a. Derive linear density expressions for BCC [110] and [111] directions in terms of the atomic radius R.
b. Compute and compare linear density values for these same two directions for iron (Fe).

Answers

Answer 1

A) The linear density expressions for BCC [110] and [111] directions in terms of the atomic radius R are;

i) LD_110 = √3/(4R√2)

ii) LD_111 = 1/(2R)

B) The linear density values for these same two directions for iron (Fe) are;

i) LD_110 = 2.4 × 10^(9) m^(-1)

ii) LD_111 = 4 × 10^(9) m^(-1)

Calculating Linear Density of Crystalline Structures

A) i) To find linear density expression for BCC 110, first of all we will calculate the length of the vector using the length of the unit cell which is 4R/√3 and the cell edge length which is 4R. Thus, the vector length can now be calculated from this expression;

√((4R)² - (4R/√3)²)

This reduces to; 4R√(1 - 1/3) = 4R√(2/3)

Now, the expression for the linear density of this direction is;

LD_110 =

Number of atoms centered on (110) direction/vector length of 110 direction

In this case, there is only one atom centered on the 110 direction. Thus;

LD_110 = 1/(4R√(2/3))

LD_110 = √3/(4R√2)

ii)  The length of the vector for the direction 111 is equal to 4R, since

all of the atoms whose centers the vector passes through touch one another. In addition, the vector passes through an equivalent of 2 complete atoms. Thus, the linear density is;

LD_111 = 2/(4R) = 1/(2R)

B)i) From tables, the atomic radius for iron is 0.124 nm or 0.124 x 10^(-9) m. Therefore, the linear density for the [110] direction is;

LD_110 = √3/(4R√2) = √3/(4*0.124*10^(-9)(√2))

LD_110 = 2.4 × 10^(9) m^(-1)

ii) for the 111 direction, we have;

LD_111 = 1/(2R) = 1/(2*0.124*10^(-9))

LD_111 = 4 × 10^(9) m^(-1)

Read more about Linear Density of Crystalline Structures at; https://brainly.com/question/14831455


Related Questions

A certain heat pump produces 200 kW of heating for a 293 K heated zone while only using 75 kW of power and a heat source at 273 K. Calculate the COP of this device as well as the theoretical maximum COP

Answers

Answer:

COP(heat pump) = 2.66

COP(Theoretical maximum) = 14.65

Explanation:

Given:

Q(h) = 200 KW

W = 75 KW

Temperature (T1) = 293 K

Temperature (T2) = 273 K

Find:

COP(heat pump)

COP(Theoretical maximum)

Computation:

COP(heat pump) = Q(h) / W

COP(heat pump) = 200 / 75

COP(heat pump) = 2.66

COP(Theoretical maximum) = T1 / (T1 - T2)

COP(Theoretical maximum) = 293 / (293 - 273)

COP(Theoretical maximum) = 293 / 20

COP(Theoretical maximum) = 14.65

A horizontal turbine takes in steam with an enthalpy of h = 2.80 MJ/kg at 45 m/s. A steam-water mixture exits the turbine with an enthalpy of h = 1.55 MJ/kg at 20 m/s. If the heat loss to the surroundings from the turbine is 300 J/s, determine the power the fluid supplies to the turbine. The mass flow rate is 0.85 kg/s.

Answers

Answer:

The power that fluid supplies to the turbine is 1752.825 kilowatts.

Explanation:

A turbine is a device that works usually at steady state. Given that heat losses exists and changes in kinetic energy are not negligible, the following expression allows us to determine the power supplied by the fluid to the turbine by the First Law of Thermodynamics:

[tex]-\dot Q_{loss} - \dot W_{out} + \dot m \cdot \left[(h_{in}-h_{out}) + \frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) \right] = 0[/tex]

Output power is cleared:

[tex]\dot W_{out} = -\dot Q_{loss} + \dot m \cdot \left[(h_{in}-h_{out})+\frac{1}{2}\cdot (v_{in}^{2}-v_{out}^{2}) \right][/tex]

If [tex]\dot Q_{loss} = 0.3\,kW[/tex], [tex]\dot m = 0.85\,\frac{kg}{s}[/tex], [tex]h_{in} = 2800\,\frac{kJ}{kg}[/tex], [tex]h_{out} = 1550\,\frac{kJ}{kg}[/tex], [tex]v_{in} = 45\,\frac{m}{s}[/tex] and [tex]v_{out} = 20\,\frac{m}{s}[/tex], then:

[tex]\dot W_{out} = -0.3\,kW + \left(0.85\,\frac{kg}{s} \right)\cdot \left\{\left(2800\,\frac{kJ}{kg}-1550\,\frac{kJ}{kg} \right)+\frac{1}{2}\cdot \left[\left(45\,\frac{m}{s} \right)^{2}-\left(20\,\frac{m}{s} \right)^{2}\right] \right\}[/tex]

[tex]\dot W_{out} = 1752.825\,kW[/tex]

The power that fluid supplies to the turbine is 1752.825 kilowatts.

You want to plate a steel part having a surface area of 160 with a 0.002--thick layer of lead. The atomic mass of lead is 207.19 . The density of lead is 11.36 . How many atoms of lead are required

Answers

Answer:

To answer this question we assumed that the area units and the thickness units are given in inches.

The number of atoms of lead required is 1.73x10²³.    

Explanation:

To find the number of atoms of lead we need to find first the volume of the plate:

[tex] V = A*t [/tex]

Where:

A: is the surface area = 160

t: is the thickness = 0.002

Assuming that the units given above are in inches we proceed to calculate the volume:

[tex]V = A*t = 160 in^{2}*0.002 in = 0.32 in^{3}*(\frac{2.54 cm}{1 in})^{3} = 5.24 cm^{3}[/tex]    

Now, using the density we can find the mass:

[tex] m = d*V = 11.36 g/cm^{3}*5.24 cm^{3} = 59.5 g [/tex]

Finally, with the Avogadros number ([tex]N_{A}[/tex]) and with the atomic mass (A) we can find the number of atoms (N):

[tex] N = \frac{m*N_{A}}{A} = \frac{59.5 g*6.022 \cdot 10^{23} atoms/mol}{207.19 g/mol} = 1.73 \cdot 10^{23} atoms [/tex]    

Hence, the number of atoms of lead required is 1.73x10²³.

I hope it helps you!

A very large thin plate is centered in a gap of width 0.06 m with a different oils of unknown viscosities above and below; one viscosity is twice the other. When the plate is pulled at a velocity of 0.3 m/s, the resulting force on one square meter of plate due to the viscous shear on both sides is 29 N. Assuming viscous flow and neglecting all end effects calculate the viscosities of the oils.

Answers

Answer:

The viscosities of the oils are 0.967 Pa.s and 1.933 Pa.s

Explanation:

Assuming the two oils are Newtonian fluids.

From Newton's law of viscosity for Newtonian fluids, we know that the shear stress is proportional to the velocity gradient with the viscosity serving as the constant of proportionality.

τ = μ (∂v/∂y)

There are oils above and below the plate, so we can write this expression for the both cases.

τ₁ = μ₁ (∂v/∂y)

τ₂ = μ₂ (∂v/∂y)

dv = 0.3 m/s

dy = (0.06/2) = 0.03 m (the plate is centered in a gap of width 0.06 m)

τ₁ = μ₁ (0.3/0.03) = 10μ₁

τ₂ = μ₂ (0.3/0.03) = 10μ₂

But the shear stress on the plate is given as 29 N per square meter.

τ = 29 N/m²

But this stress is a sum of stress due to both shear stress above and below the plate

τ = τ₁ + τ₂ = 10μ₁ + 10μ₂ = 29

But it is also given that one viscosity is twice the other

μ₁ = 2μ₂

10μ₁ + 10μ₂ = 29

10(2μ₂) + 10μ₂ = 29

30μ₂ = 29

μ₂ = (29/30) = 0.967 Pa.s

μ₁ = 2μ₂ = 2 × 0.967 = 1.933 Pa.s

Hope this Helps!!!

Decompose the signal (1+0.1 cos5t) cos100t into a linear combination of sinusoidal functions, and find the amplitude, frequency, and phase of each component. Hint: use the identity for cosacosb.

Answers

Answer:

amplitudes : 1 , 0.05, 0.05

frequencies : 50/[tex]\pi[/tex],   105/[tex]2\pi[/tex],  95/2[tex]\pi[/tex]

phases : [tex]\pi /2 , \pi /2 , \pi /2[/tex]

Explanation:

signal  s(t) = ( 1 + 0.1 cos 5t )cos 100t

signal s(t) = cos100t + 0.1cos100tcos5t . using the identity for cosacosb

         s(t) = cos100t + [tex]\frac{0.1}{2}[/tex] [cos(100+5)t + cos (100-5)t]

          s(t) = cos 100t + 0.05cos ( 100+5)t + 0.05cos (100-5)t

               =  cos100t + 0.05cos(105)t + 0.05cos 95t

             = cos 2 [tex](\frac{50}{\pi } )t + 0.05cos2 (\frac{105}{2\pi } )t + 0.05cos2 (\frac{95}{2\pi } )t[/tex] [ ∵cos (∅) = sin(/2 +∅ ]

= sin ( 2 [tex](\frac{50}{\pi } ) t[/tex]  + /2 ) + 0.05sin ( 2 [tex](\frac{105}{2\pi } ) t + /2 )[/tex] + 0.05sin ( 2 [tex](\frac{95}{2\pi } )t + /2[/tex] )

attached is the remaining part of the solution

An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500 mm. The gas enters the heating section of the duct at 100 kPa and 27 deg C with a volume flow rate of 15 m3/s. If heat is lost from the gas in the duct to the surroundings at a rate of 80 kW, Calculate the exit temperature of the gas in deg C. (Assume constant pressure, ideal gas, negligible change in kinetic and potential energies and constant specific heat; Cp =1000 J/kg K; R = 500 J/kg K)

Answers

Answer:

Exit temperature = 32°C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

9. A Co has 500,000 total shares outstanding and each share is priced at 20$. B Co has 300,000 total shares outstanding and each share is priced at 40$. You have 100 shares in A Co and 200 shares in B Cos. After consolidation how many new shares you will own in consolidated AB Co?

Answers

Answer:

In consolidated AB Co 300 shares.

Explanation:

Consolidation is a process in which two different organizations are united. In this question A Co and B Co are consolidated and a new Co names AB Co is formed. The shares of both the companies will be combined and their total share capital will be increased.

The velocity field of a flow is given by V = 2x2 ti +[4y(t - 1) + 2x2 t]j m/s, where x and y are in meters and t is in seconds. For fluid particles on the x-axis, determine the speed and direction of flow

Answers

Answer:

Explanation:

The value of a will be zero as it is provided that the particle is on the x-axis.

Calculate the velocity of particles along x-axis.

[tex]{\bf{V}} = 2{x^2}t{\bf{\hat i}} + [4y(t - 1) + 2{x^2}t]{\bf{\hat j}}{\rm{ m/s}}[/tex]

Substitute 0 for y.

[tex]\begin{array}{c}\\{\bf{V}} = 2{x^2}t{\bf{\hat i}} + \left( {4\left( 0 \right)\left( {t - 1} \right) + 2{x^2}t} \right){\bf{\hat j}}{\rm{ m/s}}\\\\ = 2{x^2}t{\bf{\hat i}} + 2{x^2}t{\bf{\hat j}}{\rm{ m/s}}\\\end{array}[/tex]

Here,

[tex]A = 2{x^2}t \ \ and\ \ B = 2{x^2}t[/tex]

Calculate the magnitude of vector V .

[tex].\left| {\bf{V}} \right| = \sqrt {{A^2} + {B^2}}[/tex]

Substitute

[tex]2{x^2}t \ \ for\ A\ and\ 2{x^2}t \ \ for \ B.[/tex]

[tex]\begin{array}{c}\\\left| {\bf{V}} \right| = \sqrt {{{\left( {2{x^2}t} \right)}^2} + {{\left( {2{x^2}t} \right)}^2}} \\\\ = \left( {2\sqrt 2 } \right){x^2}t\\\end{array}[/tex]

The velocity of the fluid particles on the x-axis is [tex]\left( {2\sqrt 2 } \right){x^2}t{\rm{ m/s}}[/tex]

Calculate the direction of flow.

[tex]\theta = {\tan ^{ - 1}}\left( {\frac{B}{A}} )[/tex]

Here, θ is the flow from positive x-axis in a counterclockwise direction.

Substitute [tex]2{x^2}t[/tex] as A and [tex]2{x^2}t[/tex] as B.

[tex]\begin{array}{c}\\\theta = {\tan ^{ - 1}}\left( {\frac{{2{x^2}t}}{{2{x^2}t}}} \right)\\\\ = {\tan ^{ - 1}}\left( 1 \right)\\\\ = 45^\circ \\\end{array}[/tex]

The direction of flow is [tex]45^\circ[/tex] from the positive x-axis.

A nozzle receives an ideal gas flow with a velocity of 25 m/s, and the exit at 100 kPa, 300 K velocity is 250 m/s. Determine the inlet temperature if the gas is argon, helium, or nitrogen.

Answers

Given Information:

Inlet velocity = Vin = 25 m/s

Exit velocity = Vout = 250 m/s

Exit Temperature = Tout = 300K

Exit Pressure = Pout = 100 kPa

Required Information:

Inlet Temperature of argon = ?

Inlet Temperature of helium = ?

Inlet Temperature of nitrogen = ?

Answer:

Inlet Temperature of argon = 360K

Inlet Temperature of helium = 306K

Inlet Temperature of nitrogen = 330K

Explanation:

Recall that the energy equation is given by

[tex]$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $[/tex]

Where Cp is the specific heat constant of the gas.

Re-arranging the equation for inlet temperature

[tex]$ T_{in} = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p} + T_{out}$[/tex]

For Argon Gas:

The specific heat constant of argon is given by (from ideal gas properties table)

[tex]C_p = 520 \:\: J/kg.K[/tex]

So, the inlet temperature of argon is

[tex]$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520} + 300$[/tex]

[tex]$ T_{in} = \frac{1}{2} \times 119 + 300$[/tex]

[tex]$ T_{in} = 360K $[/tex]

For Helium Gas:

The specific heat constant of helium is given by (from ideal gas properties table)

[tex]C_p = 5193 \:\: J/kg.K[/tex]

So, the inlet temperature of helium is

[tex]$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193} + 300$[/tex]

[tex]$ T_{in} = \frac{1}{2} \times 12 + 300$[/tex]

[tex]$ T_{in} = 306K $[/tex]

For Nitrogen Gas:

The specific heat constant of nitrogen is given by (from ideal gas properties table)

[tex]C_p = 1039 \:\: J/kg.K[/tex]

So, the inlet temperature of nitrogen is

[tex]$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039} + 300$[/tex]

[tex]$ T_{in} = \frac{1}{2} \times 60 + 300$[/tex]

[tex]$ T_{in} = 330K $[/tex]

Note: Answers are rounded to the nearest whole numbers.

A three-phase line has an impedance of 0.4 j2.7 ohms per phase. The line feeds two balanced three-phase loads that are connected in parallel. The first load is absorbing 560.1kVA at 0.707 power factor lagging. The second load absorbs 132 kW at unity power factor. The line-to-line voltage at the load end of the line is 3810.5 volts. Determine: a. The magnitude of the line voltage at the source end of the line. b. Total real and reactive power loss in the line. c. Real power and reactive power supplied at the sending end of the line.

Answers

Answer:

a. The magnitude of the line source voltage is

Vs = 4160 V

b. Total real and reactive power loss in the line is

Ploss = 12 kW

Qloss = j81 kvar

Sloss = 12 + j81 kVA

c. Real power and reactive power supplied at the sending end of the line

Ss = 540.046 + j476.95 kVA

Ps = 540.046 kW

Qs = j476.95 kvar

Explanation:

a. The magnitude of the line voltage at the source end of the line.

The voltage at the source end of the line is given by

Vs = Vload + (Total current×Zline)

Complex power of first load:

S₁ = 560.1 < cos⁻¹(0.707)

S₁ = 560.1 < 45° kVA

Complex power of second load:

S₂ = P₂×1 (unity power factor)

S₂ = 132×1

S₂ = 132 kVA

S₂ = 132 < cos⁻¹(1)

S₂ = 132 < 0° kVA

Total Complex power of load is

S = S₁ + S₂

S = 560.1 < 45° + 132 < 0°

S = 660 < 36.87° kVA

Total current is

I = S*/(3×Vload)   ( * represents conjugate)

The phase voltage of load is

Vload = 3810.5/√3

Vload = 2200 V

I = 660 < -36.87°/(3×2200)

I = 100 < -36.87° A

The phase source voltage is

Vs = Vload + (Total current×Zline)

Vs = 2200 + (100 < -36.87°)×(0.4 + j2.7)

Vs = 2401.7 < 4.58° V

The magnitude of the line source voltage is

Vs = 2401.7×√3

Vs = 4160 V

b. Total real and reactive power loss in the line.

The 3-phase real power loss is given by

Ploss = 3×R×I²

Where R is the resistance of the line.

Ploss = 3×0.4×100²

Ploss = 12000 W

Ploss = 12 kW

The 3-phase reactive power loss is given by

Qloss = 3×X×I²

Where X is the reactance of the line.

Qloss = 3×j2.7×100²

Qloss = j81000 var

Qloss = j81 kvar

Sloss = Ploss + Qloss

Sloss = 12 + j81 kVA

c. Real power and reactive power supplied at the sending end of the line

The complex power at sending end of the line is

Ss = 3×Vs×I*

Ss = 3×(2401.7 < 4.58)×(100 < 36.87°)

Ss = 540.046 + j476.95 kVA

So the sending end real power is

Ps = 540.046 kW

So the sending end reactive power is

Qs = j476.95 kvar

A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm

Answers

Complete Question:

A metal plate of 400 mm in length, 200mm in width and 30 mm in depth is to be machined by orthogonal cutting using a tool of width 5mm and a depth of cut of 0.5 mm. Estimate the minimum time required to reduce the depth of the plate by 20 mm if the tool moves at 400 mm per second.

Answer:

[tex]T_{min} =[/tex] 26 mins 40 secs

Explanation:

Reduction in depth, Δd = 20 mm

Depth of cut, [tex]d_c = 0.5 mm[/tex]

Number of passes necessary for this reduction, [tex]n = \frac{\triangle d}{d_c}[/tex]

n = 20/0.5

n = 40 passes

Tool width, w = 5 mm

Width of metal plate, W = 200 mm

For a reduction in the depth per pass, tool will travel W/w = 200/5 = 40 times

Speed of tool, v = 100 mm/s

[tex]Time/pass = \frac{40*400}{400} \\Time/pass = 40 sec[/tex]

minimum time required to reduce the depth of the plate by 20 mm:

[tex]T_{min} =[/tex] number of passes * Time/pass

[tex]T_{min} =[/tex] n * Time/pass

[tex]T_{min} =[/tex] 40 * 40

[tex]T_{min} =[/tex]  1600 = 26 mins 40 secs

Answer:

the minimum time required to reduce the depth of the plate by 20 mm is 26 minutes 40 seconds

Explanation:

From the given information;

Assuming the tool moves 100 mm/sec

The number of passes required to reduce the depth from 30 mm to 20 mm can be calculated as:

Number of passes = [tex]\dfrac{30-20}{0.5}[/tex]

Number of passes = 20

We know that the width of the tool is 5 mm; therefore, to reduce the depth per pass; the tool have to travel 20 times

However; the time per passes is;

Time/pass = [tex]\dfrac{20*L}{velocity \ of \ the \ feed}[/tex]

where;

length L = 400mm

velocity of the feed is assumed as 100

Time/pass  [tex]=\dfrac{20*400}{100}[/tex]

Time/pass = 80 sec

Thus; the minimum time required to reduce the depth of the plate by 20 mm can be estimated as:

[tex]T_{min} = Time/pass *number of passes[/tex]

[tex]T_{min} = 20*80[/tex]

[tex]T_{min} = 1600 \ sec[/tex]

[tex]T_{min}[/tex] = 26 minutes 40 seconds

An airplane flies from San Francisco to Washington DC at an air speed of 800 km/hr. Assume Washington is due east of San Francisco at a distance of 6000 km. Use a Cartesian system of coordinates centered at San Francisco with Washington in the positive x-direction. At cruising altitude, there is a cross wind blowing from north to south of 100 km/hr.

Required:
a. What must be the direction of flight for the plane to actually arrive in Washington?
b. What is the speed in the San Francisco to Washington direction?
c. How long does it take to cover this distance?
d. What is the time difference compared to no crosswind?

Answers

Answer:

A.) 7.13 degree north east

B.) 806.23 km/h

C.) 7.44 hours

D.) 0.06 hours

Explanation:

Assume Washington is due east of San Francisco and Francisco with Washington in the positive x-direction

Also, the cross wind is blowing from north to south of 100 km/hr in y coordinate direction.

A.) Using Cartesian system of coordinates, the direction of flight for the plane to actually arrive in Washington can be calculated by using the formula

Tan Ø = y/x

Substitute y = 100 km/h and x = 800km/h

Tan Ø = 100/800

Tan Ø = 0.125

Ø = Tan^-1(0. 125)

Ø = 7.13 degrees north east.

Therefore, the direction of flight for the plane to actually arrive in Washington is 7.13 degree north east

B.) The speed in the San Francisco to Washington direction can be achieved by using pythagorean theorem

Speed = sqrt ( 800^2 + 100^2)

Speed = sqrt (650000)

Speed = 806.23 km/h

C.) Let us use the speed formula

Speed = distance / time

Substitute the speed and distance into the formula

806.23 = 6000/ time

Make Time the subject of formula

Time = 6000/806.23

Time = 7.44 hours

D.) If there is no cross wind,

Time = 6000/800

Time = 7.5 hour

Time difference = 7.5 - 7.44

Time difference = 0.06 hours

Q: Draw shear and bending moment diagram for the beam shown in
the figure. EI= constant






Answers

Answer:

Explanation:

Please

We need to design a logic circuit for interchanging two logic signals. The system has three inputs I1I1, I2I2, and SS as well as two outputs O1 and O2. When S is low, we should have O1 = I1 and O2 = I2. On the other hand, when S is high,we should have O1 = I2 and O2 =I1. Thus, S acts as the control input for a reversing switch. Use Karnaugh maps to obtain a minimal SOP(sum ofproduct) design. Draw the circuit.

Answers

Explanation:

Inputs and Outputs:

There are 3 inputs = I₁, I₂, and S

There are 2 outputs = O₁ and O₂

The given problem is solved in three major steps:

Step 1: Construct the Truth Table

Step 2: Obtain the logic equations using Karnaugh map

Step 3: Draw the logic circuit

Step 1: Construct the Truth Table

The given logic is

When S = 0 then O₁ = I₁ and O₂ = I₂

When S = 1 then O₁ = I₂ and O₂ = I₁

I₁     |     I₂     |    S    |    O₁    |    O₂

0     |     0     |    0    |    0    |     0

0     |     0     |    1     |    0    |     0

0     |     1      |    0    |    0    |     1

0     |     1      |    1     |    1     |     0

1      |     0     |    0    |    1     |     0

1      |     0     |    1     |    0    |     1

1      |     1      |    0    |    1     |     1

1      |     1      |    1     |    1     |     1

Step 2: Obtain the logic equations using Karnaugh map

Please refer to the attached diagram where Karnaugh map is set up.

The minimal SOP representation for output O₁

[tex]$ O_1 = I_1 \bar{S} + I_2 S $[/tex]

The minimal SOP representation for output O₂

[tex]$ O_2 = I_2 \bar{S} + I_1 S $[/tex]

Step 3: Draw the logic circuit

Please refer to the attached diagram where the circuit has been drawn.

A tubular reactor has been sized to obtain 98% conversion and to process 0.03 m^3/s. The reaction is a first-order irreversible isomerization. The reactor is 3 m long, with a cross- sectional area of 25 dm^2. After being built, a pulse tracer test on the reactor gave the following data: tm = 10 s and σ2 = 65 s2. What conversion can be expected in the real reactor?

Answers

Answer:

The conversion in the real reactor is = 88%

Explanation:

conversion = 98% = 0.98

process rate = 0.03 m^3/s

length of reactor = 3 m

cross sectional area of reactor = 25 dm^2

pulse tracer test results on the reactor :

mean residence time ( tm) = 10 s and variance (∝2) = 65 s^2

note:  space time (t) =

t = [tex]\frac{A*L}{Vo}[/tex]   Vo = flow metric flow rate , L = length of reactor , A = cross sectional area of the reactor

therefore (t) = [tex]\frac{25*3*10^{-2} }{0.03}[/tex] = 25 s

since the reaction is in first order

X = 1 - [tex]e^{-kt}[/tex]

[tex]e^{-kt}[/tex] = 1 - X

kt = In [tex]\frac{1}{1-X}[/tex]

k = In [tex]\frac{1}{1-X}[/tex] / t  

X = 98% = 0.98 (conversion in PFR ) insert the value into the above equation then  

K = 0.156 [tex]s^{-1}[/tex]

Calculating Da for a closed vessel

; Da = tk

      = 25 * 0.156 = 3.9

calculate Peclet number Per using this equation

0.65 = [tex]\frac{2}{Per} - \frac{2}{Per^2} ( 1 - e^{-per})[/tex]

therefore

[tex]\frac{2}{Per} - \frac{2}{Per^2} (1 - e^{-per}) - 0.65 = 0[/tex]

solving the Non-linear equation above( Per = 1.5 )

Attached is the Remaining part of the solution

Time, budget, and safety are almost always considered to be
1. Efficiency
2. Constraints
3. Trade-offs
4. Criteria

Answers

Answer:

The answer is option # 2. (Constraints).

the answer is constraints

Steam is contained in a closed rigid container which has a volume of 2 initially the the pressure and the temperature is the remeraturedrops as a result of heat transfer to the surroundings. Determine
a) the temperature at which condensation first occurs, in °C,
b) the fraction of the total mass that has condensed when the pressure reaches 0.5 bar.
c) What is the volume, in m3, occupied by saturated liquid at the final state?

Answers

The given question is incomplete. The complete question is as follows.

Steam is contained in a closed rigid container with a volume of 1 m3. Initially, the pressure and temperature of the steam are 10 bar and 500°C, respectively. The temperature drops as a result of heat transfer to the surroundings. Determine

(a) the temperature at which condensation first occurs, in [tex]^{o}C[/tex],

(b) the fraction of the total mass that has condensed when the pressure reaches 0.5 bar.

(c) What is the volume, in [tex]m^{3}[/tex], occupied by saturated liquid at the final state?

Explanation:

Using the property tables

  [tex]T_{1} = 500^{o}C[/tex],    [tex]P_{1}[/tex] = 10 bar

  [tex]v_{1} = 0.354 m^{3}/kg[/tex]

(a) During the process, specific volume remains constant.

  [tex]v_{g} = v_{1} = 0.354 m^{3}/kg[/tex]

  T = [tex](150 - 160)^{o}C[/tex]

Using inter-polation we get,

      T = [tex]154.71^{o}C[/tex]

The temperature at which condensation first occurs is [tex]154.71^{o}C[/tex].

(b) When the system will reach at state 3 according to the table at 0.5 bar then

  [tex]v_{f} = 1.030 \times 10^{-3} m^{3}/kg[/tex]

  [tex]v_{g} = 3.24 m^{3} kg[/tex]

Let us assume "x" be the gravity if stream

   [tex]v_{1} = v_{f} + x_{3}(v_{g} - v_{f})[/tex]

   [tex]x_{3} = \frac{v_{1} - v_{f}}{v_{g} - v_{f}}[/tex]

               = [tex]\frac{0.3540 - 0.00103}{3.240 - 0.00103}[/tex]

               = 0.109

At state 3, the fraction of total mass condensed is as follows.

  [tex](1 - x_{5})[/tex] = 1 -  0.109

                = 0.891

The fraction of the total mass that has condensed when the pressure reaches 0.5 bar is 0.891.

(c) Hence, total mass of the system is calculated as follows.

     m = [tex]\frac{v}{v_{1}}[/tex]

         = [tex]\frac{1}{0.354}[/tex]

         = 2.825 kg

Therefore, at final state the total volume occupied by saturated liquid is as follows.

     [tex]v_{ws} = m \times v_{f}[/tex]

                 = [tex]2.825 \times 0.00103[/tex]

                 = [tex]2.9 \times 10^{-3} m^{3}[/tex]

The volume occupied by saturated liquid at the final state is [tex]2.9 \times 10^{-3} m^{3}[/tex].

Waste cooking oil is to be stored for processing by pouring it into tank A, which is connected by a manometer to tank B. The manometer is completely filled with water. Measurements indicate that the material of tank B will fail and the tank will burst if the air pressure in tank B exceeds 18 kPa. To what height h can waste oil be poured into tank A? If air is accidentally trapped in the manometer line, what will be the error in the calculation of the height?

Answers

KINDLY NOTE that there is a picture in the question. Check the picture below for the picture.

==================================

Answer:

(1). 1.2 metres.

(2). There is going to be the same pressure.

Explanation:

From the question above we can take hold of the statement Below because it is going to assist or help us in solving this particular Question or problem;

" Measurements indicate that the material of tank B will fail and the tank will burst if the air pressure in tank B exceeds 18 kPa."

=> Also, the density of oil = 930

That is if Pressure, P in B > 18kpa there will surely be a burst.

The height, h the can waste oil be poured into tank A is;

The maximum pressure  = height × acceleration due to gravity × density) + ( acceleration due to gravity × density × height, j).

18 × 10^3 = (height, h ×  10 × 930) + 10 × (2 - 1.25) × 1000.

When we make height, h the Subject of the formula then;

Approximately, Height, h = 1.2 metres.

(2). If air is accidentally trapped in the manometer line, what will be the error in the calculation of the height we will have the same pressure.

Mathematical modeling aids in technological design by simulating how.
1. A solution should be designed
2. A proposed system might behave
3. Physical models should be built
4. Designs should be used

Answers

It’s 4 because designs should be used

Mathematical modeling aids in technological design by simulating how proposed system might behave. The correct option is 2.

What is mathematical modelling?

Mathematical modelling describes a real world problem in mathematical terms or in the form of equations. This makes an engineer to discover new features about the problem and designer to alter his design for better function and output.

Mathematical models allow engineers and designers to understand how the proposed model and actual prototype will be produced.

Thus, the correct option is 2.

Learn more about mathematical modelling

https://brainly.com/question/731147

#SPJ2

a surveyor is trying to find the height of a hill . he/she takes a sight on the top of the hill and find that the angle of elevation is 40°. he/she move a distance of 150 metres on level ground directly away from the hill and take a second sight. from this point the angl.e of elevation is 22°. find the height of the
hill​

Answers

Answer:

height ≈ 60.60 m

Explanation:

The surveyor is trying to find the height of the hill . He takes a sight on the top of the hill and finds the angle of elevation is 40°. The distance from the hill where he measured the angle of elevation of 40° is not known.

Now he moves 150 m on level ground directly away from the hill and take a second sight from this point and measures the angle of elevation as 22°. This illustration forms a right angle triangle. The opposite side of the triangle is the height of the hill. The adjacent side of the triangle which is 150 m is the distance on level ground directly away from the hill.

Using tangential ratio,

tan 22° = opposite/adjacent

tan 22° = h/150

h = 150 × tan 22°

h = 150 × 0.40402622583

h = 60.6039338753

height ≈ 60.60 m

Consider a refrigerator that consumes 400 W of electric power when it is running. If the refrigerator runs only one-quarter of the time and the unit cost of electricity is $0.13/kWh, what is the electricity cost of this refrigerator per month (30 days)

Answers

Answer:

Electricity cost = $9.36

Explanation:

Given:

Electric power = 400 W = 0.4 KW

Unit cost of electricity = $0.13/kWh

Overall time = 1/4 (30 days) (24 hours) = 180 hours

Find:

Electricity cost

Computation:

Electricity cost = Electric power  x Unit cost of electricity x Overall time

Electricity cost = 0.4 x $0.13 x 180

Electricity cost = $9.36

Given:

Electric power = 400 W = 0.4 KW

Over all Time  = 30(1/4) = 7.5 days

Unit cost of electricity = $0.13/kWh

Find:

Electricity cost.

Computation:

Electricity cost = Electric power x Unit cost of electricity x Over all Time

Electricity cost = 0.4 x 0.13 x 7.5

Electricity cost = $

An undersea research chamber is spherical with an external diameter of 3.50 mm . The mass of the chamber, when occupied, is 21700 kg. It is anchored to the sea bottom by a cable. Find the followings

Required:
a. The buoyant force on the chamber.
b. The tension in the cable?

Answers

Answer:

a. The buoyant force on the chamber is 220029.6 N

b. The tension in the cable is 7369.6 N

Explanation:

The diameter of the sphere cannot be in millimeter (mm), if the chamber must occupy a big mass as 21700kg

Given;

diameter of the sphere, d = 3.50 m

radius of the sphere, r = 1.75 mm = 1.75 m

mass of the chamber, m = 21700 kg

density of water, ρ = 1000 kg/m³

(a)

Buoyant force is the weight of water displaced, which is calculated as;

Fb = ρvg

where;

v is the volume of sphere, calculated as;

[tex]V = \frac{4}{3} \pi r^3\\\\V = \frac{4}{3} \pi (1.75)^3\\\\V = 22.452 \ m^3[/tex]

Fb = 1000 x 22.452 x 9.8

Fb = 220029.6 N

(b)

The tension in the cable will be calculated as;

T = Fb - mg

T = 220029.6 N - (21700 x 9.8)

T =  220029.6 N - 212660 N

T = 7369.6 N

for an electromotive force to be induced across a vertical loop from the field of an infinite length line of fixed current in the z axis the loop must be moving to?​

Answers

Answer:

The correct answer to the following question will be "[tex]a_{x}[/tex] or [tex]a_{y}[/tex]".

Explanation:

Since along that same z-axis none electromagnetic field would be triggered as being in the same orientation loop movement of them across different line portions would allow some caused emf/voltage to be canceled. And the only logical choice seems to be either x or y-axes.The magnetic field of fluctuation should indeed be changed and changed across both X as well as Y directions.

So that the above is the appropriate choice.

Eight switches are connected to PORTB and eight LEDs are connected to PORTA. We would like to monitor the first two least significant bits of PORTB (use masking technique). Whenever both of these bits are set, switch all LEDs of Port A on for one second. Assume that the name of the delay subroutine is DELAY. You do not need to write the code for the delay procedure.

Answers

Answer:

In this example, the delay procedure is given below in the explanation section

Explanation:

Solution

The delay procedure is given below:

LDS # $4000 // load initial memory

LDAA #$FF

STAA  DDRA

LDAA #$00 //load address

STAA DDRB

THERE LDAA PORT B

           ANDA   #%00000011// port A and port B

           CMPA   #%0000011

           BNE     THERE

           LDAA   #$FF

           STAA    PORT A

           JSR       DELAY

           LDAA    #$00

           STAA     PORT A

           BACK     BRA BACK

Engine oil (unused) flows at 1.81 x 10^-3 kg/s inside a 1-cm diameter tube that is heated electrically at a rate of 76 W/m. At a particular location where flow and heat transfer are fully developed, the wall temperature is 370K. Determine:

a. The oil mean temperature.
b. The centerline temperature.
c. The axial gradient of the mean temperature.
d. The heat transfer coefficient.

Answers

Answer:

(a)Tb = 330.12 K (b)Tc =304.73 K (c)19.81 K/m (d) h =60.65 W/m². K

Explanation:

Solution

Given that:

The mass flow rate of engine oil m = 1.81 x 10^-3 kg/s

Diameter of the tube, D = 1cm =0.01 m

Electrical heat rate, q =76 W/m

Wall Temperature, Ts = 370 K

Now,

From the properties table of engine oil we can deduce as follows:

thermal conductivity, k =0.139 W/m .K

Density, ρ = 854 kg/m³

Specific heat, cp = 2120 J/kg.K

(a) Thus

The wall heat flux is given as follows:

qs = q/πD

=76/π *0.01

= 2419.16 W/m²

Now

The oil mean temperature is given as follows:

Tb =Ts -11/24 (q.R/k) (R =D/2=0.01/2 = 0.005 m)

Tb =370 - 11/24 * (2419.16 * 0.005/0.139)

Tb = 330.12 K

(b) The center line temperature is given below:

Tc =Ts - 3/4 (qs.R/k)= 370 - 3/4 * ( 2419.16 * 0.005/0.139)

Tc =304.73 K

(c) The flow velocity is given as follows:

V = m/ρ (πR²)

Now,

The The axial gradient of the mean temperature is given below:

dTb/dx = 2 *qs/ρ *V*cp * R

=2 *qs/ρ*[m/ρ (πR²) *cp * R

=2 *qs/[m/(πR)*cp

dTb/dx = 2 * 2419.16/[1.81 x 10^-3/(π * 0.005)]* 2120

dTb/dx = 19.81 K/m

(d) The heat transfer coefficient is given below:

h =48/11 (k/D)

=48/11 (0.139/0.01)

h =60.65 W/m². K

An automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone. A police car observed the automobile. At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile at a constant acceleration of 1.96 m/s². The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s². (Hint: The police will not go against the law.) a) Find the total time required for the police car to overtake the automobile. (12 marks) b) Find the total distance travelled by the police car while overtaking the automobile. (2 marks) c) Find the speed of the police car at the time it overtakes the automobile. (2 marks) d) Find the speed of the automobile at the time it was overtaken by the police car. (2 marks)​

Answers

Answer:

A.) Time = 13.75 seconds

B.) Total distance = 339 m

C.) V = 11.18 m/s

D.) V = 10.2 m/s

Explanation: Given that the automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone.

Then,

Initial velocity U of the motorist = 15.65m/s

acceleration a = - 3.05 m/s^2

Initial velocity u of the police man = 11.18 m/s

Acceleration a = 1.96 m/s^2

The police will overtake at distance S as the motorist decelerate and come to rest.

Where V = 0 and a = negative

While the police accelerate.

Using 2nd equation of motion for the motorist and the police

S = ut + 1/2at^2

Since the distance S covered will be the same, so

15.65t - 1/2×3.05t^2 = 11.18t +1/2×1.96t^2

Solve for t by collecting the like terms

15.56t - 1.525t^2 = 11.18t + 0.98t^2

15.56t - 11.18t = 0.98t^2 + 1.525t^2

4.38t = 2.505t^2

t = 4.38/2.505

t = 1.75 seconds approximately

But the motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit.

Therefore, the total time required for the police car to overtake the automobile will be:

12 + 1.75 = 13.75 seconds

B.) Using the same formula

S = ut + 1/2at^2

Where S = total distance travelled

Substitutes t into the formula

S = 11.18(13.75) + 1/2 × 1.96 (13.75)^2

S = 153.725 + 185.28

S = 339 m approximately

C.) The speed of the police car at the time it overtakes the automobile will be constant = 11.18 m/s

D.) Using first equation of motion

V = U - at

Since the motorist is decelerating

V = 15.65 - 3.05 × 1.75

V = 15.65 - 5.338

V = 10.22 m/s

Therefore, the speed of the automobile at the time it was overtaken by the police car is 10.2 m/ s approximately

Given the circuit at the right in which the following values are used: R1 = 20 kΩ, R2 = 12 kΩ, C = 10 µ F, and ε = 25 V. You close the switch at t = 0. Find (a) the current in R1 and R2 at t=0, (b) the voltage across R1 after a long time. (Careful with this one.)

Answers

Answer:

a.) I = 7.8 × 10^-4 A

b.) V(20) = 9.3 × 10^-43 V

Explanation:

Given that the

R1 = 20 kΩ,

R2 = 12 kΩ,

C = 10 µ F, and

ε = 25 V.

R1 and R2 are in series with each other.

Let us first find the equivalent resistance R

R = R1 + R2

R = 20 + 12 = 32 kΩ

At t = 0, V = 25v

From ohms law, V = IR

Make current I the subject of formula

I = V/R

I = 25/32 × 10^3

I = 7.8 × 10^-4 A

b.) The voltage across R1 after a long time can be achieved by using the formula

V(t) = Voe^- (t/RC)

V(t) = 25e^- t/20000 × 10×10^-6

V(t) = 25e^- t/0.2

After a very long time. Let assume t = 20s. Then

V(20) = 25e^- 20/0.2

V(20) = 25e^-100

V(20) = 25 × 3.72 × 10^-44

V(20) = 9.3 × 10^-43 V

The benefit of using the generalized enthalpy departure chart prepared by using PR and TR as the parameters instead of P and T is that the single chart can be used for all gases instead of a single particular gas.

a. True
b. False

Answers

The answer is: a. True

Cathy works in a welding shop. While working one day, a pipe falls from scaffolding above and lands on her head, injuring her. Cathy complains to OSHA, but the company argues that because it has a "watch out for falling pipe" sign in the workplace that it gave fair warning. It also says that if Cathy wasn’t wearing a hardhat that she is responsible for her own injury. Which of the following is true?1. Common law rules could hold Cathy responsible for her own injury.2. Cathy’s employer may not be held liable for her injury if it fulfilled compliance and general duty requirements.3. OSHA rules can hold Cathy’s employer responsible for not maintaining a hazard-free workplace.4. More than one answer is correct.

Answers

Answer:1 common law

Explanation:

It also says that if Cathy wasn’t wearing a hardhat hat she is responsible for her own injury, more than one answer is correct.

What are OSHA rules?

In this case, if Cathy's employer completes compliance and general duty requirements then the organization may not be held liable and again, the law can generally hold Cathy responsible for the injuries as she was not wearing the proper kits for such work.

According to OSHA, Cathy’s employer may not be held liable for her injury if it fulfilled compliance and general duty requirements.

You are entitled to a secure workplace. To stop workers from being murdered or suffering other types of harm at work, the Occupational Safety and Health Act of 1970 (OSH Act) was passed. According to the legislation, companies are required to give their workers safe working environments.

Therefore, more than one answer is correct.

Learn more about OSHA, here:

https://brainly.com/question/13127795

#SPJ2

A 2.75-kN tensile load is applied to a test coupon made from 1.6-mm flat steel plate (E = 200 GPa, ν = 0.30). Determine the resulting change in (a) the 50-mm gage length, (b) the width of portion AB of the test coupon, (c) the thickness of portion AB, (d) the cross- sectional area of portion AB.

Answers

Answer:

I have attached the diagram for this question below. Consult it for better understanding.

Find the cross sectional area AB:

A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m

Forces is given by:

F = 2.75 × 10³ N

Horizontal Stress can be found by:

σ (x) = F/A

σ (x) = 2.75 × 10³ / 19.2 × 10⁻⁶m

σ (x) = 143.23 × 10⁶ Pa

Horizontal Strain can be found by:

ε (x) = σ (x)/ E

ε (x) = 143.23 × 10⁶ / 200 × 10⁹

ε (x) = 716.15 × 10⁻⁶

Find Vertical Strain:

ε (y) = -v · ε (y)

ε (y) = -(0.3)(716.15 × 10⁻⁶)

ε (y) = -214.84 × 10⁻⁶

PART (a)

For L = 0.05m

Change (x) = L · ε (x)

Change (x) = 35.808 × 10⁻⁶m

PART (b)

For W = 0.012m

Change (y) = W · ε (y)

Change (y) = -2.5781 × 10⁻⁶m

PART(c)

For t= 0.0016m

Change (z) = t · ε (z)

where

ε (z) = ε (y) ,so

Change (z) = t · ε (y)

Change (z) = -343.74 × 10⁻⁹m

PART (d)

A = A(final) - A(initial)

A = -8.25 × 10⁻⁹m²

(Consult second picture given below for understanding how to calculate area)

The resulting change in the 50-mm gauge length; the width of portion AB of the test coupon; the thickness of portion AB; the cross- sectional area of portion AB are respectively; Δx = 35.808 × 10⁻⁶ m; Δy = -2.5781 × 10⁻⁶m; Δ_z = -343.74 × 10⁻⁹m; A = -8.25 × 10⁻⁹m²

What is the stress and strain in the plate?

Let us first find the cross sectional area of AB from the image attached;

A = (1.6mm)(12mm) = 19.2 mm² = 19.2 × 10⁻⁶m

We are given;

Tensile Load; F = 2.75 kN = 2.75 × 10³ N

Horizontal Stress is calculated from the formula;

σₓ = F/A

σₓ = (2.75 × 10³)/(19.2 × 10⁻⁶)m

σₓ = 143.23 × 10⁶ Pa

Horizontal Strain is calculated from;

εₓ = σₓ/E

We are given E = 200 GPa = 200 × 10⁹ Pa

Thus;

εₓ = (143.23 × 10⁶)/(200 × 10⁹)

εₓ = 716.15 × 10⁻⁶

Formula for Vertical Strain is;

ε_y = -ν * εₓ

We are given ν = 0.30. Thus;

ε_y  = -(0.3) * (716.15 × 10⁻⁶)

ε_y  = -214.84 × 10⁻⁶

A) We are given;

Gauge Length; L = 0.05m

Change in gauge length is gotten from;

Δx = L * εₓ

Δx = 0.05 × 716.15 × 10⁻⁶

Δx = 35.808 × 10⁻⁶ m

B) From the attached diagram, the width is;

W = 0.012m

Change in width is;

Δy = W * ε_y

Δy = 0.012 * -214.84 × 10⁻⁶

Δy = -2.5781 × 10⁻⁶m

C) We are given;

Thickness of plate; t = 1.6 mm = 0.0016m

Change in thickness;

Δ_z = t * ε_z

where;

ε_z = ε_y

Thus;

Δ_z = t * ε_y

Δ_z = 0.0016 * -214.84 × 10⁻⁶

Δ_z = -343.74 × 10⁻⁹m

D) The change in cross sectional area is gotten from;

ΔA = A_final - A_initial

From calculating the areas, we have;

A = -8.25 × 10⁻⁹ m²

Read more about stress and strain in steel plates at; https://brainly.com/question/1591712

Other Questions
What is the root word for lavish The times of the runners in a marathon are normally distributed, with a mean of 3 hours and 50 minutes and a standard deviation of 30 minutes. What is the probability that a randomly selected runner has a time less than or equal to 3 hours and 20 minutes? Use the portion of the standard normal table below to help answer the question. z Probability 0.00 0.5000 0.50 0.6915 1.00 0.8413 2.00 0.9772 3.00 0.9987 A helicopter flies 665 feet above ground. What is the measure of the angle of depression from the helicopter to the girls line of sight? Round to the nearest degree. 23 25 65 67 find the circumference Para que ngulo el alcance es igual a la altura mxima en un lanzamiento de proyectil ideal sobre un plano horizontal. Translation: For which angle the range equals the maximum height in an ideal projectile launch on a horizontal plane. a) 45 b) 60 c) 76 d) 90 What is the area of the parallelogram if each square is 1 square foot? a. 12 ft b. 12 ft c. 12 d. 12 feet Which linear function has the same y-intercept as the one that is represented by the graph? On a coordinate plane, a line goes through points (3, 4) and (5, 0). How did the 1913 Natives Land Act help the British to gain, maintain and consolidate their power? A sequence of squares is made of identical square tiles. The edge of each square is one tile length longer than the edge of the previous square. The first three squares are shown. How many more tiles does the seventh square require than the sixth Question 5(Multiple Choice Worth 1 points)(02.05 MC)Given the function f(x) = 3x + 1 and the linear function g(x), which function has a greater value when x = 3? An important aspect of maintaining a safe space cushion is also to make sure you have _____ in the event of an emergency A customer is considering to Fire Sprinkler a building to lower his insurances premium: Two choices were presented to him : (Hint: Alternates with unequal economic lives may be compared by assuming replacement in kind at the end of the shorter life, thus maintaining the same level of uniform payment) i=10% Through the use of patient may view open appointments or schedule their own appointments Tickets for a raffle cost $19. There were 798 tickets sold. One ticket will be randomly selected as the winner, and that person wins $1300 and also the person is given back the cost of the ticket. For someone who buys a ticket, what is the Expected Value (the mean of the distribution) it is a fearful thing to lead this great peaceful people into war into the most terrible and disastrous of all. based on the excerpt, what can be said about president's wilsons character? 2. Emma is playing a game with two fair dice.She needs to score 5, using both dice, to win thegame.What's the probability she will win the game? Help please anyone ?? Which equation can be used to represent the statement?Half of a number minus seven is one and five-tenths.o 3+x=150 1 x - 15-707-12-15 Which of these employees is facing an ethical dilemma?A. The manager at Almas Inc. has to make a vendor choice between his underqualified cousin and a highly-experienced, trusted supplier. B. Lars has to decide whether the annual profits of the company should be distributed to the employees as a salary hike or in the form of non-monetary benefits. C. Javier has felt unsure about a car he purchased and has been reading only good reviews about the car to console himself. D. After seeing a whole new collection of phones at a store, Max is regretting the purchase of an outdated phone he made last month. E. Salena is responsible for deciding whether she should upgrade the manufacturing unit with new machines and reduce costs or retain the impoverished manual labor force. What is 4 square root of 81 to the fifth power in exponential form