Answer:
the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]
Increase in volume of the glass = 10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]
[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]
[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline
Answer:
x = 46.54m
Explanation:
In order to find the length of the incline you use the following formula:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the soccer ball = 0 m/s
t: time
a: acceleration
You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):
[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex] (2)
Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:
[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex] (3)
The length of the incline is 46.54 m
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]