Answer:
The interquartile range of the players' weights = 48 pounds.
Step-by-step explanation:
The boxplot attached to this question is missing. It was obtained online and is attached to this solution of the question.
It should be noted that the following is true for a boxplot.
A box plot gives a visual representation of the distribution of the data, showing where most values lie and those values that greatly differ from the rest, called outliers.
The elements of the box plot are described thus;
The bottom side of the box represents the first quartile, and the top side, the third quartile. Therefore, the width of the central box represents the inter-quartile range.
The horizontal line inside the box is the median.
The lines extending from the box reach out to the minimum and the maximum values in the data set, as long as these values are not outliers. The ends of the whiskers are marked by two shorter horizontal lines.
Variables in the dataset, higher than Q3+(1.5×IQR) or lower than Q1-(1.5×IQR) are considered outliers and are usually shown using dots above the top whisker or below the bottom whisker.
So, it is evident that for this question,
First quartile = 174 pounds
Third quartile = 222 pounds
Inter Quartile Range = (Third quartile) - (First quartile)
= 222 - 174
= 48 pounds.
Hope this Helps!!!
A jar contains 20 coins.
There are only coins of value 1p, 2p, 5p and 10p in the jar.
A coin is taken at random from the jar.
The probability that it is a 1p coin is 1/5
The probability that it is a 2p coin is 1/2
The total value of the coins in the jar is 59 pence.
Work out how many of each type of coin there are in the jar.
Answer:
See Attached Image, Explanation in order to understand how to calculate is below.
Step-by-step explanation:
The Jar Contains 20 Coins.
The probability that it is a 1p coin is 1/5
The probability that it is a 2p coin is 1/2
The total value of the coins in the jar is 59 pence.
The Section in bold is vitally important in this question.
We know we have 4 combinations of 1p, 2p , 5p & 10p in order to make 59p, and only have 20 coins to make it.
--------------------------------------------------------------------------------------------------------------
Calculate 1p:
1/5 of 20 = 4
We know the answer is 4 as we have 20 coins, you find 1/5 of 20.
Calculate 2p:
1/2 of 20 = 10
We know the answer is 10 as we have 20 coins, you find 1/2 of 20.
10 (2p Coins) + 4 (1p coins) = 14
20 coins - 14 (2p & 1p coins) = 6.
Now we only have 6 remaining coins for both 5p and 10p.
Calculate 5p:
We know we currently have a total of 24p if we subtract that from 59 we are left with 35.
So we can work establish here that we are not going to need many 10p's. As we only have 6 coins left!.
5x5 = 25p.
Therefore you need 5, 5p's
Calculate 10p:
With 1 pence left out of the 20, we need 1 10p.
--------------------------------------------------------------------------------------------------------------
Hope this helps, mark as brainilest if found useful.
There are 1 10p coin of each type in the jar.
Given that ;
The Jar Contains 20 Coins.
Probability that it is a 1p coin is 1/5
Probability that it is a 2p coin is 1/2
The total value of the coins in the jar is 59 pence.
What is the probability?Probability refers to a possibility that deals with the occurrence of random events.
The probability of all the events occurring need to be 1.
We know we have 4 combinations of 1p, 2p , 5p & 10p. so to make 59p, and only have 20 coins to make it.
Calculate 1p:
1/5 of 20 = 4
The answer is 4 as we have 20 coins, find 1/5 of 20.
Calculate 2p:
1/2 of 20 = 10
The answer is 10 as we have 20 coins, you find 1/2 of 20.
10 (2p Coins) + 4 (1p coins) = 14
20 coins - 14 (2p & 1p coins) = 6.
Now we only have 6 remaining coins for both 5p and 10p.
Now Calculate 5p:
We know that we have a total of 24p if we subtract that from 59 we are left with 35
5x5 = 25p.
Therefore we need 5, 5p's
Now Calculate 10p:
With 1 pence left out of the 20, we need 1 10p.
Learn more about probability here;
https://brainly.com/question/9326835
#SPJ2
which situation is most likely to show a constant rate of change
Answer:
B. The amount spent on grapes compared with the weight of the purchase.
Step-by-step explanation:
A: The shoe size of a young girl compared with her age in years. For the first few years of a girl's life, her shoe size is relatively the same. When she goes through a growth spurt, her shoe size increases exponentially. So, that is not a constant rate of change.
B: The amount spent on grapes compared with the weight of the purchase. In most grocery stores, grapes are sold based on their weight, like $2.50 per pound. With each increase in 1 pound, the cost increases by $2.50. That is a constant rate of change.
C: The number of people on a city bus compared with the time of day. This value widely changes throughout the day. For example, during rush hour, there will be many people. But during times at, say, 2 to 3 AM, there will not be many people. So, this is not a constant rate of change.
D: The number of slices in a pizza compared with the time it takes to deliver it. The number of slices in a pizza never changes, so it does not depend on the time it takes to deliver. There is no rate of change.
So, B is your answer.
Hope this helps!
Answer:
B
Step-by-step explanation:
i just did it
Find the volume of a triangular prism that has a triangular base of 4 and height of 3 with a prism height of 11. Answer in cubic ft a0 cubic units.
Answer:
12 ??
Step-by-step explanation:
Answer:
12 cubic units
Step-by-step explanation:
1. Multiply 4 and 3
Find the area and perimeter of shape ABCD with vertices A = (-1,-1), B = (2,3), C = (5,3), D = (8,-1).
Answer:
Perimeter = 22
Step-by-step explanation:
To find the perimeter, we will follow the steps below:
A = (-1,-1), B = (2,3), C = (5,3), D = (8,-1).
First, we will find the distance AB
A = (-1,-1), B = (2,3)
|AB| = √(x₂-x₁)²+(y₂-y₁)²
x₁ = -1 y₁=-1 x₂=2 y₂=3
we can now proceed to insert the values into the formula
|AB| = √(x₂-x₁)²+(y₂-y₁)²
= √(2+1)²+(3+1)²
= √(3)²+(4)²
= √9 + 16
=√25
= 5
|AB| = 5
Next, we will find the distance BC
B = (2,3), C = (5,3),
|BC| = √(x₂-x₁)²+(y₂-y₁)²
x₁ = 2 y₁=3 x₂=5 y₂=3
we can now proceed to insert the values into the formula
|BC| = √(x₂-x₁)²+(y₂-y₁)²
= √(5-2)²+(3-3)²
= √(3)²+(0)²
= √9 + 0
=√9
= 3
|BC|=3
Next, we will find the distance CD
C = (5,3), D = (8,-1).
|CD| = √(x₂-x₁)²+(y₂-y₁)²
x₁ = 5 y₁=3 x₂=8 y₂=-1
we can now proceed to insert the values into the formula
|CD| = √(x₂-x₁)²+(y₂-y₁)²
= √(8-5)²+(-1-3)²
= √(3)²+(-4)²
= √9 + 16
=√25
= 5
|CD|=5
Next, we will find the distance DA
D = (8,-1) A = (-1,-1)
|DA| = √(x₂-x₁)²+(y₂-y₁)²
x₁ = 8 y₁=-1 x₂=-1 y₂=-1
we can now proceed to insert the values into the formula
|DA| = √(x₂-x₁)²+(y₂-y₁)²
= √(-1-8)²+(-1+1)²
= √(-9)²+(0)²
= √81 + 0
=√81
= 9
|DA|=9
PERIMETER = |AB|+|BC|+|CD|+|DA|
=5 + 3+5 +9
=22
Perimeter = 22
A dilation has center (0, 0). Find the image of each point for the given scale factor. A(3,4);D7(A)
Answer:
6,8
Step-by-step explanation:
Please help me ASAP!
Answer:
Exponential growth
Step-by-step explanation:
This is not a negative so it is growing.
Hope this helps!
A football team carried out a report to see the impact of stretching on preventing injury. Of the 32 footballers in the squad 25 stretch regularly. Of those who stretch, 3 got injured last year. There was a total of 8 injured players last year. The results can be presented in a frequency tree. What fraction of players are not stretching regularly?
Answer:
1/16
Step-by-step explanation:
Total = 32 footballers
25 stretch regularly.
3 injure last year
now, 22 stretch regularly.
out of 32, 8 are injured. Therefore, 32-8=24 should stretch regularly but only
22 stretch regularly. Therefore, 24-22 =2 are not stretching regularly.
fraction of players are not stretching regularly = 2/32 =1/16
PLEASE HELP ME! can someone explain this to me pls?
25 POINTS! The graph shows two lines, M and N. A coordinate plane is shown with two lines graphs. Line M has a slope of 1 and passes through the y axis at negative 2. Line N has a slope of 1 and passes through the y axis at negative 2. How many solutions are there for the pair of equations for lines M and N? Explain your answer. PLS ANSWER AS SOON AS POSSIBLE
Answer:
Infinite solutions
Step-by-step explanation:
Both lines have the same slope and y-intercept, therefore they are the same line and intersect at all points, resulting in infinite solutions.
A projectile is fired straight up from ground level with an initial velocity of 112 ft/s. Its height, h, above the ground after t seconds is given by h = –16t2 + 112t. What is the interval of time during which the projectile's height exceeds 192 feet?
A. 3
B. t<4
C. t>4
D. 3>t>4
Answer: 3 < t < 4
Step-by-step explanation:
Given the following information :
Initial Velocity of projectile = 112 ft/s
Height (h) above the ground after t seconds :
h = –16t2 + 112t
To calculate the time when h exceeds 192 Feets (h >192)
That is ;
-16t^2 + 112t = > 192
-16t^2 + 112t - 192 = 0
Divide through by - 16
t^2 - 7t + 12 = 0
Factorizing
t^2 - 3t - 4t + 12 =0
t(t - 3) - 4(t - 3) = 0
(t-3) = 0 or (t-4) =0
t = 3 or t=4
Therefore, t exist between 3 and 4 for height in excess of 192ft
–16(3)^2 + 112(3) = 192 feets
–16(4)^2 + 112(4) = 192 feets
3 < t < 4
There are two cube-shaped tanks. One of the tank has a 3 m side, while the other one has a side measuring half of the first one. Which tank can store more water and why
Answer: The tank which has 3 m side.
Step-by-step explanation: A cube is a form that has equal sides. To calculate the volume of it, multiply all three sides:
V = length*width*height
Since they are all the same, volume will be:
V = s³
One tank has a 3 m side, so its volume is:
V = 3³
V = 27 m³
The other has half of the first one side, then s = [tex]\frac{3}{2}[/tex] and volume will be:
V = [tex](\frac{3}{2})^{3}[/tex]
V = [tex]\frac{27}{8}[/tex] m³
As you can see, the volume of the second tank is [tex]\frac{1}{8}[/tex] smaller than the first one. Therefore, the tank which has 3 m side can store more water than the tank with side measuring half of the first.
Write these numbers in standard form
Answer:
a. [tex] 4*10^{-5} [/tex]
b. [tex] 5*10^{-5} [/tex]
c. [tex] 6*10^{-6} [/tex]
d. [tex] 8*10^{-10} [/tex]
Step-by-step explanation:
To write the above given numbers in standard form, all you need to do is count how many places you have to move the decimal point till you get to a non-zero digit. The number of places you move the decimal point to the right would determine the value of the negative power you would raise to 10.
a. 0.00004:
To place our decimal point after the first non-zero digit in this number given, we would have to move the decimal point to 5 places. The digit 4, would now be multiples by 10 raised to the negative power of 4.
The standard form would be: [tex] 4*10^{-5} [/tex].
Now let's check if we're correct.
[tex] 4*10^{-1} = 4*\frac{1}{10^5} = 4*\frac{1}{100,000} = 4*0.00001 = 0.00004 [/tex]
Follow same procedure as shown above to write the rest numbers in standard form.
You should have the following as their standard form:
b. [tex] 0.00005 = 5*10^{-5} [/tex]
c. [tex] 0.000006 = 6*10^{-6} [/tex]
d. [tex] 0.0000000006 = 8*10^{-10} [/tex]
helppppppppppppppppppppppppppppppp plz
The answer is the second image from left to right (B). Examples of direct and inverse variations are showed in the image below. :)
The value of -9 is than the value of -12 because -9 is to the of -12 on the number line.
Answer: greaterright
Step-by-step explanation:
write a function that represents the situation: A population of 210,000 increases by 12.5% each year
Answer
y= 12.5x + 210,000
Step-by-step explanation:
This is a linear function because it is increasing constantly by 12.5 percent so it will me written as y=mx+b
The value of function that represents the situation is,
⇒ P = 210,000 (1.125)ⁿ
Where, n is number of years.
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
We have to given that;
The situation is,
⇒ A population of 210,000 increases by 12.5% each year.
Now, Let number of years = n
Hence, The value of function that represents the situation is,
⇒ P = 210,000 (1 + 12.5%)ⁿ
⇒ P = 210,000 (1 + 0.125)ⁿ
⇒ P = 210,000 (1.125)ⁿ
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ5
Eight years ago, twice Manuel's age was 36. What is Manuel's age now? Pls hell
Answer:
Hey there!
Eight years ago, Manuel's age was 36/2, or 18.
Now, his age is 18+8, or 26 years old.
So, he is 26 years old now.
Hope this helps :)
Please help!! Tamar is measuring the sides and angles of Triangle TUV to determine whether it is congruent to the triangle below.
Answer:
Measure of angle T = 25 degrees and TU = 12
Step-by-step explanation:
Tamar is measuring the sides and angles of Triangle T U V to determine whether it is congruent to the triangle below. For triangle K L M, side K M is 27 millimeters, side L M is 20 millimeters, and side K L is 12 millimeters. Angle K is 45 degrees, angle M is 25 degrees, angle L is 110 degrees. Which pair of measurements would eliminate the possibility that the triangles are congruent? Measure of angle T = 25 degrees and Measure of angle U = 45 degrees Measure of angle T = 110 degrees and Measure of angle V = 25 degrees Measure of angle T = 25 degrees and TU = 12 Measure of angle T = 110 degrees and UV = 27
Answer: Two triangles are congruent to each other if they have the same shape and size (i.e the same sides and angles).
The ways used to find congruence are:
1) Angle-side-angle: If two angles and an included side of a triangle is equal to the two angles and corresponding side of another triangle, then they are equal.
2) Side-side-side: If all three sides of a triangle is equal to the three sides of another triangle, then the two triangles are congruent.
3) Side angle side: If two sides and an included angle of a triangle is equal to the two sides and corresponding angle of another triangle, then they are equal.
4) Hypotenuse - leg: If the hypotenuse and one leg of a triangle is equal to the hypotenuse and leg of another triangle then they are equal.
5) Angle angle side: If two angles and an non included side of a triangle is equal to the two angles and corresponding side of another triangle, then they are equal.
Measure of angle T = 25 degrees and TU = 12 would eliminate the possibility that the triangles are congruent because if T = 25°, then the side opposite angle T (UV) is suppose to be 12
Answer:
the answer is C
Step-by-step explanation:
I got it right on my final exam on edge
if y varies inversely as x and y=6 when x=8 find y when x=7
Answer:
y = 5 1/4
Step-by-step explanation:
For direct or inverse variation relation
relation between two variable and y can be expresses in form of
y = kx where k is constant of proportionality .
Only thing happens in inverse relation is that when x increases then y decreases and vice versa. That is care by constant of proportionality
__________________________________
Thus, let the inverse relation be
y = kx
given
when y = 6 then x = 8
we will plug this value in y = kx
6 = k*8
=>k = 6/8 = 3/4
Thus,
relation is
y = 3/4 x
we have to find y when x = 7 ,
lets put x = 7 in y = 3/4 x
y = 3/4 *7 = 21/4 = 5 1/4
Thus, when x = 7 then y = 5 1/4
SOMEONE HELPPP PLEASEEEE
Answer:
a. Domain = All real numbers
Range = y ≥ 2
b. Domain = -4 < x ≤ 4
Range = 0 ≤ y < 4
Which of the equations below represents this situation
Answer:
Y= 8*x
Step-by-step explanation:
You can notice that the graph is a straight line that crosses the origin so it's a graph that has an equation written this way : y= a*x
a is the slope
You can easily find it by notice that the image of 1 is 8
So a = 8
Then y= 8*x
Answer:
[tex]y=8x[/tex]
Step-by-step explanation:
Well drawing the line further then we can tell the y intercept is 0.
So we have to find the SLOPE using the following formula
[tex]\frac{y^2-y^1}{x^2-x^1}[/tex]
So we need two points on the line, we can use the following
(1,8) and (2,16)
So 16 is y2 and 8 is y1 so 16-8 is 8.
2-1 is 1.
So the slope is 8x.
Do the equation is [tex]y=8x[/tex]
We don’t have to put the y intercept because it is 0.
Multiple the polynomials (3x^2+4x+4) (2x-4)
Answer:
6x³ - 4x² - 8x - 16
Step-by-step explanation:
Step 1: Distribute the 2x
6x³ + 8x² + 8x
Step 2: Distribute the -4
-12x² - 16x - 16
Step 3: Combine the 2 distributions
6x³ + 8x² + 8x - 12x² - 16x - 16
Step 4: Combine like terms
6x³
8x² - 12x² = -4x²
8x - 16x = -8x
-16
Step 5: Rewrite
6x³ - 4x² - 8x - 16
━━━━━━━☆☆━━━━━━━
▹ Answer
6x³ - 4x² - 8x - 16
▹ Step-by-Step Explanation
(3x² + 4x + 4) (2x - 4)
Distribute
3x²(2x - 4) + 4x(2x - 4) + 4(2x - 4)
Remove parentheses
6x³ - 12x² + 4x(2x - 4) + 4(2x - 4)
Collect like terms
6x³ - 12x² + 8x² - 16x + 8x - 16
6x³ - 4x² - 16x + 8x - 16
Solve
6x³ - 4x² - 8x - 16
Hope this helps!
CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
If point P is 4/7 of the distnace frm M to N, what ratio does the point P partiion the directed line segment from M to N
Answer: 4:3.
Step-by-step explanation:
Given: Point P is [tex]\dfrac{4}{7}[/tex] of the distance from M to N.
To find: The ratio in which the point P partition the directed line segment from M to N.
If Point P is between points M and N, then the ratio can be written as
[tex]\dfrac{MP}{MN}=\dfrac{MP}{MP+PN}[/tex]
As per given,
[tex]\dfrac{MP}{MP+PN}=\dfrac{4}{7}\\\\\Rightarrow\ \dfrac{MP+PN}{MP}=\dfrac{7}{4}\\\\\Rightarrow\ \dfrac{MP}{MP}+\dfrac{PN}{MP}=\dfrac{7}{4}\\\\\Rightarrow\ -1+\dfrac{PN}{MP}=\dfrac{7}{4}\\\\\Rightarrow\ \dfrac{PN}{MP}=\dfrac{7}{4}-1=\dfrac{7-4}{4}=\dfrac{3}{4}\\\\\Rightarrow\ \dfrac{PN}{MP}=\dfrac{3}{4}\ \ \or\ \dfrac{MP}{PN}=\dfrac{4}{3}[/tex]
Hence, P partition the directed line segment from M to N in 4:3.
4x³-2x⁴+8x+10x²-4 in standard form
Answer:
-2x⁴+4x³+10x²+8x-4
Step-by-step explanation:
Standard form for a polynomial is from highest power to lowest power
4x³-2x⁴+8x+10x²-4
-2x⁴+4x³+10x²+8x-4
Would someone be able to help me with this question please???
Step-by-step explanation:
USE THE IMAGE ATTACHED BELOW please help me with my work answer it correctly I HAVE SO MUCH WORK DURING QUARANTINE
Answer:
Question 1:
a. The answer is B because the graph inclined really quickly and then it inclined at a much slower pace, suggesting that the person was running and then walking.
b. The answer is C because you can see on the graph that after a while, the distance from the starting point goes back to 0, indicating that the person forgot something at home.
Question 2:
a. The dashed line reaches the bottom at 15:30 so the answer is C.
b. Siobhan travels 8 km to go from home to school so the answer is 2 * 8 = 16 which is option D.
Question 3:
The answer is C because after the distance from the starting point increased, it then decreased and came back to the original point suggesting that he walked, turned around and walked back to the starting point.
Answer:
first page : a) A because it is the shortest time with no stop
b) C the graph goes up and return to the start point after a while
second page : it is at 3:30 0r 15:30
b): 8 km going to schools and 8 coming back is 16
third page it is C because he walk up a certain distance and come back to the starting point
identify the variable expression that is not a polynomial.
A. y+23
B. 3\sqrt(x)-2
C. x^3
D. 13
Answer:
B. 3\sqrt(x)-2
Step-by-step explanation:
A polynomial cannot have a variable in the denominator
A constant is a polynomial
3\sqrt(x)-2 and this cannot be simplified to get rid of the variable in the denominator so it is not a polynomial
Amad was curious if triangles \triangle ABC△ABCtriangle, A, B, C, and \triangle EDF△EDFtriangle, E, D, F were congruent. He was able to map one figure onto the other using a reflection and a rotation. Amad concluded: "I was able to map \triangle ABC△ABCtriangle, A, B, C onto \triangle EDF△EDFtriangle, E, D, F using a sequence of rigid transformations, so the figures are congruent."
Answer:
There is no error, Amad is correct.
Step-by-step explanation:
Khan Academy Checked.
Amad had done no error. His conclusion is true.
What is Congruency?Two triangles are said to be congruent if their sides are equal in length, the angles are of equal measure, and they can be superimposed on each other.
For example,
In the figure given above, Δ ABC and Δ PQR are congruent triangles. This means that the corresponding angles and corresponding sides in both the triangles are equal.
Sides: AB = PQ, BC = QR and AC = PR;
Angles: ∠A = ∠P, ∠B = ∠Q, and ∠C = ∠R.
Therefore, Δ ABC ≅ Δ PQR
The following are the congruence theorems or the triangle congruence criteria that help to prove the congruence of triangles.
SSS (Side, Side, Side)SAS (side, angle, side)ASA (angle, side, angle)AAS (angle, angle, side)RHS (Right angle-Hypotenuse-Side or the Hypotenuse Leg theorem)As, from the given cases the prediction of congruency of two triangles is correct. There is no error he made.
Hence, Amad had not made any error.
Learn more about congruency here:
https://brainly.com/question/14011665
#SPJ2
There are nuts in three boxes. In the first box, there are 6 fewer pounds of nuts than in the other two boxes combined. In the second box, there are 10 fewer pounds of nuts than in the other two boxes combined. How many pounds of nuts are there in the third box?
Answer:
8 pounds
Step-by-step explanation:
Let a, b, c represent the number of pounds of nuts in the first, second, and third boxes, respectively. We can write the equations ...
a = b +c -6 . . . . . first box has 6# fewer than the total of the others
b = a +c -10 . . . . second box has 10# fewer than the total of the others
Substituting the second equation into the first, we find ...
a = (a +c -10) +c -6
0 = 2c -16 . . . . subtract a
0 = c -8 . . . . . . divide by 2
8 = c . . . . . . . . . add 8
There are 8 pounds of nuts in the third box.
Examine the diagram of circle C. Points Q, V, and W lie on circle C. Given that m∠VCW=97∘, what is the length of VW⌢?
Answer:
[tex] \frac{97pi}{18} m [/tex]
Step-by-step Explanation:
==>Given:
radius (r) = 10 m
m<VCW = 97°
==>Required:
Length of arc VW
==>Solution:
Formula for length VW is given as 2πr(θ/360)
Using the formula, Arc length = 2πr(θ/360), find the arc length VW in the given circle
Where,
θ = 97°
r = radius of the circle = 10 m
Thus,
Arc length VW = 2*π*10(97/360)
Arc length VW = 20π(97/360)
Arc length VW = π(97/18)
Arc length VW = 97π/18 m
Our answer is,
[tex] \frac{97pi}{18} m [/tex]
the triangle ADE
BC is parallel to DE
AB = 9cm, AC = 6cm, BD = 3cm, BC = 9cm
Answer:
a) DE is 12 cm
b) CE is 2 cm
Step-by-step explanation:
In the two triangles [tex]\triangle ABC[/tex] and [tex]\triangle ADE[/tex].
[tex]\angle A[/tex] is common.
BC || DE
[tex]\Rightarrow \angle B = \angle D\ and \\ \Rightarrow \angle C = \angle E[/tex]
[tex]\because[/tex] two parallel lines BC and DE are cut by BD and CE respectively and the angles are corresponding angles.
All three angles are equal hence, the triangles:
[tex]\triangle ABC[/tex] [tex]\sim[/tex] [tex]\triangle ADE[/tex].
Ratio of corresponding sides of two similar triangles are always equal.
[tex]\dfrac{AB}{AD} = \dfrac{BC}{DE}\\\Rightarrow \dfrac{9}{9+3} = \dfrac{9}{DE}\\\Rightarrow \dfrac{9}{12} = \dfrac{9}{DE}\\\Rightarrow DE = 12\ cm[/tex]
[tex]\dfrac{AB}{AD} = \dfrac{AC}{AE}\\\Rightarrow \dfrac{9}{9+3} = \dfrac{6}{AC+CE}\\\Rightarrow \dfrac{9}{12} = \dfrac{6}{6+CE}\\\Rightarrow 6+CE = \dfrac{4\times 6}{3}\\\Rightarrow 6+CE = 8\\\Rightarrow CE = 2\ cm[/tex]
So, the answers are:
a) DE is 12 cm
b) CE is 2 cm