A bracket ABCD having a hollow circular cross section consists of a vertical arm AB (L 5 6 ft), a horizontal arm BC parallel to the x0 axis, and a horizontal arm CD parallel to the z0 axis (see gure). The arms BC and CD have lengths b1 5 3.6 ft and b2 5 2.2 ft, respectively. The outer and inner diameters of the bracket are d2 5 7.5 in. and d1 5 6.8 in. Aninclined load P 5 2200 lb acts at point D along line DH. Determine the maximum tensile, compressive, and shear stresses in the vertical arm.

Answers

Answer 1

Answer:

The answer is explained below

Explanation:

Given that:

1 ft = 0.3048 m, 1 in = 0.0254 m, 1 pound = 4.44822 newton

[tex]b_1=3.6ft=1.1\ m[/tex], [tex]b_2=2.2 ft=0.67\ m[/tex], [tex]d_2=7.5 in=0.19\ m[/tex], [tex]d_1=6.8in=0.17\ m[/tex]. P = 2200 lb = 9786 N

The area (A) is given as:

[tex]A=\frac{\pi}{4} (d_2^2-d_1^2)=\frac{\pi}{4}(0.19^2-0.17^2)=5.65*10^{-3}m^2[/tex]

The moment of area is given as:

[tex]l=\frac{\pi}{64} (d_2^4-d_1^4)=\frac{\pi}{64}(0.19^4-0.17^4)=2.3*10^{-5}m^4[/tex]

The maximum tensile stress is given as:

[tex]\sigma_1=-\frac{P}{A}+\frac{M(\frac{d_2}{2} )}{l} =-\frac{9786\ N }{5.65*10^{-3}m^2}+\frac{11kNm(0.19 \ m)/2}{2.3*10^{-5}m^4} =-1.73\ MPa+45.4\ MPa=43.67\ MPa\\\sigma_1=43.67\ MPa[/tex]

The maximum compressive stress is given as:

[tex]\sigma_c=-\frac{P}{A}-\frac{M(\frac{d_2}{2} )}{l} =-\frac{9786\ N }{5.65*10^{-3}m^2}-\frac{11kNm(0.19 \ m)/2}{2.3*10^{-5}m^4} =-1.73\ MPa-45.4\ MPa=47.13\ MPa\\\sigma_c=47.13\ MPa[/tex]

The maximum shear stress is given as:

[tex]\tau_{max}=|\frac{\sigma_c}{2} |=\frac{47.13\ MPa}{2}=23.57\ MPa[/tex]


Related Questions

A 1/150 scale model is to be usedin a towing tank to study the water motion near the bottom of a shallow channel as a large barge passes over. (See Video V7.16.) Assume that the model is operated in accordance with the Froude number criteria for dynamic similitude. The prototype barge moves at a typical speed of 15 knots. (a) At what speed (in ft/s) should the model be towed

Answers

Answer:

The speed will be "3.58 ft/s". The further explanation is given below.

Explanation:

Number of knots

= 15

For the similarity of Froude number:

⇒  [tex]\frac{V_{m}}{\sqrt{g_{m}l_{m}} }=\frac{V}{\sqrt{gl} }[/tex]

Here,

[tex]l = length[/tex]

[tex]g_{m}=g[/tex]

⇒  [tex]\frac{V_{m}}{V}=\sqrt{\frac{l_{m}}{l} }[/tex]

    [tex]V_{m}=\sqrt{\frac{1}{50} }\times number \ of \ knots[/tex]

         [tex]=\sqrt{\frac{1}{50}}\times 15[/tex]

         [tex]=2.12 \ knots[/tex]

Now,

⇒  [tex]1 \ knots=0.514\times 3.281[/tex]

                 [tex]=1.69 \ ft/s[/tex]

So that,

⇒  [tex]V_{m}=2.12\times 1.69[/tex]

          [tex]=3.58 \ ft/s[/tex]

In real world, sampling and quantization is performed in an analog to digital converter (ADC) and reconstruction is performed in a digital to analog converter (DAC). Which of the following statements hold true (fs denotes the sampling frequency)?

a. the reconstruction filter can be found in the DAQ
b. the antialiasing filter removes all frequencies of the continuous-time analog input signal that are above fs/2
c. the DAC needs to know the sampling frequency of the ADC to correctly reconstruct the signal.
d. the reconstructed continuous-time signal only contains frequencies up to fs/2

Answers

Answer:

b

Explanation:

a) ADC is located on DAQ filter but not the reconstruction filter

b) to remove aliasing, the sampling rate must be greater than or equal ot twice the highest frequency component in the input signal. In other words, all frequencies in input sgnal are less than fs/2. Therefore, frequencies greater than fs/2 are removed by anti-aliasing filter

c) the DAC can have different sampling rate from ADC

What is the criteria for a guard having to be used on a machine?

Answers

The criteria for a guard having to be used on a machine is;

As a safety measure If the operation exposes you to an injury.

When operating a machine, there are possibilities that the operator could be injured or exposed to injury.

Due to the possible safety issues when operating a machine, the Occupational Safety and Health Administration (OSHA) in their 29 code mandated that a safeguard must be put at each machine to ensure that there is adequate safety that prevents or minimizes the risk of getting injured.

Read more on Occupational Safety and Health Administration (OSHA) rules at; https://brainly.com/question/17069021

Under conditions for which the same room temperature is maintained by a heating or cooling system, it is not uncommon for a person to feel chilled in the winter but comfortable in the summer. Provide a plausible explanation for this situation (with supporting calculations) by considering a room whose air temperature is maintained at 20 ℃ throughout the year, while the walls of the room are nominally at 27 ℃ and 14 ℃ in the summer and winter, respectively. The exposed surface of a person in the room may be assumed to be at a temperature of 32 ℃ throughout the year and to have an emissivity of 0.90. The coefficient associated with heat transfer by natural convection between the person and the room air is approximately 2 W/m2∙K.

Answers

Answer:

  radiative heat loss substantially increases as the wall temperature declines

Explanation:

The body's heat loss due to convection is ...

  (2 W/m^2·K)((32 -20)K) = 24 W/m^2

__

The body's heat loss due to radiation in the summer is ...

  [tex]\epsilon\sigma(T_b^4-T_w^4)\quad\text{where $T_b$ and $T_w$ are body and wall temperatures ($^\circ$K)}\\\\0.90\cdot 5.6703\cdot 10^{-8}(305.15^4-300.15^4)\,\text{W/m$^2$}\\\\\approx 28.3\,\text{W/m$^2$}[/tex]

The corresponding heat loss in the winter is ...

  [tex]0.90\cdot 5.6703\cdot 10^{-8}(305.15^4-287.15^4)\,\text{W/m$^2$}\\\\\approx 95.5\,\text{W/m$^2$}[/tex]

Then the total of body heat losses to surroundings from convection and radiation are ...

  summer: 24 +28.3 = 52.3 . . . W/m^2

  winter: 24 +95.5 = 119.5 . . . W/m^2

__

It is reasonable that a person would feel chilled in the winter due to the additional radiative loss to the walls in the winter time. Total heat loss is more than doubled as the wall temperature declines.

Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exits at 15.4 lbf/in.^2, 80°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp

Answers

Answer:

[tex]W_s =[/tex] 283.181 hp

Explanation:

Given that:

Air enters a compressor operating at steady state at a pressure [tex]P_1[/tex] =  176.4 lbf/in.^2  and Temperature [tex]T_1[/tex] at 260°F

Volumetric flow rate V = 424 ft^3/min

Air exits at a pressure [tex]P_2[/tex]  = 15.4 lbf/in.^2 and Temperature [tex]T_2[/tex] at 80°F.

Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings; since heat is released to the surrounding; then:

[tex]Q_{cv}[/tex] = -6800 Btu/h  = - 1.9924 kW

Using the steady  state  energy in the process;

[tex]h_2 - h_1 + g(z_2-z_1)+ \dfrac{1}{2}(v^2_2-v_1^2) = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}[/tex]

where;

[tex]g(z_2-z_1) =0[/tex]  and  [tex]\dfrac{1}{2}(v^2_2-v_1^2) = 0[/tex]

Then; we have :

[tex]h_2 - h_1 = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}[/tex]

[tex]h_2 - h_1 = \dfrac{Q_{cv} - W_s}{m}[/tex]

[tex]{m}(h_2 - h_1) ={Q_{cv} - W_s}[/tex]

[tex]W_s ={Q_{cv} + {m}(h_2 - h_1)[/tex] ----- (1)

Using the relation of Ideal gas equation;

P₁V₁ = mRT₁

Pressure [tex]P_1[/tex] =  176.4 lbf/in.^2   = ( 176.4 ×  6894.76 ) N/m² = 1216235.664 N/m²

Volumetric flow rate V = 424 ft^3/min = (424 ×  0.0004719) m³  /sec

= 0.2000856 m³  /sec

Temperature = 260°F = (260°F − 32) × 5/9 + 273.15 = 399.817 K

Gas constant R=287 J/kg K

Then;

1216235.664 N/m² × 0.2000856 m³  /sec = m × 287 J/kg K × 399.817 K

[tex]m = \dfrac { 1216235.664 N/m^2 \times 0.2000856 m^3 /sec } {287 J/kg K \times 399.817 K }[/tex]

m = 2.121 kg/sec

The change in enthalpy:

[tex]m(h_1-h_2) = m * C_p * \Delta T= m* C_p * ( T_1 -T_2)[/tex]

[tex]= 2.121* 1.005* ( 399.817 -299.817)[/tex]

= 213.1605 kW

From (1)

[tex]W_s ={Q_{cv} + {m}(h_2 - h_1)[/tex]

[tex]W_s =[/tex]  - 1.9924 kW + 213.1605 kW

[tex]W_s =[/tex] 211.1681  kW

[tex]W_s =[/tex] 283.181 hp

The power input is [tex]W_s =[/tex] 283.181 hp

Many HVACR industry publications are published by

Answers

Answer:

HVACR Industry Trade Groups

Explanation:

A generator operating at 50 Hz delivers 1 pu power to an infinite bus through a transmission circuit in which resistance is ignored. A fault takes place reducing the maximum power transferable to 0.5 pu whereas before the fault, this power was 2.0 pu and after the clearance of the fault, it is 1.5 pu. Using equal area criterion, determine the critical clearing angle.

Answers

Answer:

critical clearing angle = 70.3°

Explanation:

Generator operating at = 50 Hz

power delivered = 1 pu

power transferable when there is a fault = 0.5 pu

power transferable before there is a fault = 2.0 pu

power transferable after fault clearance = 1.5 pu

using equal area criterion to determine the critical clearing angle

Attached is the power angle curve diagram and the remaining part of the solution.

The power angle curve is given as

= Pmax sinβ

therefore :  2sinβo = Pm

                   2sinβo = 1

                   sinβo = 0.5 pu

                   βo = [tex]sin^{-1} (0.5) = 30[/tex]⁰

also ;   1.5sinβ1 = 1

               sinβ1 = 1/1.5

               β1 = [tex]sin^{-1} (\frac{1}{1.5} )[/tex] = 41.81⁰

∴ βmax = 180 - 41.81  = 138.19⁰

attached is the remaining solution

The critical clearing angle = [tex]cos^{-1} 0.3372[/tex]  ≈ 70.3⁰

how does a TV'S screen work​

Answers

Answer:

A TVS screen works when the pixels are switched on electronically using liquid crystals to rotate polarized light.

Explanation:

A complex Brayton-cycle power plant using intercooling, reheat, and regeneration is analyzed using the cold air standard method. Air is compressed from State 1 to State 2 using a compressor with a pressure ratio of RP1. An intercooler is used to cool the air to State 3 before entering a second compressor with a pressure ratio of RP2. The compressed air exits at State 4 and is preheated in a regenerator that uses the exhaust air from the low pressure turbine. The preheated air enters the combustor at State 5 and is heated to State 6 where it enters the high pressure turbine. The air exits the turbine at State 7 and is heated in a reheat combustor to State 8. The air expands in a low pressure turbine to State 9 where it enters the counterflow regenerator with an effectiveness of RE. Given the specified operating conditions determine the efficiency and other values listed below. The specific heat ratio and gas constant for air are given as k

Answers

[tex]

<html>

<head>

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Time Picker</title>

</head>

<body>

<!--24 Hours format-->

<input type="time" placeholder="Enter Time" />

<input type="date">

</body>

</html>

[/tex]

How old are you? answer this question plz lol I will mark someone as brainliest

Answers

Answer:

100000000000000000000000

i am nine hundred years old

If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is the actual measure resistance of the circuit?

Answers

Answer:

The answer is 2.25 kΩ

Explanation:

Solution

Given that:

The resistance reading on a DMM'S meter face = 22.5 ohms

The range selector switch = R * 100 range,

We now have to find the actual measure resistance of the circuit which is given below:

The actual measured resistance of the circuit is=R * 100

= 22.5 * 100

=2.25 kΩ

Hence the measured resistance of the circuit is 2.25 kΩ

Suppose a student carrying a flu virus returns to an isolated college campus of 9000 students. Determine a differential equation governing the number of students x(t) who have contracted the flu if the rate at which the disease spreads is proportional to the number of interactions between students with the flu and students who have not yet contracted it. (Usek > 0for the constant of proportionality and x forx(t).)

Answers

Answer:

dx/dt = kx(9000-x) where k > 0

Explanation:

Number of students in the campus, n = 9000

Number of students who have contracted the flu = x(t) = x

Number of students who have bot yet contracted the flu = 9000 - x

Number of Interactions between those that have contracted the flu and those that are yet to contract it = x(9000 - x)

The rate of spread of the disease = dx/dt

Note: the rate at which the disease spread is proportional to the number of interactions between those that have contracted the flu and those that have not contracted it.

[tex]\frac{dx}{dt} \alpha [x(9000 -x)]\\[/tex]

Introducing a constant of proportionality, k:

dx/dt = kx(9000-x) where k > 0

For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because (select all that are correct

Answers

Answer:

hello the answer options are missing here are the options

A)The thickness of the heated region near the plate is increasing

B)The velocities near the plates are increasing

C)The fluid temperature near the plate are increasing

ANSWER : all of the above

Explanation:

Laminar flow  is the flow of a type of fluid across the surface of an object following regular paths and it is unlike a turbulent flow which flows in irregular paths (encountering fluctuations)

For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because :

The thickness of the heated region near the plate is increasingThe velocities near the plates are increasingThe fluid temperature near the plate are increasing

A photograph of the NASA Apollo 16 Lunar Module (abbreviated by NASA as the LM is shown on the surface of the Moon. Such spacecraft made six Moon landings during 1,969 - 72. A simplified model for one of the four landing gear assemblies of the LM is shown. If the LM has 13,500 kg mass, and rests on the surface of the Moon where acceleration due to gravity is 1.82 m/s^2, determine the force supported by members AB, AC, and AD. Assume the weight of the LM is uniformly supported by all four landing gear assemblies, and neglect friction between the landing gear and the surface of the Moon. TAB =N TAC = TAD =N A ( 2.6, 2.6, -2.2 ) m B(1.5, 1.5, 0)m C(2,1,-1.2)m D(1,2,-1.2)m

Answers

Answer:

[tex]\mathbf{F_{AB} = 13785.06 N }[/tex]

[tex]\mathbf{F_{AC} = -5062.38 N }[/tex]

[tex]\mathbf{F_{AD} = -5062.38 N }[/tex]

Explanation:

From the given information:

Let calculate the position vector of AB, AC, and AD

To start with AB; in order to calculate the position vector of AB ; we have:

[tex]r_{AB}^{\to} = r _{OA}^{\to} - r_{OB}^{\to} \\ \\ r_{AB}^{\to} = (2.6 \ \hat i + 2.6 \ \hat j - 2.2 \ \hat k ) - ( 1.5 \ \hat i + \ 1. 5 \hat j ) \\ \\ r_{AB}^{\to} = ( 2.6 \ \hat i - 1.5 \ \hat i + 2.6 \ \hat j - 1.5 \ \hat j - 2.2 \ \hat k) \\ \\ r_{AB}^{\to} = (1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) m[/tex]

To calculate the position vector of AC; we have:

[tex]r_{AC}^{\to} = r _{OA}^{\to} - r_{OC}^{\to} \\ \\ r_{AC}^{\to} = (2.6 \ \hat i + 2.6 \ \hat j - 2.2 \ \hat k ) - ( 2\ \hat i + \ \hat j - 1.2 \ \hat k) \\ \\ r_{AC}^{\to} = ( 2.6 \ \hat i - 2\ \hat i + 2.6 \ \hat j - \ \hat j - 2.2 \ \hat k + 1.2 \ \hat k) \\ \\ r_{AC}^{\to} = (0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) m[/tex]

To calculate the position vector of AD ; we have:

[tex]r_{AD}^{\to} = r _{OA}^{\to} - r_{OD}^{\to} \\ \\ r_{AC}^{\to} = (2.6 \ \hat i + 2.6 \ \hat j - 2.2 \ \hat k ) - ( \hat i + \ 2 \hat j - 1.2 \ \hat k) \\ \\ r_{AD}^{\to} = ( 2.6 \ \hat i - \hat i + 2.6 \ \hat j - 2 \ \hat j - 2.2 \ \hat k + 1.2 \ \hat k) \\ \\ r_{AD}^{\to} = (1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) m[/tex]

However; let's calculate the force in AB, AC and AD in their respective unit vector form;

To start with unit vector AB by using the following expression; we have:

[tex]F_{AB}^{\to} = F_{AB} \dfrac{ r _{AB}^{\to} }{|r_{AB}^{\to}} \\ \\ \\ F_{AB}^{\to} = F_{AB} \dfrac{(1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) }{\sqrt{ (1.1)^2 + (1.1)^2 + (-2.2 )^2 }} \\ \\ \\ F_{AB}^{\to} = F_{AB} \dfrac{(1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) }{ \sqrt{7.26}} \\ \\ \\ F_{AB}^{\to} = F_{AB} \dfrac{(1.1 \ \hat i + 1.1 \ \hat j - 2.2 \ \hat k ) }{ 2.6944} \\ \\ \\ F_{AB}^{\to} = F_{AB} (0.408 \ \hat i+ 0.408 \ \hat j - 0.8165 \ \hat k ) N\\[/tex]

The force AC in unit vector form is ;

[tex]F_{AC}^{\to} = F_{AC} \dfrac{ r _{AC}^{\to} }{|r_{AC}^{\to}} \\ \\ \\ F_{AC}^{\to} = F_{AC} \dfrac{(0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) }{\sqrt{ (0.6)^2 + (1.6)^2 + (-1 )^2 }} \\ \\ \\ F_{AC}^{\to} = F_{AC} \dfrac{(0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) }{ \sqrt{3.92}} \\ \\ \\ F_{AC}^{\to} = F_{AC} \dfrac{(0.6 \ \hat i + 1.6 \ \hat j - \ \hat k ) }{1.9798} \\ \\ \\ F_{AC}^{\to} = F_{AC} (0.303 \ \hat i+ 0.808 \ \hat j - 0.505 \ \hat k ) N\\[/tex]

The force AD in unit vector form is ;

[tex]F_{AD}^{\to} = F_{AD} \dfrac{ r _{AD}^{\to} }{|r_{AD}^{\to}|} \\ \\ \\ F_{AD}^{\to} = F_{AD} \dfrac{(1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) }{\sqrt{ (1.6)^2 + (0.6)^2 + (-1 )^2 }} \\ \\ \\ F_{AD}^{\to} = F_{AD} \dfrac{(1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) }{ \sqrt{3.92}} \\ \\ \\ F_{AD}^{\to} = F_{AD} \dfrac{(1.6 \ \hat i + 0.6 \ \hat j - \ \hat k ) }{1.9798} \\ \\ \\ F_{AD}^{\to} = F_{AD} (0.808 \ \hat i+ 0.303 \ \hat j - 0.505 \ \hat k ) N\\[/tex]

Similarly ; the weight of the lunar Module is:

W = mg

where;

mass = 13500 kg

acceleration due to gravity=  1.82 m/s²

W = 13500 × 1.82

W = 24,570 N

Also. we known that the load is shared by four landing gears; Thus, the vertical reaction force exerted by the ground on each landing gear can be expressed as:

[tex]R =\dfrac{W}{4}[/tex]

[tex]R =\dfrac{24,570}{4}[/tex]

R = 6142.5 N

Now; the reaction force at point A in unit vector form is :

[tex]R^{\to} = Rk^{\to} \\ \\ R^{\to} = (6142.5 \ k ^{\to}) \ N[/tex]

Using the force equilibrium at the meeting point of the coordinates at A.

[tex]\sum F^{\to} = 0[/tex]

[tex]F_{AB}^{\to} +F_{AC}^{\to} + F_{AD}^{\to} + R^{\to} =0[/tex]

[tex][F_{AB} (0.408 \ \hat i + 0.408 \ \hat j - 0.8165 \ \hat k ) N + F_{AC} (0.303 \ \hat i + 0.808 \ \hat j - 0.505 \ \hat k ) N + F_{AD} (0.808 \ \hat i + 0.303 \ \hat j - 0.505 \ \hat k) N + (6142.5 \ k^ \to ) ][/tex]

[tex]= [ ( 0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) \hat i + (0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) \hat j + (-0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 ) k ^ \to ] = 0[/tex]

From above; we need to relate and equate each coefficients i.e i ,j, and [tex]k ^ \to[/tex] on both sides ; so, we can re-write that above as;

[tex]0.408 F_{AB} +0.303 F_{AC} + 0.808F_{AD}) =0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ --- (1) \\ \\ 0.408 F_{AB}+0.808F_{AC}+0.303F_{AD}) =0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ --- (2) \\ \\ -0.8165 F_{AB} -0.505F_{AC} -0.505 F_{AD} +6142.5 = 0 --- (3)[/tex]

Making rearrangement and solving by elimination method;

[tex]\mathbf{F_{AB} = 13785.06 N }[/tex]

[tex]\mathbf{F_{AC} = -5062.38 N }[/tex]

[tex]\mathbf{F_{AD} = -5062.38 N }[/tex]

The force vector of each member, depends on the magnitude of the

force and the unit vector of the member.

Responses:

The force supported by the members are;

Force supported by AB is; 13,799.95 NForce supported by AC is; -5070.2 NForce supported by AD is -5070.2 N

How can the unit vector of each member give their force?

Resolving the given members into unit vectors gives;

[tex]\hat u_{AB} = \mathbf{\dfrac{(2.6 - 1.5) \cdot \hat i + (2.6 - 1.5)\cdot \hat j + (-2.2)\cdot \hat k }{\sqrt{(2.6- 1.5)^2 + (2.6 - 1.5)^2 + (-2.2)^2}}}[/tex][tex]\dfrac{(2.6 - 1.5) \cdot \hat i + (2.6 - 1.5)\cdot \hat j + (-2.2)\cdot \hat k }{\sqrt{(2.6- 1.5)^2 + (2.6 - 1.5)^2 + (-2.2)^2}}= 0.40825 \cdot \hat i + 0.40825\cdot \hat j - 0.81625\cdot \hat k[/tex]

[tex]\hat u_{AB} = \mathbf{0.40825 \cdot \hat i + 0.40825\cdot \hat j - 0.81625\cdot \hat k}[/tex]

Similarly, we have;

[tex]\hat u_{AC} =\mathbf{ \dfrac{(2.6 - 2) \cdot \hat i + (2.6 - 1)\cdot \hat j + (-2.2+1.2)\cdot \hat k }{\sqrt{(2.6- 2)^2 + (2.6 - 1)^2 + (-2.2+1.2)^2}}}[/tex]

[tex]\dfrac{(2.6 - 2) \cdot \hat i + (2.6 - 1)\cdot \hat j + (-2.2+1.2)\cdot \hat k }{\sqrt{(2.6- 2)^2 + (2.6 - 1)^2 + (-2.2+1.2)^2}} =\dfrac{0.6\cdot \hat i +1.6\cdot \hat j -1\cdot \hat k }{\sqrt{0.6^2 + 1.6^2 + (-1.)^2}}[/tex]

[tex]\dfrac{0.6\cdot \hat i +1.6\cdot \hat j -1\cdot \hat k }{\sqrt{0.6^2 + 1.6^2 + (-1.)^2}}= 0.303046\cdot \hat i + 0.80812\cdot \hat j - 0.50508\cdot \hat k[/tex]

[tex]\hat u_{AC} =\mathbf{0.303046\cdot \hat i + 0.80812\cdot \hat j - 0.50508\cdot \hat k}[/tex]

[tex]\hat u_{AD} =\mathbf{ \dfrac{(2.6 - 1) \cdot \hat i + (2.6 -2)\cdot \hat j + (-2.2 + 1.2)\cdot \hat k }{\sqrt{(2.6-1)^2 + (2.6 -2))^2 + (-2.2 + 1.2)^2}}}[/tex]

[tex]\hat u_{AD} =\mathbf{0.80812\cdot \hat i+ 0.303046\cdot \hat j - 0.50508\cdot \hat k}[/tex]

The forces are therefore;

[tex]\vec F_{AB} =\mathbf{ F_{AB} \cdot \left ( 0.40825 \cdot \hat i + 0.40825\cdot \hat j - 0.81625\cdot \hat k \right)}[/tex]

[tex]\vec F_{AC} =\mathbf{ F_{AC} \cdot \left (0.303046\cdot \hat i + 0.80812\cdot \hat j - 0.50508\cdot \hat k\right)}[/tex]

[tex]\vec F_{AD} = \mathbf{F_{AD} \cdot \left (0.80812\cdot \hat i+ 0.303046\cdot \hat j - 0.50508\cdot \hat k\right)}[/tex]

[tex]Weight \ on \ the \ assembly = \dfrac{13,500 \, kg \times 1.82 \, m/s^2}{4} = 6,142.5 \, \hat k N[/tex]

Which gives;

[tex]\mathbf{0.40825 \cdot \hat i \cdot F_{AB}}[/tex] + [tex]0.303046\cdot \hat i \cdot F_{AC}[/tex] + [tex]0.80812\cdot \hat i \cdot F_{AD}[/tex] = 0

[tex]0.40825 \cdot \hat j \cdot F_{AB}[/tex] + [tex]0.80812\cdot \hat j \cdot F_{AC}[/tex] + [tex]0.303046 \cdot \hat j \cdot F_{AD}\left[/tex] = 0

[tex]-0.81625\cdot \hat k \cdot F_{AB}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AC}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AD}[/tex] +  [tex]\mathbf{6,142.5 \, \hat k}[/tex] = 0

Which gives;

[tex]-0.81625\cdot \hat k \cdot F_{AB}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AC}[/tex] - [tex]0.50508\cdot \hat k \cdot F_{AD}[/tex] =  [tex]-6,142.5 \, \hat k[/tex]

Solving gives;

[tex]F_{AB}[/tex] = 13799.95 N[tex]F_{AC}[/tex] = -5070.2 N[tex]F_{AD}[/tex] = -5070.2 N

Learn more about unit vectors here:

https://brainly.com/question/13289984

https://brainly.com/question/18703034

A rectangular steel bar 37.5 mm wide and 50 mm thick is pinned at each end and subjected to axial compression. The bar has a length of 1.75 m. The modulus of elasticity is 200 Gpa. What is the critical buckling load

Answers

Answer:

The critical buckling load is [tex]\mathbf{P_o = 141.61 \ kN}[/tex]

Explanation:

Given that:

the width of the rectangular steel = 37.5 mm = 0.0375 m

the thickness = 50 mm  = 0.05 m

the length = 1.75 m

modulus of elasticity = 200 Gpa = 200 10⁹ × Mpa

We are to calculate the critical buckling load  [tex]P_o[/tex]

Using the formula:

[tex]P_o = \dfrac{\pi ^2 E I}{L^2}[/tex]

where;

[tex]I = \dfrac{0.0375^3*0.05}{12}[/tex]

[tex]I = 2.197 * 10^{-7}[/tex]

[tex]P_o = \dfrac{\pi ^2 *200*10^9 * 2.197*10^{-7}}{1.75^2}[/tex]

[tex]P_o = 141606.66 \ N[/tex]

[tex]\mathbf{P_o = 141.61 \ kN}[/tex]

The critical buckling load is [tex]\mathbf{P_o = 141.61 \ kN}[/tex]

A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps, and feedwater heaters. Steam enters the first turbine at T1 (the highest temperature of the cycle) and saturated liquid exits the condenser at T7 (the lowest temperature of the cycle). The rate of heat transfer to the boiler (the only energy input to the system)is Qb. Determine the maximum possible efficiency and power output for this complex steam power plant design.

Answers

Answer:

Hello your question lacks some values here are the values

T1 = 500⁰c,  T7 = 70⁰c, Qb = 240000 kj/s

answer : A)  56%

               B) 134400 kw ≈  134.4 Mw

Explanation:

Given values

T1 (tmax) = 500⁰c = 773 k

T7(tmin) = 70⁰c = 343 k

Qb = 240000 kj/s

A) Determine the maximum possible efficiency

[tex]n_{max}[/tex] = 1 - [tex]\frac{tmin}{tmax}[/tex] * 100

       = 1 - ( 343 / 773 )

       = 1 - 0.44 = 0.5562 * 100 ≈ 56%

B) Determine the power output for this complex steam power plant design

[tex]p_{out}[/tex] = Qb * max efficiency

      = 240000 kj/s * 56%

      = 240000 * 0.56 = 134400 kw ≈  134.4 Mw

The liquid-phase reaction A + B → C follows an elementary rate law and is carried out isothermally in a flow system. The concentrations of A and B feed streams are 2 M before mixing. The volumetric flow rate of each stream is 5 dm3 /min and the entering temperature is 300 K. The streams are mixed immediately before entering. Two reactors are available: One is a gray 200.0 dm3 CSTR that can be heated to 77°C or cooled to 0°C, and the other is a white 800.0 dm3 PFR operated at 300 K that cannot be heated or cooled but can be painted red or black. (Note: k = 0.07 dm3 /mol*min at 300 K and E = 20 kcal/mol.) How long would it take to achieve 90% conversion in a 200 dm3 batch reactor with CA ° = CB ° = 1 ???? after mixing at a temperature of 70°C?

Answers

Answer:

1.887 minutes

Explanation:

We are given k = 0.07 dm3 /mol*min at 300 K and E = 20 kcal/mol = 20000 cal/mol

To solve this, first of all let's calculate the rate constant(k);

For this question, The formula is;

K(t) = k(300K) × exp[(E/R)((1/300) - (1/T2))]

R is gas constant = 1.987 cal/mol.K

For temperature of 70°C which is = 70 + 273K = 343K, we have;

K(343) = 0.07 × exp[(20000/1.987)((1/300) - (1/343))]

K(343) = 4.7 dm³/mol.min

The design equation is;

dX/dt = -(rA/C_Ao) = K•(C_Ao)²•(1 - X)²/(C_Ao) = (KC_Ao)(1 - X)²

Since there is no change in volume by cause of the state at which the reaction is carried out, that is liquid. Thus, integrating and solving for time for a 90% conversion we obtain;

(0.9,0)∫dX/(1 - X)².dX = (KC_Ao)((t, 0)∫dt

So, we'll get;

0.9/(1 - 0.9) = 4.77 × 1 × t

t = 9/4.77

t = 1.887 minutes

Example 1: the two dimensional points P1(0,0) and P2(1,0) and the two tangents P', (1,1) and P2 (0,-1).find the equation of the curve P(u).

Answers

Answer: (0,0)+ (1,0)= 1 lines upwards( suggesting that this is a line graph not saying it is but as an example) an (1,1) and (0,-1) all make a small square ( as this is a 2 dimensional graph that it has a negative side too,(below the positive side)) i hope this helps and is what you are looking for

Explanation:

what is the difference between erratic error and zero error​

Answers

The negative mark is balanced by a positive mark on the set key scale while the jaws are closed.

It is common practice to shut the jaws or faces of the system before taking some reading to guarantee a zero reading. If not, please take care of the read. This read is referred to as "zero defect."

There are two forms of zero error:

zero-mistake positive; and

Non-null mistake.

----------------------------

Hope this helps!

Brainliest would be great!

----------------------------

With all care,

07x12!

Question 44
What should you do if you encounter a fishing boat while out in your vessel?
A
Make a large wake nearby.
B
Avoid making a large wake.
с
Pass on the side with the fishing lines.
D
Pass by close to the anglers.
Submit Answer

Answers

Answer:

The answer is B. Avoid making a large wake.

Explanation:

When passing a fishing boat it is important to maintain a minimal wake due to the dangers a large wake could pose to the fishing boat you are passing, it is part of maintaining safety on the water.

You can not pass on the sides with the fishing lines also, and you are supposed to communicate to the fishing boat before taking the appropriate action.

When checking the resistance of a dual voltage wye motor, there should be ____ resistance readings. 1) twelve 2) six 3) three

Answers

Answer:

1) twelve

Explanation:

The dual voltage motors are used in day to day operations. The wye is connected with 9 lead motors. Maximum resistance can be obtained if the resistance are connected in series. To check resistance of dual voltage wye motor there must be twelve resistance readings of 1 ohm each.

Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabatically to an exit state of 1 bar, 160°C. Kinetic and potentialenergy effects are negligible. Determine for the turbine (a) the powerdeveloped, in kW, (b) the rate of entropy production, in kW/K, and (c)the isentropic turbine efficiency

Answers

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

A piston cylinder device contains 5 kg of Refrigerant 134a at 600 kPa and 80 C. The refrigerant is now cooled at constant pressure until it reaches a liquid-vapor mixture state with a quality of 0.3. How much heat was extracted in the process?

Answers

Answer:

The answer is 920 kJ

Explanation:

Solution

Given that:

Mass = 5kg

Pressure = 600 kPa

Temperature = 80° C

Liquid vapor mixture state (quality) = 0.3

Now we find out the amount of heat extracted in the process

Thus

Properties of  RI34a at:

P₁ = 600 kPa

T₁ = 80° C

h₁ = 320 kJ/kg

So,

P₁ = P₂ = 600 kPa

X₂ =0.3

h₂ = 136 kJ/kg

Now

The heat removed Q = m(h₁ -h₂)

Q = 5 (320 - 136)

Q= 5 (184)

Q = 920 kJ

Therefore the amount of heat extracted in the process is 920 kJ

Air flows along a horizontal, curved streamline with a 20 foot radius with a speed of 100 ft/s. Determine the pressure gradient normal to the streamline.

Answers

Answer:

- 1.19 lb/ft^3

Explanation:

You are given the following information;

Radius r = 20 ft

Speed V = 100 ft/s

You should use Bernoulli equation pertaining to streamline. That is, normal to streamline.

The pressure gradient = dp/dn

Where air density rho = 0.00238 slugs per cubic foot.

Please find the attached files for the solution and diagram.

A gold vault has 3 locks with a key for each lock. Key A is owned by the

manager whilst Key B and C are in the custody of the senior bank teller

and the trainee bank teller respectively. In order to open the vault door at

least two people must insert their keys into the assigned locks at the same

time. The trainee bank teller can only open the vault when the bank

manager is present in the opening.

i) Determine the truth table for such a digital locking system (4 marks)

ii) Derive and minimize the SOP expression for the digital locking system

Answers

Answer:

i) Truth Table:

A      |     B     |     C     |     O

0      |     0     |     0     |      0

0      |     0     |     1      |      0

0      |     1      |     0     |      0

0      |     1      |     1      |      0    (condition 2 not satisfied)

1       |     0     |     0     |      0

1       |     0     |     1      |      1    (both conditions satisfied)

1       |     1      |     0     |      1    (both conditions satisfied)

1       |     1      |     1      |      1    (both conditions satisfied)

ii) The minimized sum of products (SOP) expression is

O = AC + AB

Explanation:

We have three inputs A, B and C

Let O is the output.

We are given two conditions to open the vault door:

1. At  least two people must insert their keys into the assigned locks at the same  time.

2. The trainee bank teller (C) can only open the vault when the bank  manager (A) is present in the opening.

i) Construct the Truth Table

A      |     B     |     C     |     O

0      |     0     |     0     |      0

0      |     0     |     1      |      0

0      |     1      |     0     |      0

0      |     1      |     1      |      0    (condition 2 not satisfied)

1       |     0     |     0     |      0

1       |     0     |     1      |      1    (both conditions satisfied)

1       |     1      |     0     |      1    (both conditions satisfied)

1       |     1      |     1      |      1    (both conditions satisfied)

ii) SOP Expression using Karnaugh-Map:

A 3 variable Karnaugh-map is attached.

The minimized sum of products (SOP) expression is

O = AC + AB

The orange pair corresponds to "AC" and the purple pair corresponds to "AB"

Bonus:

The above expression may be realized by using two AND gates and one OR gate.  

Please refer to the attached logic circuit diagram.

Which greenhouse gas is produced by commercial refrigeration and air conditioning systems?
carbon dioxide
Ofluorinated gas
O nitrous oxide
O methane

Answers

Answer:

B- Fluorinated gas

Explanation:

Answer:

B.) fluorinated gas

Explanation:

In the fully developed region of flow in a circular pipe, does the velocity profile change in the flow direction?

Answers

Answer:

No, the velocity profile does not change in the flow direction.

Explanation:

In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.

An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27 degree Celsius.
(a) Determine the temperature after the heat-addition process.
(b) Determine the thermal efficiency.
(c) Determine the mean effective pressure. Solve the problem in the constant heat supposition.

Answers

Answer:

a) T₃ = 1818.8 K

b) η = 0.614 = 61.4%

c) MEP = 660.4 kPa

Explanation:

a) According to Table A-2 of The ideal gas specific heat of gases, the properties of air are as following:

At 300K

The specific heat capacity at constant pressure = [tex]c_{p}[/tex] = 1.005 kJ/kg.K,

The specific heat capacity at constant volume = [tex]c_{v}[/tex] = 0.718 kJ/kg.K

Gas constant R for air = 0.2870 kJ/kg·K

Ratio of specific heat  k = 1.4

Isentropic Compression :

[tex]T_{2}[/tex] =  [tex]T_{1}[/tex]  [tex](v1/v2)^{k-1}[/tex]

   = 300K ([tex]16^{0.4}[/tex])

[tex]T_{2}[/tex]    = 909.4K

P = Constant heat Addition:

[tex]P_{3}v_{3} / T_{3} = P_{2} v_{2} /T_{2}[/tex]

[tex]T_{3}=v_{3}/v_{2}T_{2}[/tex]

2[tex]T_{2}[/tex] = 2(909.4K)

      = 1818.8 K

b) [tex]q_{in}[/tex] = [tex]h_{3}-h_{2}[/tex]

         =  [tex]c_{p}[/tex] ([tex]T_{3}[/tex] - [tex]T_{2}[/tex])

         = (1.005 kJ/kg.K)(1818.8 - 909.4)K

         = 913.9 kJ/kg

Isentropic Expansion:

[tex]T_{4}[/tex] =  [tex]T_{3}[/tex]  [tex](v3/v4)^{k-1}[/tex]

    =  [tex]T_{3}[/tex] [tex](2v_{2} /v_{4} )^{k-1}[/tex]

    = 1818.8 K (2 / 16[tex])^{0.4}[/tex]

    = 791.7K

v = Constant heat rejection

[tex]q_{out}[/tex] = μ₄ - μ₁

      = [tex]c_{v} ( T_{4} - T_{1} )[/tex]

      = 0.718 kJ/kg.K (791.7 - 300)K

      = 353 kJ/kg

 η[tex]_{th}[/tex] = 1 - [tex]q_{out}[/tex] / [tex]q_{in}[/tex]

       = 1 - 353 kJ/kg / 913.9 kJ/kg

       = 1 - 0.38625670

       = 0.6137

       = 0.614

      = 61.4%

c) [tex]w_{net}._{out}[/tex] = [tex]q_{in}[/tex] - [tex]q_{out}[/tex]

                = 913.9 kJ/kg - 353 kJ/kg

                = 560.9 kJ/kg

[tex]v_{1} = RT_{1} /P_{1}[/tex]

   = (0.287 kPa.m³/kg/K)*(300 K) / 95 kPa

   =  86.1 / 95

   = 0.9063 m³/kg = v[tex]_{max}[/tex]

[tex]v_{min} =v_{2} = v_{max} /r[/tex]

Mean Effective Pressure = MEP =   [tex]w_{net,out}/v_{1} -v_{2}[/tex]

                                                    = [tex]w_{net,out}/v_{1}(1-1)/r[/tex]

                                                    = 560.9 kJ/kg / (0.9063 m³/kg)*(1-1)/16

                                                    = (560.9 kJ / 0.8493m³) (kPa.m³/kJ)

                                                    = 660.426 kPa

Mean Effective Pressure = MEP = 660.4 kPa

The temperature after the addition process is 1724.8k, the thermal efficiency of the engine is 56.3% and the mean effective pressure is 65.87kPa

Assumptions made:

The air standard assumptions are madeThe kinetic and potential energy changes are negligibleThe air in the system is an ideal gas with variable or different specific heat capacity.

a) The temperature after the addition process:

Considering the process 1-2, Isentropic expansion

at

[tex]T_1=300k\\u_1=214.07kJ/kg\\v_o_1=621.3\\v_o_2=\frac{v_2}{v_1} *v_o_1[C.R=16]=v_2/v_1\\v_o_2=(v_2/v_1)v_o_1=1/16*621.2=38.825[/tex]

From using this value, v[tex]_o_2[/tex]=38.825, solve for state point 2;

[tex]T_2=862.4k\\h_2=890.9kJ/kg[/tex]

Considering the process 2-3 (state of constant heat addition)

[tex]\frac{p_3v_3}{t_3}=\frac{p_2v_2}{t_2} \\\\T_3=\frac{P_3V_3T_2}{V_2} \\T_3=(\frac{V_3}{V_2}) T_2\\\frac{v_3}{v_2}=2\\T_3=2(862.4)=1724.8k\\[/tex]

NB: p[tex]_3[/tex]≈p[tex]_2[/tex]

b) The thermal efficiency of the engine is

Q[tex]_i_n[/tex]=h[tex]_3-h_2[/tex] = 1910.6-890.9=1019.7kJ/kg

Considering process 3-4,

[tex]v_o_4=\frac{v_A}{v_2}\\ v_o_3 =\frac{V_a}{V_2}*\frac{v_2}{v_3}\\v_o_3=\frac{16}{2}*4.546\\v_o_3=36.37;v_4=659.7kJ/kg[/tex]

Q[tex]_o_u_t=v_4-u_1=659.7-214.07=445.3kJ/kg[/tex]

nth = [tex]1-\frac{Q_o_u_t}{Q_i_n}=1-\frac{445.63}{1019.7}=0.5629*100=56.3%[/tex]%

The thermal efficiency is 56.3%

W[tex]_n_e_t[/tex]=[tex]Q_i_n-Q_o_u_t=574.07kJ/kg[/tex]

[tex]v_1=\frac{RT_1}{p_1}=\frac{0.287*300}{95}=0.906m^3/kg\\v_2=v_1/16=0.05662m^3/kg\\[/tex]

Therefore, the mean effective pressure of the system engine is

[tex]\frac{W_n_e_t}{v_1-v_2}=675.87kPa[/tex]

The mean effective pressure is 65.87kPa as calculated above

Learn more about mean effective pressure

https://brainly.com/question/19309495

A two-dimensional flow field described by
V = (2x^2y + x)1 + (2xy^2 + y + 1 )j
where the velocity is in m/s when x and y are in meters. Determine the angular rotation of a fluid element located at x 0.5 m, y 1.0 m.

Answers

Answer:

the answer is

Explanation:

 We now focus on purely two-dimensional flows, in which the velocity takes the form u(x, y, t) = u(x, y, t)i + v(x, y, t)j. (2.1) With the velocity given by (2.1), the vorticity takes the form ω = ∇ × u = ∂v ∂x − ∂u ∂y k. (2.2) We assume throughout that the flow is irrotational, i.e. that ∇ × u ≡ 0 and hence ∂v ∂x − ∂u ∂y = 0. (2.3) We have already shown in Section 1 that this condition implies the existence of a velocity potential φ such that u ≡ ∇φ, that is u = ∂φ ∂x, v = ∂φ ∂y . (2.4) We also recall the definition of φ as φ(x, y, t) = φ0(t) + Z x 0 u · dx = φ0(t) + Z x 0 (u dx + v dy), (2.5) where the scalar function φ0(t) is arbitrary, and the value of φ(x, y, t) is independent of the integration path chosen to join the origin 0 to the point x = (x, y). This fact is even easier to establish when we restrict our attention to two dimensions. If we consider two alternative paths, whose union forms a simple closed contour C in the (x, y)-plane, Green’s Theorem implies that  

If a sky diver decides to jump off a jet in Arkansas
with the intention of floating through Tennessee to
North Carolina, then completing his journey in a
likely manner back to Arkansas by drifting North
from his last point. What state would be the third t
be drifted over and what is the estimated distance
between the zone and then drop point?​

Answers

Answer:

The answer to this question can be defined as follows:

Explanation:

The sky driver began his sky journey from Arkansas, drove across the Tennessee River then landed in North Carolina. He returned to both the north in the very same direction. He began with NC, traveled through Tennessee, eventually lands in Arkansas. But North Carolina has been in the third state on which skydiver was traveling over, and It's also more than 700 miles from Arkansas to the NC.

Other Questions
Balance the chemical equation Fe2O3 (s) + CO (g) 2 Fe(s) + CO2 (g)Express your answer as a chemical equation. Identify all of the phases in your answer. Just last week, I was walking down the street with my mother, and I again found myself conscious of theEnglish I was using, the English I do use with her. We were talking about the price of new and used furnitureand I heard myself saying this: "Not waste money that way." My husband was with us as well, and he didn'tnotice any switch in my English. And then I realized why. It's because over the twenty years we've beentogether I've often used that same kind of English with him, and sometimes he even uses it with me. It hasbecome our language of intimacy, a different sort of English that relates to family talk, the language I grew upwith.How does Tan build a central idea of her story in the excerpt?Tan discusses the form of language she uses with her family to support the idea that nonstandard English is onlyappropriate at homeTan describes a realization she makes while with her husband to support the idea that nonstandard forms ofEnglish are important forms of communicationTan compares the English of her childhood with the English of her adulthood to support the idea that adults shoulduse standard English with children.Tan relates a story about her husband to support the idea that people do not always understand each other, evenwhen they speak the same language. Would someone be able to help me with this question please??? Which of the equations below represents this situation c) What is the pH of the buffer system in part a when 0.030 moles of strong acid are added (without a change in volume) The tens digit in a two digit number is 4 greater than ones digit. If we interchange the digits in the number, we obtain a new number that, when added to the original number, results in the sum of 88. Find this number A jar contains 20 coins.There are only coins of value 1p, 2p, 5p and 10p in the jar.A coin is taken at random from the jar.The probability that it is a 1p coin is 1/5The probability that it is a 2p coin is 1/2The total value of the coins in the jar is 59 pence. Work out how many of each type of coin there are in the jar. is it normal for parents to hit their child in the face multiple times if they did something wrong? is it normal for your mom to be nice to you and then the next is screaming at you for no reason? please help T-T Explain the lasting impact of Renaissance humanism 1) Indicar a qu nivel de organizacin de la materia corresponden las siguientes palabras (Ayuda: hay uno para cada uno, no se repiten) a- HIDRGENO b- JAURA c- EUCARIOTA d- SER HUMANO e- PROTN f- RESPIRATORIO g- SERES BITICOS+ ABITICOS Y SUS INTERRELACIONES h- MITOCONDRIA i- PULMN j- SER HUMANO +BANDADA+ PASTIZAL+ CARDUMEN k- EPITELIO l- H2O (agua) m- ESFERA DE VIDA coals occur in seams. why? Please help meAnd explain Find the volume of a triangular prism that has a triangular base of 4 and height of 3 with a prism height of 11. Answer in cubic ft a0 cubic units. This is the type of research that describes the strength and direction of relationships between variables a.case study b. correlation c.observational d. dermentistic e. edxperimental Please help! Which event completes this timeline? 1- if angle A = 30, then its complementary is -- and its supplementary is2- If a triangle has an area of 360, and its base = 10, what is its height?3- if two triangles have the same angle measures, then the triangles are4. What is the definition of similar triangles?5- One of triangle congruence tests is SSS, what are 3 other congruent tests6- What is a regular polygon?7- If a rectangle has an area of 240 and a length of 24, what is the width?8- Colinear points lie on the same9- 3 non-colinear points determine a10- The sum of 2 supplementary angles add up to ------- Which of the sentences below correctly rewrites the following words as aformal command?Uds./no/irseA. No te vayas.B. Vete.C. No se vayan.D. Vmonos. 1) Was Progressivism an inspirational movement to further the nation's democratic ideals orwas it an attempt at social control by self-important, moralist busybodies? Lines L and M are parallel.3/42 51638 7-L Find the suffix of the word impressive