A convex meniscus thin lens is made with the radius of curvature of the first convex surface being 25.0 cm and the second convex (towards object) surface 45.0 cm. If the glass used has index of refraction 1.500, what is the focal length of this lens?

Answers

Answer 1

Answer:

112.5cm

Explanation:

Using the formula

1/f = (n-1)(1/R1 + 1/R2)

1/f = (1.5 - 1)(1/25 - 1/45)

1/f = 0.5 x (4/225) = 2/225

f = 225/2

= 112.5cm


Related Questions

A charge of 4.4 10-6 C is located in a uniform electric field of intensity 3.9 105 N/C. How much work (in Joules) is required to move this charge 50 cm along a path making an angle of 40

Answers

Answer:

The work required to move this charge is 0.657 J

Explanation:

Given;

magnitude of charge, q = 4.4 x 10⁻⁶ C

Electric field strength, E =  3.9 x 10⁵ N/C

distance moved by the charge, d = 50 cm = 0.5m

angle of the path, θ = 40°

Work done is given as;

W = Fd

W = FdCosθ

where;

F is the force on the charge;

According the coulomb's law;

F = Eq

F = 3.9 x 10⁵ x 4.4 x 10⁻⁶  = 1.716 N

W = FdCosθ

W = 1.716 x 0.5 x Cos40

W = 0.657 J

Therefore, the work required to move this charge is 0.657 J

PLEASE HELP!!!!!!!!!!!!!!!!!!!!!!!! In California, Clay is surfing on a wave that propels him toward the beach with a speed of 5.0 m/s. The wave crests are each 20 m apart. What is the frequency of the water wave? (please show your work and equation used)

Answers

Answer:

Frequency= 0.25m

Period= 4.0 secs

Explanation:

Clay is surfing on a wave with a speed of 5.0m/s

The wave crests are 20m apart

Therefore, the frequency of the wave can be calculated as follows

Frequency= wave speed/distance

= 5.0/20

= 0.25m

The period (T) can be calculated as follows

T= 1/frequency

T = 1/0.25

T= 4.0secs

Hence the frequency is 0.25m and the period is 4.0 secs

A 6.50-m-long iron wire is 1.50 mm in diameter and carries a uniform current density of 4.07 MA/m^2. Find the voltage between the two ends of the wire.

Answers

Answer:

V = 0.45 Volts

Explanation:

First we need to find the total current passing through the wire. That can be given by:

Total Current = I = (Current Density)(Surface Area of Wire)

I = (Current Density)(2πrL)

where,

r = radius = 1.5/2 mm = 0.75 mm = 0.75 x 10⁻³ m

L = Length of Wire = 6.5 m

Therefore,

I = (4.07 x 10⁻³ A/m²)[2π(0.75 x 10⁻³ m)(6.5 m)]

I = 1.25 x 10⁻⁴ A

Now, we need to find resistance of wire:

R = ρL/A

where,

ρ = resistivity of iron = 9.71 x 10⁻⁸ Ωm

A = Cross-sectional Area = πr² = π(0.75 x 10⁻³ m)² = 1.77 x 10⁻⁶ m²

Therefore,

R = (9.71 x 10⁻⁸ Ωm)(6.5 m)/(1.77 x 10⁻⁶ m²)

R = 0.36 Ω

From Ohm's Law:

Voltage = V = IR

V = (1.25 x 10⁻⁴ A)(0.36 Ω)

V = 0.45 Volts

A 2.0-m wire carrying a current of 0.60 A is oriented parallel to a uniform magnetic field of 0.50 T. What is the magnitude of the force it experiences

Answers

Answer:

The force experienced  is 0.6 N

Explanation:

Given data

length of wire L= 2 m

current in wire I= 0.6 A

magnetic field B= 0.5

The force experienced can be represented as

[tex]F= BIL[/tex]

[tex]F= 0.5*0.6*2\\\F= 0.6 N[/tex]

Defination coulomb's law.

Answers

Answer:

a law stating that like charges repel and opposite charges attract, with a force proportional to the product of the charges and inversely proportional to the square of the distance between them.

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to get to the bal

Answers

Complete Question

The complete question is gotten from OpenStax

A soccer player starts at rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s ? The player’s mass is 70.0 kg, and air resistance is negligible.

The soccer player stops after completing the play described above, but now notices that the ball is in position to be stolen. If she now experiences a force of 126 N to attempt to steal the ball, which is 2.00 m away from her, how long will it take her to get to the ball

Answer:

The  time it will take is  [tex]t = 1.4907 \ s[/tex]  

Explanation:

From the  question we are told that

    The force experienced by the player is  [tex]F = 126 \ N[/tex]

     The distance of the ball from the player is  [tex]d = 2.00 \ m[/tex]

      The initial velocity is  u =  0 m/s because the player stopped

From the Newton law the acceleration of the player is mathematically evaluated as

             [tex]a = \frac{F}{m }[/tex]    [i,e  F =  ma  ]

substituting values

             [tex]a = \frac{126}{70}[/tex]

             [tex]a = 1.8 \ m/s^2[/tex]

Now from the equation of motion  we have that

           [tex]s = ut + \frac{1}{2} at^2[/tex]

substituting values              

             [tex]2.0 = 0 + \frac{1}{2} * 1.8 * t^2[/tex]

             [tex]t = \sqrt{ \frac{2.0}{0.9} }[/tex]

            [tex]t = 1.4907 \ s[/tex]

At what temperature will silver have a resistivity that is two times the resistivity of iron at room temperature? (Assume room temperature is 20° C.)

Answers

Answer:

The temperature of silver at this given resistivity is 2971.1 ⁰C

Explanation:

The resistivity of silver is calculated as follows;

[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\[/tex]

where;

Rt is the resistivity of silver at the given temperature

Ro is the resistivity of silver at room temperature

α is the temperature coefficient of resistance

To is the room temperature

T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature

[tex]R_t = R_o[1 + \alpha(T-T_o)]\\\\\R_t = 1.59*10^{-8}[1 + 0.0038(T-20)][/tex]

Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m

When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;

[tex]R_t,_{silver} = 2R_o,_{iron}\\\\1.59*10^{-8}[1 + 0.0038(T-20)] =(2 *9.71*10^{-8})\\\\\ \ (divide \ through \ by \ 1.59*10^{-8})\\\\1 + 0.0038(T-20) = 12.214\\\\1 + 0.0038T - 0.076 = 12.214\\\\0.0038T +0.924 = 12.214\\\\0.0038T = 12.214 - 0.924\\\\0.0038T = 11.29\\\\T = \frac{11.29}{0.0038} \\\\T = 2971.1 \ ^0C[/tex]

Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C

Which statement about the pressure of fluids is true?
O A decrease in the volume of a container will decrease the pressure.
O A decrease in the number of collisions will increase the pressure.
O An increase in the temperature will increase the pressure.
O A decrease in the number of particles in the container will increase the pressure
Next

Answers

Answer:

O An increase in the temperature will increase the pressure.

Explanation:

Decrease in volume, more collisions, increase in temperature, more particles: all of these increase the pressure.

Answer: O An increase in the temperature will increase the pressure.

A piano tuner hears a beat every 2.20 s when listening to a 266.0 Hz tuning fork and a single piano string. What are the two possible frequencies (in Hz) of the string? (Give your answers to at least one decimal place.)

Answers

Answer:

The lower frequency is [tex]f_1 = 265.55 \ Hz[/tex]

The higher frequency is  [tex]f_2 = 266.4546 \ Hz[/tex]

Explanation:

From the question we are told that

     The period is   [tex]T = 2.20 \ s[/tex]

      The frequency of the tuning fork is  [tex]f = 266.0 \ Hz[/tex]

Generally the beat frequency is mathematically represented as

       [tex]f_b = \frac{1}{T}[/tex]

substituting values

      [tex]f_b = \frac{1}{2.20}[/tex]

      [tex]f_b = 0.4546 \ Hz[/tex]

Since the beat  frequency is gotten from the beat produced by the tuning fork and and  the string   then

The possible frequency of the string ranges from

     [tex]f_1 = f- f _b[/tex]

to

    [tex]f_2 = f + f_b[/tex]

Now  substituting values

    [tex]f_1 = 266.0 - 0.4546[/tex]

    [tex]f_1 = 265.55 \ Hz[/tex]

For  [tex]f_2[/tex]

    [tex]f_2 = 266 + 0.4546[/tex]

    [tex]f_2 = 266.4546 \ Hz[/tex]

A cylindrical shell of radius 7.00 cm and length 2.21 m has its charge uniformly distributed on its curved surface. The magnitude of the electric field at a point 15.2 cm radially outward from its axis (measured from the midpoint of the shell) is 36.0 kN/C. (a) Find the net charge on the shell.

Answers

Answer:

The net charge on the shell is 30x10^-9C

Explanation:

Pls see attached file

59-kg girl weighs herself by standing on a scale in an elevator. What does the scale read when: the elevator is descending at a constant rate of 8 m/s

Answers

Answer:

578.2 N

Explanation:

The computation of reading on the scale is shown below:-

Data provided in the question

Weight of a girl = 59 kg

Constant rate = 8 m/s

Since the elevator is descended so the acceleration is zero

As we know that

Reading on the scale is

[tex]F = m\times g[/tex]

where,  m = 59 kg

g  [tex]= 59 \times 9.8 m/s^2[/tex]

So, the reading on the scale is

= 578.2 N

Therefore for computing the reading on the scale we simply applied the above formula.

A stretched string is 120 cm long and has a linear density of 0.022 g/cm. What tension in the string will result in a second harmonic of 590 Hz

Answers

Answer:

T = 15,576 N

Explanation:

The speed of a wave on a string is given by

        v = √ T /ρ rho

also the speed of the wave is given by the relationship

       v = λ f

we substitute

     λ f = √ T /ρ

       

T = (lam f)² ρ

let's find the wavelength in a string, fixed at the ends, the relation that gives the wavelength is

       L= λ/2 n

       λ= 2L / n

we substitute

      T = (2L / n f)²ρ rho

let's calculate

      T = (2 1.20 / 2 590) 0.022

      T = 15,576 N

In an inertial frame of reference, a series of experiments is conducted. In each experiment, two or three forces are applied to an object. The magnitudes of these forces are given. No other forces are acting on the object. In which cases may the object possibly move at a constant velocity of 256m/s

Answers

Explanation:

[tex]1.2 \mathrm{N} ; 2 \mathrm{N}[/tex]

2.[tex]200 \mathrm{N} ; 200 \mathrm{N}[/tex]

4.[tex]2 \mathrm{N} ; 2 \mathrm{N} ; 4 \mathrm{N}[/tex]

[tex]5.2 \mathrm{N} ; 2 \mathrm{N} ; 2 \mathrm{N}[/tex]

[tex]6.2 \mathrm{N} ; 2 \mathrm{N} ; 3 \mathrm{N}[/tex]

[tex]8.200 \mathrm{N} ; 200 \mathrm{N} ; 5 \mathrm{N}[/tex]

In only the above cases (i.e 1,2,4,5,6,8 ) the object possibly moves at a constant velocity of [tex]256 \mathrm{m} / \mathrm{s}[/tex]

You should have noticed that the sets of forces applied to the object are the same asthe ones in the prevous question. Newton's 1st law (and the 2nd law, too) makes nodistinction between the state of re st and the state of moving at a constant velocity(even a high velocity).

In both cases, the net force applied to the object must equal zero.

A single-turn circular loop of radius 6 cm is to produce a field at its center that will just cancel the earth's field of magnitude 0.7 G directed at 70 below the horizontal north direction. Find the current in the loop.

Answers

Answer:

The current is  [tex]I = 6.68 \ A[/tex]

Explanation:

From the question we are told that  

     The radius of the loop is  [tex]r = 6 \ cm = 0.06 \ m[/tex]

     The  earth's magnetic field is [tex]B_e = 0.7G= 0.7 G * \frac{1*10^{-4} T}{1 G} = 0.7 *10^{-4} T[/tex]

      The  number of turns is  [tex]N =1[/tex]

Generally the magnetic field generated by the current in the loop is mathematically represented as

        [tex]B = \frac{\mu_o * N * I}{2 r }[/tex]

Now for the earth's magnetic field to be canceled out the magnetic field generated by the loop must be equal to the magnetic field out the earth

         [tex]B = B_e[/tex]

=>     [tex]B_e = \frac{\mu_o * N * I }{ 2 * r}[/tex]

     Where  [tex]\mu[/tex] is the permeability of free space with value  [tex]\mu _o = 4\pi * 10^{-7} N/A^2[/tex]

       [tex]0.7 *10^{-4}= \frac{ 4\pi * 10^{-7} * 1 * I}{2 * 0.06}[/tex]

=>     [tex]I = \frac{2 * 0.06 * 0.7 *10^{-4}}{ 4\pi * 10^{-7} * 1}[/tex]

       [tex]I = 6.68 \ A[/tex]

The current in the loop will be "6.68 A".

Magnetic field

According to the question,

Radius of loop, r = 6 cm or,

                           = 0.06 m

Earth's magnetic field, [tex]B_e[/tex] = 0.7 G or,

                                          = 0.7 × [tex]\frac{1\times 10^{-4}}{1 G}[/tex]

                                          = 0.7 × 10⁻⁴ T

Number of turns, N = 1

We know the relation,

→ B = [tex]\frac{\mu_0\times N\times I}{2r}[/tex]

or,

  B = [tex]B_e[/tex]

then,

→         [tex]B_e[/tex] = [tex]\frac{\mu_0\times N\times I}{2r}[/tex]

By substituting the values,

0.7 × 10⁻⁴ = [tex]\frac{4 \pi\times 10^{-7}\times 1\times I}{2\times 0.06}[/tex]  

hence,

The current will be:

               I = [tex]\frac{2\times 0.06\times 0.7\times 10^{-4}}{4 \pi\times 10^{-7}\times 1}[/tex]

                 = 6.68 A

Thus the above approach is correct.    

             

Find out more information about Magnetic field here:

https://brainly.com/question/14411049

Saturn has a diameter of 74,900 miles. As the planet rotates on its axis, a point on its equator travels at 527,787 miles per day.

a. Find the angular speed of a point on its equator in radians per day.
b. Find the number of rotations the planet makes per day.

Answers

Answer:

a. ω = 14.1 radians per day

b. ω = 2.24 rotations per day

Explanation:

a.

The relationship between linear and angular velocity is given as:

v = rω

where,

v = linear speed of point = 527787 miles/day

r = radius of Saturn = diameter/2 = 74900 miles/2 = 37450 miles

ω = angular velocity of point = ?

Therefore,

527787 miles/day = (37450 miles)ω

ω = (527787 miles/day)/(37450 miles)

ω = 14.1 radians per day

b.

The number of rotations per day can be found by converting the units of angular acceleration:

ω = (14.1 radians per day)(1 rotation/2π radians)

ω = 2.24 rotations per day

A centrifuge has an angular velocity of 3,000 rpm, what is the acceleration (in unit of the earth gravity) at a point with a radius of 10 cm

Answers

Answer:

[tex]a_{r} = 1006.382g \,\frac{m}{s^{2}}[/tex]

Explanation:

Let suppose that centrifuge is rotating at constant angular speed, which means that resultant acceleration is equal to radial acceleration at given radius, whose formula is:

[tex]a_{r} = \omega^{2}\cdot R[/tex]

Where:

[tex]\omega[/tex] - Angular speed, measured in radians per second.

[tex]R[/tex] - Radius of rotation, measured in meters.

The angular speed is first determined:

[tex]\omega = \frac{\pi}{30}\cdot \dot n[/tex]

Where [tex]\dot n[/tex] is the angular speed, measured in revolutions per minute.

If [tex]\dot n = 3000\,rpm[/tex], the angular speed measured in radians per second is:

[tex]\omega = \frac{\pi}{30}\cdot (3000\,rpm)[/tex]

[tex]\omega \approx 314.159\,\frac{rad}{s}[/tex]

Now, if [tex]\omega = 314.159\,\frac{rad}{s}[/tex] and [tex]R = 0.1\,m[/tex], the resultant acceleration is then:

[tex]a_{r} = \left(314.159\,\frac{rad}{s} \right)^{2}\cdot (0.1\,m)[/tex]

[tex]a_{r} = 9869.588\,\frac{m}{s^{2}}[/tex]

If gravitational acceleration is equal to 9.807 meters per square second, then the radial acceleration is equivalent to 1006.382 times the gravitational acceleration. That is:

[tex]a_{r} = 1006.382g \,\frac{m}{s^{2}}[/tex]

What length (in m) should an oboe have to produce a fundamental frequency of 294 Hz on a day when the speed of sound is 350 m/s? It is open at both ends.

Answers

Answer:

L = 0.60 m

The length in metres should be 0.60 m

Explanation:

A pipe open at both ends can have a standing wave pattern with resonant frequency;

f = nv/2L ........1

Where;

v = velocity of sound

L = length of pipe

n = 1 for the fundamental frequency f1

Given;

Fundamental frequency f1 = 294 Hz

Velocity v = 350 m/s

n = 1

From equation 1;

Making L the subject of formula;

L = nv/2f1

Substituting the given values;

L = 1×350/(2×294)

L = 0.595238095238 m

L = 0.60 m

The length in metres should be 0.60 m

A 95 N force exerted at the end of a 0.35 m long torque wrench gives rise to a torque of 15 N · m. What is the angle (assumed to be less than 90°) between the wrench handle and the direction of the applied force?

Answers

Answer:

The angle between the wrench handle and the direction of the applied force is 26.8°

Explanation:

Given;

applied force, F = 95 N

length of the wrench, r = 0.35 m

torque on the wrench due to the applied force, τ = 15 N.m

Torque is calculated as;

τ = rFsinθ

where;

r is the length of the wrench

F is the applied force

θ is the angle between the applied force and the wrench handle

Make Sin θ the subject of the formula;

Sinθ = τ / rF

Sinθ = 15 / (0.35 x 95)

Sinθ = 0.4511

θ = Sin⁻¹(0.4511)

θ = 26.8°

Therefore, the angle between the wrench handle and the direction of the applied force is 26.8°

If an object is determined to have a negative charge of 1.6 micro Coulomb, you can conclude that the object has an excess of

Answers

Answer:

The object has an excess of [tex]10^{13}[/tex] electrons.

Explanation:

When an object has a negative charge he has an excess of electrons in its body. We can calculate the number of excessive electrons by dividing the charge of the body by the charge of one electron. This is done below:

[tex]n = \frac{\text{object charge}}{\text{electron charge}}\\n = \frac{-1.6*10^{-6}}{-1.6*10^{-19}} = 1*10^{-6 + 19} = 10^{13}[/tex]

The object has an excess of [tex]10^{13}[/tex] electrons.

If a sound with frequency fs is produced by a source traveling along a line with speed vs. If an observer is traveling with speed vo along the same line from the opposite direction toward the source, then the frequency of the sound heard by the observer is fo = c + vo c − vs fs where c is the speed of sound, about 332 m/s. (This is the Doppler effect.) Suppose that, at a particular moment, you are in a train traveling at 32 m/s and accelerating at 1.3 m/s2. A train is approaching you from the opposite direction on the other track at 48 m/s, accelerating at 1.9 m/s2, and sounds its whistle, which has a frequency of 439 Hz. At that instant, what is the perceived frequency that you hear? (Round your answer to one decimal place.) Hz

Answers

Answer: The frequency heard is 562.7 Hz.

Explanation: Doppler Effect happens when there is shift in frequency during a realtive motion between a source and the observer of that source.

It can be calculated as:

[tex]f_{o} = f_{s}(\frac{c+v_{o}}{c-v_{s}} )[/tex]

where:

c is the speed of light (c = 332m/s)

all the subscripted s is related to the Source (frequency, velocity);

all the subscripted o is related to the Observer (frequency, velocity);

As the source is moving towards the observer and the observer is moving towards the source, the velocities of each are opposite related to direction.

So, the frequency perceived by the observer:

[tex]f_{o} = 439(\frac{332+32}{332-48} )[/tex]

[tex]f_{o} = 439(\frac{364}{284} )[/tex]

[tex]f_{o} = 439(1.282 )[/tex]

[tex]f_{o}[/tex] = 562.7 Hz

At this condition, the observer hears the train's horn in a perceived frequency of 562.7 Hz

Write the equations of motion of a pendulum consisting of a thin, 2 kg stick of length suspended from a pivot. How long should the rod be in order for the period to be exactly 1 sec

Answers

Answer:

3g/(8π²) ≈ 0.372 m

Explanation:

Draw a free body diagram.  There is a weight force at the center of the pendulum.

Sum of the torques about the pivot:

∑τ = Iα

mg (½ L sin θ) = (⅓ mL²) α

3g sin θ = 2L α

α = 3g/(2L) sin θ

For small θ, sin θ ≈ θ.

α = 3g/(2L) θ

θ" = 3g/(2L) θ

The solution of this differential equation is:

θ = θ₀ cos(√(3g/(2L)) t)

So the period is:

T = 2π / √(3g/(2L))

If the period is 1 second:

1 = 2π / √(3g/(2L))

√(3g/(2L)) = 2π

3g/(2L) = 4π²

L = 3g/(8π²)

L ≈ 0.372 m

The length of the pendulum rod is 0.37 m.

What is meant by time period of a pendulum ?

The time period of a pendulum is defined as the time taken by the pendulum to complete one oscillation.

Here,

The mass of the pendulum, m = 2 kg

Time period of the pendulum, T = 1 s

Since, the pendulum is suspended from the pivot and is oscillating, at the position of the pendulum when it makes an angle θ with the pivot, there is a force of weight acting at the center of the pendulum.

The length of pendulum at that point = L/2

The perpendicular distance at that point, r = (L/2) sinθ

Therefore, the torque acting on the pendulum at that point,

τ = Iα

where I is the moment of inertia of the pendulum and α is the angular acceleration.

mg (L/2 sinθ) = (mL²/3)α

1/2 gsinθ = 1/3 Lα

Therefore,

α = (3g/2L) sinθ

For smaller values of θ, we can take sinθ = θ

So, α = (3g/2L) θ

We know that α = θ''

where θ is the angular displacement.

Therefore,

θ'' = (3g/2L) θ

So, ω = √3g/2L

Therefore, the equation of motion of the pendulum can be written as,

θ = θ₀ cos(ωt)

θ = θ₀ cos [(√3g/2L) t]

So, time period of the pendulum,

T = 2[tex]\pi[/tex]/ω

T = 2[tex]\pi[/tex]/(√3g/2L)

2[tex]\pi[/tex]/(√3g/2L) = 1

(√3g/2L) = 2[tex]\pi[/tex]

Therefore, length of the rod,

L = 3g/8[tex]\pi[/tex]²

L = 0.37 m

Hence,

The length of the pendulum rod is 0.37 m.

To learn more about time period, click:

https://brainly.com/question/29268528

#SPJ2

Attaching the image file here.

Which kind of energy is found in an atom's nucleus? (A) Nuclear (B) Elastic (C) Thermal (D) Electromagnetic

Answers

Answer:

The answer is option A.

Nuclear

Hope this helps you

Answer:

Answer is A Nuclear

Explanation:

Just answered this question on my test

Determine the maximum height and range of a projectile fired at a height of 6 feet above the ground with an initial velocity of 100 feet per second at an angle of 40 degrees above the horizontal.Maximum heightRange Question 20 options:a) 70.56 feet183.38 feet b) 92.75 feet310.59 feet c) 92.75 feet183.38 feet d) 70.56 feet314.74 feet e)

Answers

Answer:

C is the correct answer

Explanation:

Which compound is composed of oppositely charged ions?

Answers

Answer:

Option A. Li2O

Explanation:

To know which of the compound contains oppositely charged ions, let us determine the nature of each compound. This is illustrated below:

Li2O is an ionic compound as it contains a metal (Lithium, Li) and non metal (oxygen, O). Ionic compounds are charactized by the presence of aggregate positive and negative charge ions. This is true because they are formed by the transfer of electron(s) from the metallic atom to the non-metallic atom.

2Li —> 2Li^+ + 2e

O2 + 2e —> O^2-

2Li + O2 + 2e —> 2Li^+ + O^2- + 2e

2Li + O2 —> 2Li^+ O^2- —> Li2O

OF2 is a covalent compound as it contains non metals only (i.e oxygen, O and fluorine, F). Covalent compounds are characterised by the presence of molecules. This is true because they are formed from the sharing of electron(s) between the atoms involved.

PH3 is a covalent compound as it contains non metals only (i.e phosphorus, P and hydrogen, H).

SCl2 is a covalent compound as it contains non metals only (i.e sulphur, S and chlorine, Cl).

From the above information, we can see that only Li2O contains oppositely charged ions.

Answer:

A

Explanation:

Just took the test

Block A rests on a horizontal tabletop. A light horizontal rope is attached to it and passes over a pulley, and block B is suspended from the free end of the rope. The light rope that connects the two blocks does not slip over the surface of the pulley (radius 0.080 m) because the pulley rotates on a frictionless axle. The horizontal surface on which block A (mass 2.10 kg) moves is frictionless. The system is released from rest, and block B (mass 7.00 kg) moves downward 1.80 m in 2.00 s. a)What is the tension force that the rope exerts on block B? b)What is the tension force that the rope exerts on block A? c)What is the moment of inertia of the pulley for rotation about the axle on which it is mounted?

Answers

Answer:

(a) 62.3 N

(b) 1.89 N

(c) 0.430 kg m²

Explanation:

(a) Find the acceleration of block B.

Δy = v₀ t + ½ at²

1.80 m = (0 m/s) (2.00 s) + ½ a (2.00 s)²

a = 0.90 m/s²

Draw a free body diagram of block B.  There are two forces:

Weight force mg pulling down,

and tension force Tb pulling up.

Sum of forces in the -y direction:

∑F = ma

mg − Tb = ma

Tb = m (g − a)

Tb = (7.00 kg) (9.8 m/s² − 0.90 m/s²)

Tb = 62.3 N

(b) Draw a free body diagram of block A.  There are three forces:

Weight force mg pulling down,

Normal force N pushing up,

and tension force Ta pulling right.

Sum of forces in the +x direction:

∑F = ma

Ta = ma

Ta = (2.10 kg) (0.90 m/s²)

Ta = 1.89 N

(c) Draw a free body diagram of the pulley.  There are two forces:

Tension force Tb pulling down,

and tension force Ta pulling left.

Sum of torques in the clockwise direction:

∑τ = Iα

Tb r − Ta r = Iα

(Tb − Ta) r = I (a/r)

I = (Tb − Ta) r² / a

I = (62.3 N − 1.89 N) (0.080 m)² / (0.90 m/s²)

I = 0.430 kg m²

The tension force that the rope exerts on block B is 62.3 N, the tension force that the rope exerts on block A is 1.89 N, and the moment of inertia of the pulley for rotation about the axle on which it is mounted is [tex]\rm 0.430 \; kg\;m^2[/tex].

Given :

Block A rests on a horizontal tabletop. A light horizontal rope is attached to it and passes over a pulley, and block B is suspended from the free end of the rope. The light rope that connects the two blocks does not slip over the surface of the pulley (radius 0.080 m) because the pulley rotates on a frictionless axle.The horizontal surface on which block A (mass 2.10 kg) moves is frictionless.The system is released from rest, and block B (mass 7.00 kg) moves downward 1.80 m in 2.00 s.

a) First, determine the acceleration of the B block.

[tex]\rm s = ut + \dfrac{1}{2}at^2[/tex]

[tex]\rm 1.8 = \dfrac{1}{2}\times a\times (2)^2[/tex]

[tex]\rm a = 0.9\; m/sec^2[/tex]

Now, apply Newton's second law of motion in order to determine the tension force that the rope exerts on block B.

[tex]\rm \sum F=ma[/tex]

[tex]\rm mg-T_b=ma[/tex]

[tex]\rm T_b = m(g-a)[/tex]

[tex]\rm T_b = 7\times (9.8-0.9)[/tex]

[tex]\rm T_b = 62.3\;N[/tex]

b) Now, again apply Newton's second law of motion in order to determine the tension force that the rope exerts on block A.

[tex]\rm \sum F=ma[/tex]

[tex]\rm T_a=ma[/tex]

[tex]\rm T_a = 2.1\times 0.9[/tex]

[tex]\rm T_a = 1.89\;N[/tex]

c) The sum of the torque in order to determine the moment of inertia of the pulley for rotation about the axle on which it is mounted.

[tex]\rm \sum \tau = I\alpha[/tex]

[tex]\rm T_br-T_ar = I\alpha[/tex]

[tex]\rm I = \dfrac{(T_b-T_a)r^2}{a}[/tex]

Now, substitute the values of the known terms in the above expression.

[tex]\rm I = \dfrac{(62.3-1.89)(0.080)^2}{0.90}[/tex]

[tex]\rm I = 0.430 \; kg\;m^2[/tex]

For more information, refer to the link given below:

https://brainly.com/question/2287912

9. A 30 cm ruler is found to have a center of mass of 15.6 cm. The percent error of the center of mass is _____, if the ruler is assumed to have uniform mass.

Answers

Answer:

3.85 percent

Explanation:

From the question,

Percentage error = (error/actual)×100................ Equation 1

Given: actual center of mass = 15 cm, error = 15.6-15 = 0.6 cm

Substitute these values into equation 1

Percentage error = (0.6/15.6)×100

Percentage error = 3.85 percent

Hence the percentage error of the uniform mass = 3.85 percent

is tantalum least reactive or more

Answers

Answer:

it is more reactive in high temperature than in low temperature.

Faraday's Law states that the negative of the time rate of change of the flux of the magnetic field through a surface is equal to which of the following quantities?

a. The flux of the magnetic field through a surface which has the loop as its boundary.
b. The negative of the time rate of change of the flux of the magnetic field through a surface which has the loop as its boundary.
c. The line integral of the magnetic field around the closed loop.
d. The flux of the electric field through a surface which has the loop as its boundary.

Answers

Answer:

(C). The line integral of the magnetic field around a closed loop

Explanation:

Faraday's law states that induced emf is directly proportional to the time rate of change of magnetic flux.

This can be written mathematically as;

[tex]EMF = -\frac{\delta \phi _B}{\delta t}[/tex]

[tex](\frac{\delta \phi _B}{\delta t} )[/tex] is the rate of change of the magnetic flux through a surface bounded by the loop.

ΔФ = BA

where;

ΔФ is change in flux

B is the magnetic field

A is the area of the loop

Thus, according to Faraday's law of electric generators

∫BdL = [tex]\frac{\delta \phi _B}{\delta t}[/tex] = EMF

Therefore, the line integral of the magnetic field around a closed loop is equal to the negative of the rate of change of the magnetic flux through the area enclosed by the loop.

The correct option is "C"

(C). The line integral of the magnetic field around a closed loop

Faraday's Law states that the negative of the time rate of change of the flux of the magnetic field through a surface is equal to: D. The flux of the electric field through a surface which has the loop as its boundary.

In Physics, the surface integral with respect to the normal component of a magnetic field over a surface is the magnetic flux through that surface and it is typically denoted by the symbol [tex]\phi[/tex].

Faraday's Law states that the negative of the time rate of change ([tex]\Delta t)[/tex] of the flux of the magnetic field ([tex]\phi[/tex]) through a surface is directly proportional to the flux ([tex]\phi[/tex]) of the electric field through a surface which has the loop as its boundary.

Mathematically, Faraday's Law is given by the formula:

[tex]E.m.f = -N\frac{\Delta \phi}{\Delta t}[/tex]

Where:

N is the number of turns.

Read more: https://brainly.com/question/15121836

A spherical balloon is inflated with helium at a rate of 140pift^3/min How fast is the balloon's radius increasing when the radius is 7ft

Answers

Answer:

dr = 0.71 ft/min

the balloon's radius is increasing at 0.71 ft/min when the radius is 7ft.

Explanation:

Given;

Rate of inflation dV = 140pift^3/min

Radius r = 7 ft

Change in radius = dr

Volume of a spherical balloon is;

V = (4/3)πr^3

The change in volume can be derived by differentiating both sides;

dV = (4πr^2)dr

Making dr the subject of formula;

dr = dV/(4πr^2)

Substituting the given values;

dr = 140π/(4π×7^2)

dr = 0.714285714285 ft/min

dr = 0.71 ft/min

the balloon's radius is increasing at 0.71 ft/min when the radius is 7ft.

If a negative point charge is placed at P without moving the original charges, the net electrical force the charges ±Q will exert on it is

Answers

Answer:

The particle P moves directly upwards

Explanation:

Lets designate the negative point charge at point P as particle P

The +Q charge will exert an attractive force on the particle P.

The -Q charge will exert a repulsive force on the particle P

The +Q charge exerts an upwards and leftward force on particle P

The -Q charge exerts an upwards and rightward force on particle P

Since the charges are equidistant from the particle P, and are of equal magnitude, the rightward force and the leftward force will cancel out, leaving just the upward force on the particle P.

The effect of the upward force is that the particle P moves directly upwards

Other Questions
2 PointsWhat are the zeros of f(x) = x2 - 8x+16?A. x=-4 and x = 4B. x= -2 and x = 8C. X= 4 onlyD. x= -4 only Calculate the slope of a line passing through point A at (2, 1) and point B at (4, 2). Calculate to one decimal place. how to use you for bongo cat?????????? will give branliest Serena wants to wrap ribbon around the edge of the picture frame represented in the drawing. Which is the simplified form of the expression representing the length of ribbon Serena will need? A. 9x 13.2 B. 4.5x 6.6 C. 9x 14.8 D. 2(3.5x 7) + 2(x + 0.4) A proper APA In-Text Citation for a quotation from the book, The Walrus Man, which was written by Kevin Smith in 1998. The quote is from page 31. Select one: a. "The Walrus Man went over for lunch" (Kevin Smith, The Walrus, Page 31). b. The Walrus Man went over for lunch (Smith, 1998). c. "The Walrus Man went over for lunch" (Smith, 1998, p. 31). d. The Walrus Man went over for lunch (Smith, 1998, p. 31). what part of the Great Compromise are the ideas of the Virginia Plan represented? what property of water results from high boiling point During the Tunguska event, People were thrown 20' through the air, even though they were________ Away from the explosion a. 2 miles b. 500' feet c. 5 milesd. 40 miles 3 reasons why qualified educators struggle to get employed education sector Find the interquartile range (IQR) of the data in the dot plot below. chocolate chips 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10. Number of chocolate chips. Chocolate chips in different cookies in a package organism must go through mitosis to build new tissues.Part CBased on your model, do you think frogs reproduce sexually or asexually? What are the benefits and drawbacks to thisform of reproduction? Which expression is equivalent to (x y) z? Consider the following hypothetical data for an open economy (in millions): Assets owned inside the U.S. by U.S. citizens = $140, 000140,000 Assets owned outside the U.S. by U.S. citizens = $23,35723,357 Assets owned outside the U.S. by foreign citizens = $110,000110,000 Assets owned inside the U.S. by foreign citizens = $22,78622,786 The value of the International Investment Position (IIP) of the U.S. is__________ $ nothing million. How can psychic distance influence tone?A. A smaller psychic distance makes the tone feel cold and removed.B. A larger psychic distance usually creates a somber, unhappy tone.C. A smaller psychic distance makes it difficult to interpret the tone.D. A larger psychic distance usually creates a less intimate tone. A 10-m long steel linkage is to be designed so that it can transmit 2 kN of force without stretching more than 5 mm nor having a stress state greater than 200 N/mm2. If the linkage is to be constructed from solid round stock, what is the minimum required diameter? A helicopter rotor blade is 3.40m long from the central shaft to the rotor tip. When rotating at 550rpm what is the radial acceleration of the blade tip expressed in multiples of g? differentiate between parallel circuit and series circuit Suppose you are a manager at an advertising agency who is eager to utilize Coveys advice about delegation. Today, you need to work on a presentation for a potential new client. This requires delegating a routine status report about an ongoing advertising campaign to Patricia. You ask Patricia to complete the status report, making her haveresponsibility for its completion. Which of the following are true after you delegate the status report to Patricia? Check all that apply. You should guide Patricia through each step of the assignment to serve as a mentor. Patricia must have authority over the resources and personnel needed to complete the status report. You should help Patricia with the status report, to the extent you have time. Patricia will be held accountable for the results of the assignment. The advertising agency recently reorganized. Patricia now reports to both the regional sales manager and a senior product manager which means there unity of command. Unity of command in matrix organizations. Lower-level employees have the authority to act without first seeking approval for activities in a company. Continue without saving Initially stationary, a train has a constant acceleration of 0.8 m/s2. (a) What is its speed after 27 s? m/s (b) What is the total time required for the train to reach a speed of 41 m/s? Que diferencia hay entre un monologo y un soliloquio?