Answer:
Ro = 815.5 [kg/m³]
Explanation:
We must use the following equation to find the hydrostatic pressure exerted on the bottom of the cylinder.
[tex]P=Ro*g*h[/tex]
where:
P = pressure = 2560 [Pa]
Ro = density [kg/m³]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = 32 [cm] = 0.32 [m]
[tex]2560=Ro*9.81*0.32\\Ro=815.5 [kg/m^{3} ][/tex]
Answer:
800kg/m^3
Explanation:
roh=2560/0.32m×10m/s^2
800kg/m^3
Change 32 cm to m to make it more easier.
Gravitational acceleration is 10m/s^2.
HOPE THAT I HELPED YOU!
Calculate the work done in lifting 200 kg of water through a vertical height of 6 metres
(g = 10 m/s)
(A) 5000 J
(B) 12000 J
(C) 25000 J
(D) 15000 J
Answer:
[tex]\bf\pink{(C)\:12000\:J}[/tex]Explanation:
Given :-[tex]\sf\red{Mass = 200 \ kg}[/tex][tex]\sf\orange{Gravity = 10 \ m/s}[/tex][tex]\sf\green{Height = 6 \ m}[/tex]Need to find :-[tex]\sf\blue{Work \ done}[/tex]Formula required :-[tex]\sf\purple{Work \ done = Mass \times Gravity \times Height}[/tex]Solution :-[tex]\to\:\:\sf\red{Work \ done = Mass \times Gravity \times Height}[/tex]
[tex]\to\:\:\sf\orange{Work \ done = 200 \times 10 \times 6}[/tex]
[tex]\to\:\:\sf\green{Work \ done = 2000 \times 6}[/tex]
[tex]\to \:\ \sf\blue{ Work \ done = {\bf{\blue{1200\:J}}}}[/tex]
Hence, [tex]\bf\green{(B)}[/tex] is the correct option.The displacement along the number line below is
a.) -6
b.) -3
c.) 0
d.) +3
e.) not shown
Answer:
d: +3
Explanation:
X1 is going +3 meters to arrive to X2. More scientifically -6+3= -3 which is the value of X2 which tells us that the correct answer is +3.