
* a is the semi-major axis of the satellite's orbit in meters
* e is the eccentricity of the satellite's orbit
The eccentricity of the geo-synchronous satellite's orbit is very close to zero, so we can ignore it. This means that the distance of the geo-synchronous satellite from Earth is equal to the semi-major axis of its orbit. The semi-major axis of the geo-synchronous satellite's orbit is given by the following formula:
a = r_e * sqrt(GM/(2 * π^2))
where:
* r_e is the radius of Earth in meters
* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)
* M is the mass of Earth in kilograms
* π is approximately equal to 3.14
a = 6371 km * sqrt(6.67259 * 10^-11 * 5.972 * 10^24 / (2 * (3.14)^2))
a = 42,164 km
Therefore, the distance of the geo-synchronous satellite from Earth is 42,164 km.
Learn more about mass with the given link,
https://brainly.com/question/86444
#SPJ11
Two point charges produce an electrostatic force of 6.87 × 10-3 N Determine the electrostatic force produced if charge 1 is doubled, charge 2 is tripled and the distance between them is
alf.
elect one:
) a. 1.65 x 10-1 N • b. 6.87 × 10-3 N ) c. 4.12 × 10-2.N
) d. 2.06 x 10-2 N
The electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N. None of the provided answer choices (a), (b), (c), or (d) match this value.
To determine the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved, we can use Coulomb's Law.
Coulomb's Law states that the electrostatic force (F) between two point charges is given by the equation:
F = k * (|q1| * |q2|) / r^2
where k is the electrostatic constant (k ≈ 8.99 × 10^9 Nm^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between them.
Let's denote the original values of charge 1, charge 2, and the distance as q1, q2, and r, respectively. Then the modified values can be represented as 2q1, 3q2, and r/2.
According to the problem, the electrostatic force is 6.87 × 10^(-3) N for the original configuration. Let's denote this force as F_original.
Now, let's calculate the modified electrostatic force using the modified values:
F_modified = k * (|(2q1)| * |(3q2)|) / ((r/2)^2)
= k * (6q1 * 9q2) / (r^2/4)
= k * 54q1 * q2 / (r^2/4)
= 216 * (k * q1 * q2) / r^2
Since k * q1 * q2 / r^2 is the original electrostatic force (F_original), we have:
F_modified = 216 * F_original
Substituting the given value of F_original = 6.87 × 10^(-3) N into the equation, we get:
F_modified = 216 * (6.87 × 10^(-3) N)
= 1.48 N
Therefore, the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N.
None of the provided answer choices matches this value, so none of the options (a), (b), (c), or (d) are correct.
To learn more about electrostatic force visit : https://brainly.com/question/17692887
#SPJ11
Light with a wavelength of 442 nm passes through a double slit that has a slit seperation of 0.4 mm. Determine a) how far away L, a screen must be placed so that the first dark fringe appears directly opposite each slit opening. Draw a schematic diagram of the set up. [] b) how many nodal lines would appear in the pattern? [] c) What would delta x be in the pattern? [ ]
The delta x in the pattern is approximately 1.99 μm
a) To determine the distance L, we can use the formula for the position of the dark fringes in a double-slit interference pattern:
y = λ * L / d
Where y is the distance from the central maximum to the dark fringe, λ is the wavelength of light, L is the distance from the slits to the screen, and d is the slit separation.
In this case, we have:
λ = 442 nm = 442 x 10^(-9) m
d = 0.4 mm = 0.4 x 10^(-3) m
To find the distance L, we need to consider the first dark fringe, which occurs at y = d/2.
Substituting the values into the formula, we have:
d/2 = λ * L / d
Rearranging the formula to solve for L, we get:
L = (d^2) / (2 * λ)
Substituting the given values, we have:
L = (0.4 x 10^(-3))^2 / (2 * 442 x 10^(-9))
= 0.8 x 10^(-6) / (2 * 442)
= 1.81 x 10^(-6) m
Therefore, the screen must be placed approximately 1.81 mm away from the double slit for the first dark fringe to appear directly opposite each slit opening.
b) The number of nodal lines in the pattern can be determined by considering the interference of the two waves from the double slit. The formula for the number of nodal lines is given by:
N = (2 * d * L) / λ
Substituting the given values, we have:
N = (2 * 0.4 x 10^(-3) * 1.81 x 10^(-6)) / (442 x 10^(-9))
= 1.83
Therefore, approximately 1.83 nodal lines would appear in the pattern.
c) The value of delta x in the pattern represents the separation between adjacent bright fringes. It can be calculated using the formula:
delta x = λ * L / d
Substituting the given values, we have:
delta x = 442 x 10^(-9) * 1.81 x 10^(-6) / (0.4 x 10^(-3))
= 1.99 x 10^(-6) m
Therefore, delta x in the pattern is approximately 1.99 μm.
Learn more about double-slit interference pattern from the given link!
https://brainly.com/question/15587032
#SPJ11
(a).The screen must be placed 0.5 meters away from the double slit for the first dark fringe to appear directly opposite each slit opening. (b).Approximately 1.83 nodal lines would appear in the pattern.
(c). Delta x (Δx) in the pattern is 1.99×10⁻⁶ μm.
a) To determine the distance L, we can use the formula for the position of the dark fringes in a double-slit interference pattern:
y = (m × λ × L) / d
where y is the distance from the central maximum to the dark fringe, m is the order of the dark fringe (in this case, m = 1 for the first dark fringe), λ is the wavelength of light, L is the distance from the double slit to the screen, and d is the slit separation.
Given:
Wavelength (λ) = 442 nm = 442 × 10⁻⁹ m
Slit separation (d) = 0.4 mm = 0.4 × 10⁻³ m
Order of dark fringe (m) = 1
Substituting these values into the formula, we can solve for L:
L = (y × d) / (m × λ)
Since the first dark fringe appears directly opposite each slit opening, y = d/2:
L = (d/2 × d) / (m × λ)
= (0.4 × 10⁻³ m / 2 × 0.4 × 10⁻³ m) / (1 × 442 × 10⁻⁹ m)
= 0.5 m
Therefore, the screen must be placed 0.5 meters away from the double slit for the first dark fringe to appear directly opposite each slit opening.
The diagram is given below.
b) The number of nodal lines in the pattern can be calculated using the formula:
N = (d ×sin(θ)) / λ
where N is the number of nodal lines, d is the slit separation, θ is the angle of deviation, and λ is the wavelength of light.
Substituting the given values, we have:
N = (2 × 0.4 × 10⁻³ × 1.81 × 10⁻⁶) / (442 × 10⁻⁹)
= 1.83
Therefore, approximately 1.83 nodal lines would appear in the pattern.
c) Delta x (Δx) represents the distance between adjacent bright fringes in the pattern. It can be calculated using the formula:
Δx = (λ × L) / d
Given the values we have, we can substitute them into the formula:
Δx = (λ × L) / d
= (442 × 10⁻⁹ m ×0.5 m) / (0.4 × 10⁻³ m)
= 1.99×10⁻⁶m
Therefore, delta x (Δx) in the pattern is 1.99×10⁻⁶ μm.
To know more about dark fringe:
https://brainly.com/question/33259092
#SPJ4
How far apart are an object and an image formed by a 75 -cm-focal-length converging lens if the image is 2.25× larger than the object and is real? Express your answer using two significant figures.
The magnification (M) of the image formed by a lens can be calculated using the formula:
M = -di/do
where di is the image distance and do is the object distance.
Given:
Focal length (f) = 75 cm
Magnification (M) = 2.25
Since the image is real and the magnification is positive, we can conclude that the lens forms an enlarged, upright image.
To find the object distance, we can rearrange the magnification formula as follows:
M = -di/do
2.25 = -di/do
do = -di/2.25
Now, we can use the lens formula to find the image distance:
1/f = 1/do + 1/di
Substituting the value of do obtained from the magnification formula:
1/75 = 1/(-di/2.25) + 1/di
Simplifying the equation:
1/75 = 2.25/di - 1/di
1/75 = 1.25/di
di = 75/1.25
di = 60 cm
Since the object and image are on the same side of the lens, the object distance (do) is positive and equal to the focal length (f).
do = f = 75 cm
The distance between the object and the image is the sum of the object distance and the image distance:
Distance = do + di = 75 cm + 60 cm = 135 cm
Therefore, the object and image are approximately 135 cm apart.
To know more about magnification click this link -
brainly.com/question/21370207
#SPJ11
Three negative charged particles of equal charge, -15x10^-6, are located at the corners of an equilateral triangle of side 25.0cm. Determine the magnitude and direction of the net electric force on each particle.
The magnitude of the net electric force on each particle is 2.025 N directed away from the triangle.
Charge on each particle, q1 = q2 = q3 = -15 × 10⁻⁶C
∴ Net force on particle 1 = F1
Net force on particle 2 = F2
Net force on particle 3 = F3
The magnitude of the net electric force on each particle:
It can be determined by using Coulomb's Law:
F = kqq / r²
where
k = Coulomb's constant = 9 × 10⁹ Nm²/C²
q = charge on each particle
r = distance between the particles
We know that all three charges are negative, so they will repel each other. Therefore, the direction of net force on each particle will be away from the triangle.
From the given data,
Side of equilateral triangle, a = 25cm = 0.25m
∴ Distance between each corner of the triangle = r = a = 0.25m
∴ Net force on particle 1 = F1
F1 = kq² / r² = 9 × 10⁹ × (-15 × 10⁻⁶)² / (0.25)²= -2.025 N
∴ Net force on particle 2 = F2
F2 = kq² / r² = 9 × 10⁹ × (-15 × 10⁻⁶)² / (0.25)²= -2.025 N
∴ Net force on particle 3 = F3
F3 = kq² / r² = 9 × 10⁹ × (-15 × 10⁻⁶)² / (0.25)²= -2.025 N
Learn more about the net electric force: https://brainly.com/question/14620591
#SPJ11
Why does tightening a string on a guitar or violin cause the frequency of the sound produced by that
string to increase?
AO Tightening the string increases the linear mass density.
BO Tightening the string decreases the wavelength of the string's vibration.
CO Tightening the string does not actually change the frequency.
DO Tightening the string increases the tension and therefore the wave speed and frequency of the vibration in
the string.
When a string is tightened on a guitar or violin, it increases the tension, linear mass density, wave speed and frequency of the vibration in the string. Therefore, option DO is the correct answer.
Vibration is an oscillating motion about an equilibrium point. A simple harmonic motion, like vibration, takes place when the motion is periodic and the restoring force is proportional to the displacement of the object from its equilibrium position. Frequency is defined as the number of cycles per unit time. It is typically measured in hertz (Hz), which is one cycle per second. The higher the frequency of a wave, the more compressed its waves are and the higher its pitch is. linear mass Density is the measure of mass per unit length. When the linear mass density is increased, the wave speed in the string increases, and its frequency also increases as frequency is directly proportional to the wave speed and inversely proportional to the wavelength. So, tightening a string on a guitar or violin causes an increase in tension, linear mass density, wave speed, and frequency of the vibration in the string.
Learn more about vibration: https://brainly.com/question/2279743
#SPJ11