a centimeter in milimetersr difiers from each other by a fact of 100 ,1000, 1 or 10

Answers

Answer 1

Answer:

The correct answer is - 1.

Explanation:

The one cubic centimeter is equal to the one mililitter of a liquid. It is same de to the fact that volume of water that fits in a one cubic centimeter is equal to the liquid present in one mililiter of a liquid.

1 cm² = 1 ml

1 cm³ = 1 ml

Thus, the use of the both unit is interchangebly.

So , correct answer is - 1.


Related Questions

Two vehicles approach an intersection, a 2500kg pickup travels from E to W at 14.0m/s and a 1500kg car from S to N at 23.0m/s. Find P net of this system (direction and magnitude)

Answers

Answer:

The magnitude of the momentum is 49145.19 kg.m/s

The direction of the two vehicles is 44.6° North West

Explanation:

Given;

speed of first vehicle, v₁ = 14 m/s (East to west)

mass of first vehicle, m₁ = 1500 kg

speed of second vehicle, v₂ = 23 m/s (South to North)

momentum of the first vehicle in x-direction (E to W is in negative x-direction)

[tex]P_x = mv_x\\\\P_x = 2500kg(-14 \ m/s)\\\\P_x = -35000 \ kg.m/s[/tex]

momentum of the second vehicle in y-direction (S to N is in positive y-direction)

[tex]P_y = m_2v_y\\\\P_y = 1500kg(23 \ m/s)\\\\P_y = 34500 \ kg.m/s[/tex]

Magnitude of the momentum of the system;

[tex]P= \sqrt{P_x^2 + P_y^2} \\\\P = \sqrt{(-35000)^2+(34500)^2} \\\\P = 49145.19 \ kg.m/s[/tex]

Direction of the two vehicles;

[tex]tan \ \theta = \frac{P_y}{|P_x|} \\\\tan \ \theta = \frac{34500}{35000} \\\\tan \ \theta = 0.9857\\\\\theta = tan^{-1} (0.9857)\\\\\theta = 44.6^0[/tex]North West

Raven throw a baseball directly downward from a terrace froma speed of 5.0 m/s. How fast it will be moving when it hits the path way 3.0 m below

Answers

Answer:

The speed of the ball at this distance is 9.15 m/s

Explanation:

Given;

initial speed of the baseball, U = 5.0 m/s.

distance traveled along the path way, h = 3 m

final speed of the baseball at this distance, V = ?

The baseball is falling under the influence of gravity.

Acceleration due to gravity, g is positive, since the baseball is falling towards its direction.

g = 9.8 m/s²

Apply the third kinematic equation;

V² = U² + 2gh

V² = 5² + 2 x 9.8 x 3

V² = 25 + 58.8

V² = 83.8

V = √83.8

V = 9.15 m/s

Therefore, the speed of the ball at this distance is 9.15 m/s

some snakes have special sense organs that allow them to see the heat emitted from warm blooded animals what kind of an electromagnetic waves does the sense organs detect?

A. Visible light waves
B. Ultraviolet light waves
C. Infrared Waves
D. Microwaves

Answers

The heat emitted from anything is carried in the form of infrared waves. (C)

Can an object travel at the speed of
light? Why or why nbt?

Answers

Answer:

no the only things that can travel at the speed of light are waves in the electromagnetic spectrum

No because, the object shrinks as it moves forward compared to light, it never does.

Source: google

A parallel-plate air capacitor is connected to a constant-voltage battery. If the separation between the capacitor plates is doubled while the capacitor remains connected to the battery, the energy stored in the capacitor
1) drops to one-fourth its previous value.
2) quadruples.
3) becomes six times its previous value.
4) doubles.
5) drops to one-third its previous value.
6) Not enough information is provided.
7) triples.
8) drops to half its previous value.
9) drops to one-sixth its previous value.
10) remains unchanged.

Answers

Answer:

Drop to half of the previous value

Explanation:

Energy stored in capacitor is inversly propotional to the distance between the plates.

If the separation between the capacitor plates is doubled while the capacitor remains connected to the battery, the energy stored in the capacitor drops to half its previous value.

What is parallel plate capacitor?

The two parallel plates placed at a distance apart used to store charge when electric supply is on.

The capacitance of a capacitor is  given by

C = ε₀ A/d

where, ε₀ is the permittivity of free space, A = area of cross section of plates and d is the distance between them.

Capacitance is inversely proportional to the distance between them. So, if distance is doubled, the capacitance decreases to half its original value.

Thus, the correct option is 8.

Learn more about parallel plate capacitor.

https://brainly.com/question/12733413

#SPJ2

A uniform disk of 10 kg and radius 4.0 m can rotate in a horizontal plane about a vertical axis through its center. The disk is rotating at an angular velocity of 15 rad/s when a 5-kg package is dropped vertically on a point that is 2.0 m from the center of the disk. What is the angular velocity of the disk/package system

Answers

Answer:

18.75 rad/s

Explanation:

Moment of inertia of the disk;

I_d = ½ × m_disk × r²

I_d = ½ × 10 × 4²

I_d = 80 kg.m²

I_package = m_pack × r²

Now,it's at 2m from the centre, thus;

I_package = 5 × 2²

I_package = 20 Kg.m²

From conservation of momentum;

(I_disk + I_package)ω1 = I_disk × ω2

Where ω1 = 15 rad/s and ω2 is the unknown angular velocity of the disk/package system.

Thus;

Plugging in the relevant values, we obtain;

(80 + 20)15 = 80 × ω2

1500 = 80ω2

ω2 = 1500/80

ω2 = 18.75 rad/s

A sound wave travels through a column of carbon monoxide at STP. Assuming a density of rho = 1.25 kg/m3 and a bulk modulus of β = 1.42 ✕ 105 Pa, what is the approximate speed (in m/s) of the sound wave?

Answers

Answer:

v = 337.04m/s

Explanation:

In order to calculate the speed of sound for the case of a carbon monoxide medium, you use the following formula:

[tex]v=\sqrt{\frac{\beta}{\rho}}[/tex]       (1)

v: speed of sound

β: bulk modulus = 1.412*10^5 Pa

ρ: density of the column of carbon monoxide = 1.25 kg/m^3

You replace the values of the parameters in the equation (1):

[tex]v=\sqrt{\frac{1.42*10^5Pa}{1.25kg/m^3}}=337.04\frac{m}{s}[/tex]

The speed of the sound in the column of carbon monoxide is 337.04 m/s

Find the magnitude of the resultant of forces 6N and 8N acting at 240° to each other

Answers

Answer:

magnitude of the resultant of forces is 11.45 N

Explanation:

given data

force F1 = 6N

force F2 = 8N

angle = 240°

solution

we get here resultant force that is express as

F(r) = [tex]\sqrt{F_1^2+F_2^2+2F_1F_2cos\ \theta}[/tex]    ..............1

put here value and we get

F(r) = [tex]\sqrt{6^2+8^2+2\times 6\times 8 \times cos240}[/tex]

F(r) =  11.45 N

so magnitude of the resultant of forces is 11.45 N

What must be the magnitude of a uniform electric field if it is to have the same energy density as that possessed by a 0.50 T magnetic field?

Answers

Answer:

E = 1.50 × [tex]10^{8}[/tex] V/m

Explanation:

given data

B = 0.50 T

solution

we know that energy density by the magnetic field is express as

[tex]\mu _b = \frac{B}{2\mu _o}[/tex]   ...............1

and

energy density due to electric filed is

[tex]\mu _e = \frac{\epsilon _o E^2}{2}[/tex]     ...............2

and here [tex]\mu _b = \mu _ e[/tex]

so that

E = [tex]\frac{B}{\sqrt{\mu _o \times \epsilon _o}}[/tex]      ...................3

put here value and we get

[tex]E = \frac{0.50}{\sqrt{4\pi \times 10^{-7} \times 8.852 \times 10^{-12}}}[/tex]  

E = 3 × [tex]10^{8}[/tex]  × 0.50

E = 1.50 × [tex]10^{8}[/tex] V/m

A radiograph of the forearm is produced using 4 mA at 75 kVp. What kvp would be required to double the exposure?
A) 86 kVp
B) 66 kVp
76 kVp
D) 8,6 kVp

Answers

Answer:

Required KVP = 86 KVP (Approx)

Explanation:

Given:

Current KVP = 75 KVP

Find:

KVP required to double exposure

Computation:

According to 15% rule of KVP,

15% change increse in KVP required to get double exposure.

So,

Required KVP = Current KVP + Current KVP(15%)

Required KVP = 75 KVP + 75 (15%)

Required KVP = 75 KVP + 11.25 KVP

Required KVP = 86.25 KVP

Required KVP = 86 KVP (Approx)

(c) If you want the beam to undergo total internal reflection at the second interface (the interface between sheet 1 and the air), what is the minimum angle the incoming beam (the beam traveling in the sheet 2) must make with the x-axis

Answers

Answer:

33.749

Explanation:

According to the given situation, the solution of the minimum angle is shown below:-

We will apply the law to no and n1 medium  which is

[tex]1.8\times sin(\theta_2)=1\times sin90[/tex]

[tex]\theta_2 = sin^{-1} \frac{1}{1.8}[/tex]

After solving the above equation we will get

= 33.749

Therefore for computing the minimum angle we simply applied the above formula.

Hence, the correct answer is 33.749

A positive kaon (K+) has a rest mass of 494 MeV/c² , whereas a proton has a rest mass of 938 MeV/c². If a kaon has a total energy that is equal to the proton rest energy, the speed of the kaon is most nearly:___________.
A. 0.25c
B. 0.40c
C. 0.55c
D. 0.70c
E. 0.85c

Answers

Answer:

0.85c

Explanation:

Rest mass of Kaon [tex]M_{0K}[/tex] = 494 MeV/c²

Rest mass of proton [tex]M_{0P}[/tex]  = 938 MeV/c²

The rest energy is gotten by multiplying the rest mass by the square of the speed of light c²

for the kaon, rest energy [tex]E_{0K}[/tex] = 494c² MeV

for the proton, rest energy [tex]E_{0P}[/tex] = 938c² MeV

Recall that the rest energy, and the total energy are related by..

[tex]E[/tex] = γ[tex]E_{0}[/tex]

which can be written in this case as

[tex]E_{K}[/tex] = γ[tex]E_{0K}[/tex] ...... equ 1

where [tex]E[/tex] = total energy of the kaon, and

[tex]E_{0}[/tex] = rest energy of the kaon

γ = relativistic factor = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex]

where [tex]\beta = \frac{v}{c}[/tex]

But, it is stated that the total energy of the kaon is equal to the rest mass of the proton or its equivalent rest energy, therefore...

[tex]E_{K}[/tex] = [tex]E_{0P}[/tex] ......equ 2

where [tex]E_{K}[/tex] is the total energy of the kaon, and

[tex]E_{0P}[/tex] is the rest energy of the proton.

From [tex]E_{K}[/tex] = [tex]E_{0P}[/tex] = 938c²    

equ 1 becomes

938c² = γ494c²

γ = 938c²/494c² = 1.89

γ = [tex]\frac{1}{\sqrt{1 - \beta ^{2} } }[/tex] = 1.89

1.89[tex]\sqrt{1 - \beta ^{2} }[/tex] = 1

squaring both sides, we get

3.57( 1 - [tex]\beta^{2}[/tex]) = 1

3.57 - 3.57[tex]\beta^{2}[/tex] = 1

2.57 = 3.57[tex]\beta^{2}[/tex]

[tex]\beta^{2}[/tex] = 2.57/3.57 = 0.72

[tex]\beta = \sqrt{0.72}[/tex] = 0.85

but, [tex]\beta = \frac{v}{c}[/tex]

v/c = 0.85

v = 0.85c

A ball is dropped from the top of an eleven-story building to a balcony on the ninth floor. In which case is the change in the potential energy associated with the motion of the ball the greatest

Answers

Answer:

at the top of the 9 story building i think

Explanation:

When the ball starts to move, its kinetic energy increases and potential energy decreases. Thus the ball will experience its maximum potential energy at the top height before falling.

What is potential energy?

Potential energy of a massive body is the energy formed by virtue of its position and displacement. Potential energy is related to the mass, height and gravity as P = Mgh.

Where, g is gravity m is mass of the body and h is the height from the surface.  Potential energy is directly proportional to mass, gravity and height.

Thus, as the height from the surface increases, the body acquires its maximum potential energy. When the body starts moving its kinetic energy progresses and reaches to zero potential energy.

Therefore, at the sate where the ball is at the  top of the building it have maximum potential energy and then changes to zero.

To find more about potential energy, refer the link below:

https://brainly.com/question/24284560

#SPJ2

which of the following is an example of potential energy?

A. a basketball sitting on a shelf
B. a dog running across a field
C. a bowling ball rolling down a lane
D. a teenager riding their bike???

Answers

Answer:

A

Explanation:

potential energy is stored energy so the ball has potential energy to bounce or roll which would then have been converted to kinetic but the rest are in motion meaning energy is no longer stored but used in motion and therefore cannot be potential energy

A fluid moves through a tube of length 1 meter and radius r=0.002±0.0002 meters under a pressure p=4⋅105±1750 pascals, at a rate v=0.5⋅10−9 m3 per unit time. Use differentials to estimate the maximum error in the viscosity η given by

Answers

Answer:

The  maximum error is  [tex]\Delta \eta = 2032.9[/tex]

Explanation:

From the question we are told that

     The length  is  [tex]l = 1\ m[/tex]

      The radius is  [tex]r = 0.002 \pm 0.0002 \ m[/tex]

        The pressure is  [tex]P = 4 *10^{5} \ \pm 1750[/tex]

        The  rate  is  [tex]v = 0.5*10^{-9} \ m^3 /t[/tex]

       The viscosity is  [tex]\eta = \frac{\pi}{8} * \frac{P * r^4}{v}[/tex]

The error in the viscosity is mathematically represented  as

       [tex]\Delta \eta = | \frac{\delta \eta}{\delta P}| * \Delta P + |\frac{\delta \eta}{\delta r} |* \Delta r + |\frac{\delta \eta}{\delta v} |* \Delta v[/tex]

   Where  [tex]\frac{\delta \eta }{\delta P} = \frac{\pi}{8} * \frac{r^4}{v}[/tex]

and         [tex]\frac{\delta \eta }{\delta r} = \frac{\pi}{8} * \frac{4* Pr^3}{v}[/tex]

and          [tex]\frac{\delta \eta }{\delta v} = - \frac{\pi}{8} * \frac{Pr^4}{v^2}[/tex]

So  

             [tex]\Delta \eta = \frac{\pi}{8} [ |\frac{r^4}{v} | * \Delta P + | \frac{4 * P * r^3}{v} |* \Delta r + |-\frac{P* r^4}{v^2} |* \Delta v][/tex]

substituting values

            [tex]\Delta \eta = \frac{\pi}{8} [ |\frac{(0.002)^4}{0.5*10^{-9}} | * 1750 + | \frac{4 * 4 *10^{5} * (0.002)^3}{0.5*10^{-9}} |* 0.0002 + |-\frac{ 4*10^{5}* (0.002)^4}{(0.5*10^{-9})^2} |* 0 ][/tex]

  [tex]\Delta \eta = \frac{\pi}{8} [56 + 5120 ][/tex]

   [tex]\Delta \eta = 647 \pi[/tex]

    [tex]\Delta \eta = 2032.9[/tex]

An electron has a kinetic energy that is twice its rest energy. Determine its speed. Group of answer choices

Answers

Answer:

The speed of the electron will be 6x10^8m/s

Explanation:

See attached file

A string is attached to the rear-view mirror of a car. A ball is hanging at the other end of the string. The car is driving around in a circle, at a constant speed. Which of the following lists gives all of the forces directly acting on the ball?
a. tension
b. tension and gravity
c. tension, gravity, and the centripetal force
d. tension, gravity, the centripetal force, and friction

Answers

Answer:

c. tension, gravity, and the centripetal force

Explanation:

The ball experiences a variety of force as explained below.

Gravity force acts on the body due to its mass and the acceleration due to gravity. The gravity force on every object on earth due to its mass keeps all object on the surface of the earth.

Although the car moves around in circle, centripetal towards the center of the radius of turn exists on the ball. This centripetal force is due to the constantly changing direction of the circular motion, resulting in a force away from the center. The centripetal force keeps the ball from swinging off away from the center of turn.

Tension force on the string holds the ball against falling towards the earth under its own weight, and also from swinging away from the center of turn of the car. Tension force holds the ball relatively fixed in its vertical position in the car.

A crane lifts a 425 kg steel beam vertically a distance of 64 m. How much work does the crane do on the beam if the beam accelerates upward at 1.8 m/s2

Answers

Answer:

work done= 48.96 kJ

Explanation:

Given data

mass of  load m= 425 kg

height/distance h=64 m

acceleration a= 1.8 m/s^2

The work done can be calculated using the expression

work done= force* distance

but force= mass *acceleration

hence work done= 425*1.8*64= 48,960 J

work done= 48.96 kJ

Intuitively, which of the following would happen to E⃗ net if d became very large? E⃗ net should reduce to the field of a point charge of magnitude q. E⃗ net should reduce to the field of a point charge of magnitude 4q. The larger d becomes, the smaller the magnitude of E⃗ net will be. The larger d becomes, the greater the magnitude of E⃗ net will be. Enter the letters of all the correct answers in alphabetical order. Do not use commas. For instance, if you think that A and D are correct, enter AD.

Answers

Answer:

A C

Explanation:

The statement of the exercise is a bit strange, but if the distance between the load increases.

The following phenomena must occur.

* If the charge has a spatial distribution, the electric field should reduce the electric field of a point charge at the same distance

* As the distance increases the value of the electric field decreases in quadratic form

therefore when reviewing the correct answers are

if the total load is q, answer A is correct

and answer C is always correc

A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m. You are the commander of an attacking army and the closest you can get to the wall is 100 m. Your plan is to set fire to the city by catapulting heated rocks over the wall (with an initial speed of 80 m/s). At what range of angles should you tell your men to set the catapult? (Assume the path of the rocks is perpendicular to the wall. Round your answers to one decimal place. Use g ≈ 9.8 m/s2. Enter your answer using interval notation. Enter your answer in terms of degrees without using a degree symbol.)

Answers

Answer:

  θ₁ = 85.5º       θ₂ = 12.98º

Explanation:

Let's analyze this projectile launch problem, the catapults are 100 m from the wall 15 m high, the objective is for the walls, let's look for the angles for which the rock stops touching the wall.

Let's write the equations for motion for this point

X axis

          x = v₀ₓ t

          x = v₀ cos θ t

Y axis

         y = [tex]v_{oy}[/tex] t - ½ g t2

         y = v_{o} sin θ t - ½ g t²

let's substitute the values

         100 = 80 cos θ t

           15 = 80 sin θ t - ½ 9.8 t²

we have two equations with two unknowns, so the system can be solved

let's clear the time in the first equation

           t = 100/80 cos θ

         15 = 80 sin θ (10/8 cos θ) - 4.9 (10/8 cos θ)²

         15 = 100  tan θ - 7.656 sec² θ

we can use the trigonometric relationship

         sec² θ = 1- tan² θ

we substitute

       15 = 100 tan θ - 7,656 (1- tan² θ)

       15 = 100 tan θ - 7,656 + 7,656 tan² θ

        7,656 tan² θ + 100 tan θ -22,656=0

let's change variables

       tan θ = u

         

        u² + 13.06 u + 2,959 = 0

let's solve the quadratic equation

       u = [-13.06 ±√(13.06² - 4  2,959)] / 2

       u = [13.06 ± 12.599] / 2

        u₁ = 12.8295

        u₂ = 0.2305

now we can find the angles

         u = tan θ

         θ = tan⁻¹ u

        θ₁ = 85.5º

         θ₂ = 12.98º

Two plane mirrors are stood vertically making a right angle between them. How many images of an object close to and in front of the mirrors can be seen

Answers

Answer:

3

Explanation:

When two plane mirrors are placed side by side such that they make some angle, θ, with each other, the number of images, n, of an object placed close to and in front of these mirrors is given by;

n = (360 / θ) - 1         ------------(i)

From the question;

θ = 90°            [since they stood making a right angle with each other]

Substitute this value into equation (i) as follows;

n = (360 / 90) - 1

n = 4 - 1

n = 3

Therefore, the number of images formed is 3

A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes and the merry-go-round is µs = 0.5, how far from the axis of rotation can he stand without sliding?

Answers

Answer:

0.8 m

Explanation:

Draw a free body diagram.  There are three forces:

Weight force mg pulling down,

Normal force N pushing up,

and friction force Nμ pushing towards the center.

Sum of forces in the y direction:

∑F = ma

N − mg = 0

N = mg

Sum of forces in the centripetal direction:

∑F = ma

Nμ = m v²/r

Substitute and simplify:

mgμ = m v²/r

gμ = v²/r

Write v in terms of ω and solve for r:

gμ = ω²r

r = gμ/ω²

Plug in values:

r = (10 m/s²) (0.5) / (2.5 rad/s)²

r = 0.8 m

The distance (radius) from the axis of rotation which the man can stand without sliding is 0.784 meters.

Given the following data:

Angular speed = 2.5 rad/s.Coefficient of static friction = 0.5

To determine how far (radius) from the axis of rotation can the man stand without sliding:

We would apply Newton's Second Law of Motion, to express the centripetal and force of static friction acting on the man.

[tex]\sum F = \frac{mv^2}{r} - uF_n\\\\\frac{mv^2}{r} = uF_n[/tex]....equation 1.

But, Normal force, [tex]F_n = mg[/tex]  

Substituting the normal force into eqn. 1, we have:

[tex]\frac{mv^2}{r} = umg\\\\\frac{v^2}{r} = ug[/tex]....equation 2.

Also, Linear speed, [tex]v = r\omega[/tex]

Substituting Linear speed into eqn. 2, we have:

[tex]\frac{(r\omega )^2}{r} = ug\\\\r\omega ^2 = ug\\\\r = \frac{ug}{\omega ^2}[/tex]

Substituting the given parameters into the formula, we have;

[tex]r = \frac{0.5 \times 9.8}{2.5^2} \\\\r = \frac{4.9}{6.25}[/tex]

Radius, r = 0.784 meters

Read more: https://brainly.com/question/13754413

You have a 2m long wire which you will make into a thin coil with N loops to generate a magnetic field of 3mT when the current in the wire is 1.2A. What is the radius of the coils and how many loops, N, are there

Answers

Answer:

radius of the loop =  7.9 mm

number of turns N ≅ 399 turns

Explanation:

length of wire L= 2 m

field strength B = 3 mT = 0.003 T

current I = 12 A

recall that field strength B = μnI

where n is the turn per unit length

vacuum permeability μ  = [tex]4\pi *10^{-7} T-m/A[/tex] = 1.256 x 10^-6 T-m/A

imputing values, we have

0.003 = 1.256 x 10^−6 x n x 12

0.003 = 1.507 x 10^-5 x n

n = 199.07 turns per unit length

for a length of 2 m,

number of loop N = 2 x 199.07 = 398.14 ≅ 399 turns

since  there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.

this length is also equal to the circumference of each loop

the circumference of each loop = [tex]2\pi r[/tex]

0.005 = 2 x 3.142 x r

r = 0.005/6.284 = [tex]7.9*10^{-4} m[/tex] = 0.0079 m = 7.9 mm

What is the force per unit area at this point acting normal to the surface with unit nor- Side View √√ mal vector n = (1/ 2)ex + (1/ 2)ez ? Are there any shear stresses acting on this surface?

Answers

Complete Question:

Given [tex]\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right][/tex] at a point. What is the force per unit area at this point acting normal to the surface with[tex]\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z[/tex]   ? Are there any shear stresses acting on this surface?

Answer:

Force per unit area, [tex]\sigma_n = 28 MPa[/tex]

There are shear stresses acting on the surface since [tex]\tau \neq 0[/tex]

Explanation:

[tex]\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right][/tex]

equation of the normal, [tex]\b n = (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z[/tex]

[tex]\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right][/tex]

Traction vector on n, [tex]T_n = \sigma \b n[/tex]

[tex]T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right][/tex]

[tex]T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right][/tex]

[tex]T_n = \frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z[/tex]

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.

[tex]\sigma_n = T_n . \b n[/tex]

[tex]\sigma \b n = (\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z) . ((1/ \sqrt{2} ) \b e_x + 0 \b e_y +(1/ \sqrt{2}) \b e_z)\\\\\sigma \b n = 28 MPa[/tex]

If the shear stress, [tex]\tau[/tex], is calculated and it is not equal to zero, this means there are shear stresses.

[tex]\tau = T_n - \sigma_n \b n[/tex]

[tex]\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z[/tex]

[tex]\tau = \sqrt{(-5/\sqrt{2})^2 + (27/\sqrt{2})^2 + (5/\sqrt{2})^2} \\\\ \tau = 19.74 MPa[/tex]

Since [tex]\tau \neq 0[/tex], there are shear stresses acting on the surface.

What if a solid cylinder of mass M = 2.50 kg, radius R = 2.18 cm, and length L = 2.7 cm, is rolling down from rest instead? With h = 79.60 m and x = 4.64 m, what is the center of mass velocity when the cylinder reaches the bottom?

Answers

Answer:

The center of mass velocity is  [tex]v = 32.25 \ m/s[/tex]

Explanation:

From the question we are told that

          The mass of the cylinder is  [tex]m = 2.50 \ kg[/tex]

            The radius  is  [tex]r = 2.18 \ cm = 0.0218 \ m[/tex]

             The length is  [tex]l = 2.7 \ cm = 0.027 \ m[/tex]

              The height of the plane is  h  = 79.60  m

               and the distance covered is  [tex]d = 4.64 \ m[/tex]

The center of mass velocity o the cylinder when it reaches the bottom is mathematically represented as

              [tex]v = \sqrt{\frac{4gh}{3} }[/tex]

substituting values  

               [tex]v = \sqrt{ \frac{4 * 9.8 * 79.60}{3} }[/tex]

              [tex]v = 32.25 \ m/s[/tex]

Suppose that the separation between two speakers A and B is 4.30 m and the speakers are vibrating in-phase. They are playing identical 103-Hz tones and the speed of sound is 343 m/s. An observer is seated at a position directly facing speaker B in such a way that his line of sight extending to B is perpendicular to the imaginary line between A and B. What is the largest possible distance between speaker B and the observer, such that he observes destructive interference

Answers

Answer:

The largest  possible distance is [tex]x = 4.720 \ m[/tex]

Explanation:

From the question we are told that

    The distance of  separation is   [tex]d = 4.30 \ m[/tex]

      The  frequency of the tone played by both speakers is [tex]f = 103 \ Hz[/tex]

     The speed of sound is  [tex]v_s = 343 \ m/s[/tex]

The  wavelength of the tone played by the speaker is  mathematically evaluated as

              [tex]\lambda = \frac{v}{f}[/tex]

substituting values

            [tex]\lambda = \frac{343}{103}[/tex]

            [tex]\lambda = 3.33 \ m[/tex]

Let the the position of the observer be O

Given that the line of sight between observer and speaker B is  perpendicular to the distance between A and B then

        The distance between A and the observer is  mathematically evaluated using Pythagoras theorem as follows

               [tex]L = \sqrt{d^2 + x^2}[/tex]

Where x is the distance between the observer and B

  For the observer to observe destructive interference

          [tex]L - x = \frac{\lambda}{2}[/tex]

So  

          [tex]\sqrt{d^2 + x^2} - x = \frac{\lambda}{2}[/tex]

       [tex]\sqrt{d^2 + x^2} = \frac{\lambda}{2} +x[/tex]

        [tex]d^2 + x^2 = [\frac{\lambda}{2} +x]^2[/tex]

         [tex]d^2 + x^2 = [\frac{\lambda^2}{4} +2 * x * \frac{\lambda}{2} + x^2][/tex]

       [tex]d^2 = [\frac{\lambda^2}{4} +2 * x * \frac{\lambda}{2} ][/tex]

substituting values              

       [tex]4.30^2 = [\frac{3.33^2}{4} +2 * x * \frac{3.33}{2} ][/tex]

      [tex]x = 4.720 \ m[/tex]

what is drift speed ? {electricity}​

Answers

Answer: In physics a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.

Explanation:

the amount of surface area of the block contact with the surface is 2.03*10^-2*m2 what is the average pressure exerted on the surface by the block

Answers

Complete question:

A block of solid lead sits on a flat, level surface. Lead has a density of 1.13 x 104 kg/m3. The mass of the block is 20.0 kg. The amount of surface area of the block in contact with the surface is 2.03*10^-2*m2, What is the average pressure (in Pa) exerted on the surface by the block? Pa

Answer:

The average pressure exerted on the surface by the block is 9655.17 Pa

Explanation:

Given;

density of the lead, ρ =  1.13 x 10⁴ kg/m³

mass of the lead block, m = 20 kg

surface area of the area of the block, A = 2.03 x 10⁻² m²

Determine the force exerted on the surface by the block due to its weight;

F = mg

F = 20 x 9.8

F = 196 N

Determine the pressure exerted on the surface by the block

P = F / A

where;

P is the pressure

P = 196 / (2.03 x 10⁻²)

P = 9655.17 N/m²

P = 9655.17 Pa

Therefore, the average pressure exerted on the surface by the block is 9655.17 Pa

A guitar string 0.65 m long has a tension of 61 N and a mass per unit length of 3.0 g/m. (i) What is the speed of waves on the string when it is plucked? (ii) What is the string's fundamental frequency of vibration when plucked? (iii) At what other frequencies will this string vibrate?

Answers

Answer:

i

  [tex]v = 142.595 \ m/s[/tex]

ii

  [tex]f = 109.69 \ Hz[/tex]

iii1 )

  [tex]f_2 =219.4 Hz[/tex]

iii2)

   [tex]f_3 =329.1 Hz[/tex]

iii3)

    [tex]f_4 =438.8 Hz[/tex]

Explanation:

From the question we are told that

    The length of the string is  [tex]l = 0.65 \ m[/tex]

     The tension on the string is  [tex]T = 61 \ N[/tex]

     The mass per unit length is  [tex]m = 3.0 \ g/m = 3.0 * \frac{1}{1000} = 3 *10^{-3 } \ kg /m[/tex]

     

The speed of wave on the string is mathematically represented as

       [tex]v = \sqrt{\frac{T}{m} }[/tex]

substituting values

      [tex]v = \sqrt{\frac{61}{3*10^{-3}} }[/tex]

     [tex]v = 142.595 \ m/s[/tex]

generally the  string's  frequency is mathematically represented as

         [tex]f = \frac{nv}{2l}[/tex]

n = 1  given that the frequency we are to find is the fundamental frequency

So

      substituting values

       [tex]f = \frac{142.595 * 1 }{2 * 0.65}[/tex]

       [tex]f = 109.69 \ Hz[/tex]

The  frequencies at which the string would vibrate include

1       [tex]f_2 = 2 * f[/tex]

Here [tex]f_2[/tex] is  know as the second harmonic and the value is  

      [tex]f_2 = 2 * 109.69[/tex]

      [tex]f_2 =219.4 Hz[/tex]

2

[tex]f_3 = 3 * f[/tex]

Here [tex]f_3[/tex] is  know as the third harmonic and the value is  

      [tex]f_3 = 3 * 109.69[/tex]

     [tex]f_3 =329.1 Hz[/tex]

3

     [tex]f_3 = 4 * f[/tex]

Here [tex]f_4[/tex] is  know as the fourth harmonic and the value is  

      [tex]f_3 = 4 * 109.69[/tex]

     [tex]f_4 =438.8 Hz[/tex]

Which of the following are relatively unchanged fragments from the early period of planet building in the solar system? a. asteroids b. Kuiper belt comets c. all the above d. meteorites

Answers

Answer:

The answer would be B ........m

Other Questions
Round 21,253 to the nearest hundred. When glycogen phosphorylase is phosphorylated Group of answer choices its activity decreases. its activity increases. its activity is unaffected. none of these because that enzyme doesn't get phosphorylated. On a time limit ??!!?!Which statement best describes the fallacy in thispassage?A.Justice Taney assumes that the writers of theConstitution would agree with him about citizenship.B.Justice Taney uses the argument that AfricanAmericans are not citizens to prove that they are notcitizens.C.Justice Taney assumes that the other justices on thecourt would agree with him about citizenship.D.Justice Taney uses the argument that Dred Scott isan enslaved person to prove that he is not a citizen.ht Choose the prepositional commands that are written correctly. Which is equivalent to sqrt(450b^9) after it has been simplified completely? help whats the answer !!! The house shown here is from Arunachal Pradesh. It is constructed on top of a platform made of bamboo sticks. This could be because A.bamboos are easily available in the region. B.the region receives high rainfall and the ground is mostly wet. C.bamboos keep the house cool from extreme heat. D.bamboos can keep the house warm from severe cold. What is an analogy?A. A step-by-step guide to completing a task, such as a recipe ordriving directionsB. A document that conveys information about products conciselyand clearlyO C. A comparison between two things to make information easier tounderstandO D. An internal business document that informs employees ofcompany policies Nostalgia means aA. change of emotions over timeB. happy thought about the presentC. negative attitude toward the futureD. wistful longing for the past HELPPPP Cos x cosy = 1/2(sin (x+y)+ sin (x-y)) true or false Madison claims that two data sets with the same median will have the same variability. Which data set would provide goodsupport for whether her claim is true or false?O Her claim is true and she should use these data sets to provide support.01 23 45 67 8 9 10 11++++++++0123456789 10 11OHer claim is true and she should use these data sets to provide support.+603+71425+ + +9 10 118 Help me please !!!!!!!!!!!!!!!! HELP PLEASE ASAP!!What challenges did former Soviet allies such as Yugoslavia face as a resultof the collapse of the Soviet Union?A. They sought to join NATO but were denied access because oftheir former ties to communism.B. They struggled with ethnic conflicts and political instabilitybrought about by the collapse of communism.C. They refused to switch to free market economies, which led toshortages of foods and goods.D. They attempted to hold democratic elections but were hindered bywidespread corruption. In 1853, what purchase completed Manifest Destiny by adding the last strip of land that completed the continental United States as it is today? A.The Arizona Territory Purchase B.Seward's Folly C. The Oregon Purchase D.The Gadsden Purchase Expand (x +2) (9 - x) Which expression is equivalent to 3n+2(1-4n)?a) 2-nb) 2-5nc) 2+11nd) 2-11nSamuel chose A as his answer. Explain why he did that. Reasons for conserving electricity? What do you think of Flamenco dance? You like? What types of dance do you prefer? Why? Your response must be recorded and at least 60 seconds long. Use the Integral Test to determine whether the series is convergent or divergent. n =1 summation [infinity] n / n2 + 8 n = 1 Evaluate the following integral. 1 integral [infinity] x/x2 + 8 dx Alma was given some money as a gift and deposited it into a savings account. She makes a withdrawal of the same amount at the end of each month. At the end of the 5th month, her balance was $442. At the end of the 13th month, her balance was $226. What is the input? What is the output? What are the two points described in the real-world scenario?