A baseball rolls off a 0.70 m high desk and strikes the floor 0.25m away from the base of the desk. how fast was the ball rolling?

Answers

Answer 1

A baseball rolls off a 0.70 m high desk and strikes the floor 0.25m away from the base of the desk. The ball was rolling at a speed of approximately 2.8 m/s.

To determine the speed at which the ball was rolling off the desk, we can analyze the conservation of energy and use the principles of projectile motion. By considering the vertical motion and horizontal displacement of the ball, we can calculate its initial speed when it rolls off the desk.

We can calculate the time it takes for the ball to fall from the desk to the floor using the equation for free fall:

h = (1/2) * g * t^2

Where h is the height (0.70 m), g is the acceleration due to gravity (9.8 m/s^2), and t is the time.

Rearranging the equation, we have:

t = sqrt(2 * h / g)

Substituting the given values, we find:

t = sqrt(2 * 0.70 m / 9.8 m/s^2)

t ≈ 0.377 s

Next, we can calculate the horizontal velocity of the ball using the equation:

v_horizontal = d_horizontal / t

Where d_horizontal is the horizontal displacement (0.25 m) and t is the time.

Substituting the values, we have:

v_horizontal = 0.25 m / 0.377 s

v_horizontal ≈ 0.664 m/s

Now, we can calculate the initial speed of the ball when it rolls off the desk. Since the ball rolls without slipping, its linear speed is equal to the rotational speed.

Therefore, the initial speed of the ball is approximately 0.664 m/s.

Finally, we can calculate the speed of the ball when it strikes the floor. Since the horizontal speed remains constant during the motion, the speed of the ball remains the same.

Thus, the speed of the ball is approximately 0.664 m/s.

Therefore, the ball was rolling at a speed of approximately 0.664 m/s when it rolled off the desk and struck the floor.

For more such questions on speed, click on:

https://brainly.com/question/13943409

#SPJ8


Related Questions

Plastic beads can often carry a small charge and therefore con generate electricies. The bare oriented such that own, and the sum charge on Q+,- Cand the charge of the system of all three beader Co What have each bead carry C ис

Answers

Plastic beads can often carry a small charge and therefore con generate electricies. The bare oriented such that own, and the sum charge on Q+,- Cand the charge of the system of all three beader Co. Each bead carries a charge of the same magnitude but opposite sign.

When plastic beads come into contact with certain materials, such as human skin or other objects, they can gain or lose electrons through a process called triboelectric charging. This charging occurs due to the transfer of electrons between the surfaces in contact. As a result, the beads can carry a small electrical charge.

In this specific scenario, three beads are being considered. Let's denote the charges on the beads as Q1, Q2, and Q3. Since the beads are oriented such that they attract or repel each other, it can be inferred that the charges on the beads have opposite signs. For example, if Q1 and Q2 attract each other, it suggests that Q1 is positive and Q2 is negative.

Considering the system as a whole, the net charge on the system should be zero. This means that the sum of the charges on all three beads should add up to zero. If we denote the charge on the system as Q, then the equation Q = Q1 + Q2 + Q3 must hold.

To ensure the net charge of the system is zero, each bead carries a charge of the same magnitude but with opposite signs. This allows the forces between the beads to balance out, resulting in a neutral overall system.

Learn more about charge visit

brainly.com/question/13871705

#SPJ11

A merry-go-round has a mass of 1550 kg and a radius of 7.70 mm.How much net work is required to accelerate it from rest to a rotation rate of 1.00 revolution per 8.60 ss ? Assume it is a solid cylinder.

Answers

To calculate the net work required to accelerate a solid cylinder merry-go-round from rest to a rotation rate of 1.00 revolution per 8.60 s, we can follow several steps.

First, we need to determine the moment of inertia of the merry-go-round. Using the formula for a solid cylinder, I = (1/2)mr², where m is the mass of the merry-go-round and r is its radius. Given that the mass is 1550 kg and the radius is 0.0077 m, we can substitute these values to find I = 0.045 kgm².

Next, we can calculate the initial kinetic energy of the merry-go-round. Since it is initially at rest, the initial angular velocity, w₁, is zero. Therefore, the initial kinetic energy, KE₁, is also zero.

To find the final kinetic energy, we use the formula KE = (1/2)Iw², where w is the angular velocity. Given that the final angular velocity, w₂, is 1 revolution per 8.60 s, which is equivalent to 1/8.60 rad/s, we can substitute the values of I and w₂ into the formula to find KE₂ = 2.121 × 10⁻⁴ J (rounded to three decimal places).

Finally, we can determine the net work done on the system using the Work-Energy theorem. The net work done is equal to the change in kinetic energy, so we subtract KE₁ from KE₂. Since KE₁ is zero, the net work, W, is equal to KE₂. Therefore, W = 2.121 × 10⁻⁴ J.

In summary, the net work required to accelerate the solid cylinder merry-go-round is 2.121 × 10⁻⁴ J (rounded to three decimal places).

To Learn more about revolution, Click this!

brainly.com/question/31473219

#SPJ11

The figure below shows a ball of mass m=1.9 kg which is connected to a string of length L=1.9 m and moves in a vertical circle. Only gravity and the tension in the string act on the ball. If the velocity of the ball at point A is v0=4.2 m/s, what is the tension T in the string when the ball reaches the point B?

Answers

The tension in the string at point B is approximately 29.24 N.

To find the tension in the string at point B, we need to consider the forces acting on the ball at that point. At point B, the ball is at the lowest position in the vertical circle.

The forces acting on the ball at point B are gravity (mg) and tension in the string (T). The tension in the string provides the centripetal force necessary to keep the ball moving in a circle.

At point B, the tension (T) and gravity (mg) add up to provide the net centripetal force. The net centripetal force is given by:

T + mg = mv^2 / R

Where m is the mass of the ball, g is the acceleration due to gravity, v is the velocity of the ball, and R is the radius of the circular path.

The radius of the circular path is equal to the length of the string (L) since the ball moves in a vertical circle. Therefore, R = L = 1.9 m.

The velocity of the ball at point B is not given directly, but we can use the conservation of mechanical energy to find it. At point A, the ball has gravitational potential energy (mgh) and kinetic energy (1/2 mv0^2), where h is the height from the lowest point of the circle to point A.

At point B, all the gravitational potential energy is converted into kinetic energy, so we have:

mgh = 1/2 mv^2

Solving for v, we find:

v = sqrt(2gh)

Substituting the given values of g (9.8 m/s^2) and h (L = 1.9 m), we can calculate the velocity at point B:

v = sqrt(2 * 9.8 * 1.9) ≈ 7.104 m/s

Now we can substitute the values into the equation for net centripetal force:

T + mg = mv^2 / R

T + (1.9 kg)(9.8 m/s^2) = (1.9 kg)(7.104 m/s)^2 / 1.9 m

Simplifying and solving for T, we get:

T ≈ 29.24 N

Therefore, the tension in the string at point B is approximately 29.24 N.

To know more about tension click here:

https://brainly.com/question/33231961

#SPJ11

Askater extends her arms horizontally, holding a 5-kg mass in each hand. She is rotating about a vertical axis with an angular velocity of one revolution per second. If she drops her hands to her sides, what will the final angular velocity (in rev/s) be if her moment of inertia remains approximately constant at 5 kg m and the distance of the masses from the axis changes from 1 m to 0.1 m? 6 4 19 7

Answers

Initial moment of inertia, I = 5 kg m. The distance of the masses from the axis changes from 1 m to 0.1 m.

Using the conservation of angular momentum, Initial angular momentum = Final angular momentum

⇒I₁ω₁ = I₂ω₂ Where, I₁ and ω₁ are initial moment of inertia and angular velocity, respectively I₂ and ω₂ are final moment of inertia and angular velocity, respectively

The final moment of inertia is given by I₂ = I₁r₁²/r₂²

Where, r₁ and r₂ are the initial and final distances of the masses from the axis respectively.

I₂ = I₁r₁²/r₂²= 5 kg m (1m)²/(0.1m)²= 5000 kg m

Now, ω₂ = I₁ω₁/I₂ω₂ = I₁ω₁/I₂= 5 kg m × (2π rad)/(1 s) / 5000 kg m= 6.28/5000 rad/s= 1.256 × 10⁻³ rad/s

Therefore, the final angular velocity is 1.256 × 10⁻³ rad/s, which is equal to 0.0002 rev/s (approximately).

Learn more about angular momentum: https://brainly.com/question/4126751

#SPJ11

A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is:

Answers

When a horse runs into a crate and slides up a ramp, the direction of the friction on the crate is (option c.) up the ramp and then down the ramp.

The direction of the friction on the crate, when the horse runs into it and slides up the ramp, can be determined based on the information given. Since the horse is initially running into the crate, it imparts a force on the crate in the direction of the ramp (up the ramp). According to Newton's third law of motion, there will be an equal and opposite force of friction acting on the crate in the opposite direction.

Therefore, the correct answer is option c. Up the ramp and then down the ramp.

The complete question should be:

A horse runs into a crate so that it slides up a ramp and then stops on the ramp. The direction of the friction on the crate is:

a. Down the ramp and then up the ramp

b. Cannot be determined

c. Up the ramp and then down the

d. Always down the ramp

e. Always up the ramp

To learn more about Newton's third law of motion, Visit:

https://brainly.com/question/62770

#SPJ11

Atr 486 s after midnight, a spacecraft of mass 1600 kg is located at position 310, 810-410 m, and at that time an asteroid whose mass is 6x 1015 kg is located at position 2x 10-9 10-16x 10 m. There are no other objects nearby. Part 1 Your answer is incorrect. (a) Calculate the (vector) force acting on the spacecraft. IN Attempts: 5 of 10 used Submit Answer Save for Later Part 2 (b) Atr= 486s the spacecraft's momentum was 7, and at the later time=494 s its momentum was 7, Calculate the (vector) change of momentum 7-7 kgm/s 1

Answers

(a) The force acting on the spacecraft can be calculated using Newton's law of universal gravitation. The formula is F = G * (m1 * m2) / r^2, where F is the force, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them.

Plugging in the values, we get:

F = (6.674 × 10^-11 N m^2/kg^2) * ((1600 kg) * (6 × 10^15 kg)) / ((2 × 10^-9 m) - (10^-16 × 10 m))^2

The calculated value of force vector will provide the magnitude and direction of the force acting on the spacecraft due to the asteroid's gravitational pull.

(b) To calculate the change in momentum of the spacecraft, we subtract the initial momentum from the final momentum using the formula Δp = p2 - p1.

Given that the initial momentum is 7 kg m/s and the final momentum is also 7 kg m/s, the change in momentum is:

Δp = 7 kg m/s - 7 kg m/s = 0 kg m/s

Hence, the change in momentum vector of the spacecraft is zero, indicating that there is no net change in the spacecraft's momentum during the given time interval.

To learn more about gravitation , click here : https://brainly.com/question/16082883

#SPJ11

"A coil with 450 turns is exposed to a magnetic flux (see picture). The flow through the coil cross section increases by 1.5 miliweber per second.
a) Determine the voltage induced in the coil.

Answers

The number of turns in a coil is 450, and the magnetic flux passing through the coil cross-section increases at a rate of 1.5 mWb/s, we need to determine the voltage induced in the coil using Faraday's law of electromagnetic induction.

What is Faraday's law of electromagnetic induction? Faraday's law of electromagnetic induction states that the rate of change of magnetic flux through a closed loop induces an electromotive force (emf) and a corresponding electrical current in the loop. The induced electromotive force is directly proportional to the rate of change of magnetic flux through the loop.

Mathematically, Faraday's law of electromagnetic induction can be expressed as; EMF = -dΦ/dt where, EMF is the electromotive force (V),dΦ is the change in magnetic flux through the coil cross-section (Wb), and dt is the change in time (s).Therefore, the voltage induced in the coil is given by; EMF = -dΦ/dtEMF = -1.5 mWb/s * 450EMF = -675 V. Thus, the voltage induced in the coil is -675 V. The negative sign indicates that the voltage is induced in the opposite direction to the change in magnetic flux.

Learn more about magnetic flux:

brainly.com/question/10736183

#SPJ11

Suppose you have solved a circuit which has some combination of resistors in parallel and in series by finding its equivalent resistance. If you plotted the voltage versus current for that circuit, what would the slope of that plot be equal to?

Answers

The slope of the plot of voltage versus current for a circuit that has a combination of resistors in parallel and in series by finding its equivalent resistance is equal to the equivalent resistance of the circuit.

Thus, the correct option is C.What is equivalent resistance?The equivalent resistance is a solitary resistor that can replace an assortment of resistors to disentangle the circuit and make it simpler to oversee. When two resistors are associated in series, they are joined end-to-end, with the goal that the voltage across one is equivalent to the sum of the voltages across the other. The equivalent resistance of resistors associated in series is equivalent to the total of the individual resistances.

To know more about current visit:

https://brainly.com/question/15141911

#SPJ11

What is the frequency of a sound wave with a wavelength of 2.81 m
traveling in room-temperature air (v
= 340 m/s)?

Answers

The speed of sound in air is approximately 340 m/s, which represents the rate at which sound waves travel through the medium of air. So, the frequency of the sound wave is approximately 121.00 Hz.  It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.

The speed of sound in air is approximately 340 m/s. The formula to calculate the frequency of a wave is given by:

frequency = speed / wavelength

Substituting the given values:

frequency = 340 m/s / 2.81 m

frequency ≈ 121.00 Hz

Therefore, the frequency of the sound wave is approximately 121.00 Hz.  It is commonly measured in hertz (Hz), where 1 Hz represents one cycle per second.

To learn more about, speed of sound, click here, https://brainly.com/question/32259336

#SPJ11

A bag of suqar weighs \3.50 lbon Earth. What would it weigh in newtons on the Moon, where the free-fall acceleration is one-sixth that on Earth?

Answers

The weight of the bag of sugar on the Moon is approximately 0.583 pounds.

To calculate the weight of the bag of sugar on the Moon, we need to consider the gravitational force acting on it.

The weight of an object is given by the formula:

Weight = Mass × Acceleration due to gravity

On Earth, the bag of sugar weighs 3.50 pounds.

To convert this weight to mass, we need to divide by the acceleration due to gravity on Earth, which is approximately 9.8 m/s^2.

So, the mass of the bag of sugar is:

Mass = Weight on Earth / Acceleration due to gravity on Earth

         = 3.50 pounds / 9.8 m/s^2

Now, on the Moon, the acceleration due to gravity is one-sixth of that on Earth.

Therefore, the acceleration due to gravity on the Moon is:

Acceleration due to gravity on Moon = (1/6) × 9.8 m/s^2

To find the weight on the Moon, we use the same formula:

Weight on Moon = Mass × Acceleration due to gravity on Moon

                          = Mass × (1/6) × 9.8 m/s^2

Substituting the value of the mass calculated earlier:

Weight on Moon = (3.50 pounds / 9.8 m/s^2) × (1/6) × 9.8 m/s^2

Simplifying this equation,

We find that the weight of the bag of sugar on the Moon is approximately 0.583 pounds.

Learn more about Acceleration from the given link :

https://brainly.com/question/460763

#SPJ11

The primary winding of a transformer is connected to a battery, a resistor, and a switch. The secondary winding is connected to an ammeter. When the switch is closed, the ammeter shows?
A. zero current
B. a non-zero current for a brief instant
C. a constant current

Answers

When the switch is closed, the ammeter will show a non-zero current for a brief instant.

When the switch is closed, it completes the circuit and allows current to flow through the primary winding of the transformer. This current induces a changing magnetic field in the core of the transformer, which in turn induces a current in the secondary winding. However, initially, there is no current flowing through the secondary winding because it takes a short moment for the induced current to build up. Therefore, the ammeter will briefly show a non-zero current before it settles to a constant value.

Option B is the correct answer: "a non-zero current for a brief instant."

To learn more about ammeter, click here: https://brainly.com/question/29513951

#SPJ11

An unknown metal "X" is used to make a 5.0 kg container that is then used to hold 15 kg of water. Both the container and the water have an initial temperature of 25 °C. A 3.0 kg piece of the metal "X" is heated to 300 °C and dropped into the water. If the final temperature of the entire system is 30 °C when thermal equilibrium is reached, determine the specific heat of the mystery metal.

Answers

The specific heat of the unknown metal "X" is approximately 0.50 J/g°C, indicating its ability to store and release thermal energy.

To find the specific heat of the metal, we can use the equation Q = mcΔT, where Q represents the heat transferred, m is the mass, c is the specific heat, and ΔT is the change in temperature. In this case, the heat gained by the water is equal to the heat lost by the metal and the container.

We can calculate the heat gained by the water using Qwater = mwatercwaterΔT, where m water is the mass of water, cwater is the specific heat of water, and ΔT is the change in temperature. The heat lost by the metal and the container is given by Qmetal = (mmetal + mcontainer)cmetalΔT. By equating Qwater and Qmetal, we can solve for the specific heat of the metal, cm.

Substituting the given values, we have:

(mmetal + mcontainer)cmetalΔT = mwatercwaterΔT

Simplifying, we get:

(3.0 kg + 5.0 kg)cmetal(30 °C - 300 °C) = 15 kg(4.18 J/g°C)(30 °C - 25 °C)

Solving the equation, we find the value of cm to be:

cmetal ≈ 0.50 J/g°C

Therefore, the specific heat of the unknown metal "X" is approximately 0.50 J/g°C.

To learn more about specific heat click here:

brainly.com/question/31608647

#SPJ11

Light with a wavelength of 442 nm passes through a double slit that has a slit seperation of 0.4 mm. Determine a) how far away L, a screen must be placed so that the first dark fringe appears directly opposite each slit opening. Draw a schematic diagram of the set up. [] b) how many nodal lines would appear in the pattern? [] c) What would delta x be in the pattern? [ ]

Answers

The delta x in the pattern is approximately 1.99 μm

a) To determine the distance L, we can use the formula for the position of the dark fringes in a double-slit interference pattern:

y = λ * L / d

Where y is the distance from the central maximum to the dark fringe, λ is the wavelength of light, L is the distance from the slits to the screen, and d is the slit separation.

In this case, we have:

λ = 442 nm = 442 x 10^(-9) m

d = 0.4 mm = 0.4 x 10^(-3) m

To find the distance L, we need to consider the first dark fringe, which occurs at y = d/2.

Substituting the values into the formula, we have:

d/2 = λ * L / d

Rearranging the formula to solve for L, we get:

L = (d^2) / (2 * λ)

Substituting the given values, we have:

L = (0.4 x 10^(-3))^2 / (2 * 442 x 10^(-9))

= 0.8 x 10^(-6) / (2 * 442)

= 1.81 x 10^(-6) m

Therefore, the screen must be placed approximately 1.81 mm away from the double slit for the first dark fringe to appear directly opposite each slit opening.

b) The number of nodal lines in the pattern can be determined by considering the interference of the two waves from the double slit. The formula for the number of nodal lines is given by:

N = (2 * d * L) / λ

Substituting the given values, we have:

N = (2 * 0.4 x 10^(-3) * 1.81 x 10^(-6)) / (442 x 10^(-9))

= 1.83

Therefore, approximately 1.83 nodal lines would appear in the pattern.

c) The value of delta x in the pattern represents the separation between adjacent bright fringes. It can be calculated using the formula:

delta x = λ * L / d

Substituting the given values, we have:

delta x = 442 x 10^(-9) * 1.81 x 10^(-6) / (0.4 x 10^(-3))

= 1.99 x 10^(-6) m

Therefore, delta x in the pattern is approximately 1.99 μm.

Learn more about double-slit interference pattern from the given link!

https://brainly.com/question/15587032

#SPJ11

(a).The screen must be placed 0.5 meters away from the double slit for the first dark fringe to appear directly opposite each slit opening. (b).Approximately 1.83 nodal lines would appear in the pattern.

(c). Delta x (Δx) in the pattern is  1.99×10⁻⁶ μm.

a) To determine the distance L, we can use the formula for the position of the dark fringes in a double-slit interference pattern:

y = (m × λ × L) / d

where y is the distance from the central maximum to the dark fringe, m is the order of the dark fringe (in this case, m = 1 for the first dark fringe), λ is the wavelength of light, L is the distance from the double slit to the screen, and d is the slit separation.

Given:

Wavelength (λ) = 442 nm = 442 × 10⁻⁹ m

Slit separation (d) = 0.4 mm = 0.4 × 10⁻³ m

Order of dark fringe (m) = 1

Substituting these values into the formula, we can solve for L:

L = (y × d) / (m × λ)

Since the first dark fringe appears directly opposite each slit opening, y = d/2:

L = (d/2 × d) / (m × λ)

= (0.4 × 10⁻³ m / 2 × 0.4 × 10⁻³ m) / (1 × 442 × 10⁻⁹ m)

= 0.5 m

Therefore, the screen must be placed 0.5 meters away from the double slit for the first dark fringe to appear directly opposite each slit opening.

The diagram is given below.

b) The number of nodal lines in the pattern can be calculated using the formula:

N = (d ×sin(θ)) / λ

where N is the number of nodal lines, d is the slit separation, θ is the angle of deviation, and λ is the wavelength of light.

Substituting the given values, we have:

N = (2 × 0.4 × 10⁻³ × 1.81 × 10⁻⁶) / (442 × 10⁻⁹)

= 1.83

Therefore, approximately 1.83 nodal lines would appear in the pattern.

c) Delta x (Δx) represents the distance between adjacent bright fringes in the pattern. It can be calculated using the formula:

Δx = (λ × L) / d

Given the values we have, we can substitute them into the formula:

Δx = (λ × L) / d

= (442 × 10⁻⁹ m ×0.5 m) / (0.4 × 10⁻³ m)

= 1.99×10⁻⁶m

Therefore, delta x (Δx) in the pattern is  1.99×10⁻⁶ μm.

To know more about dark fringe:

https://brainly.com/question/33259092

#SPJ4

A cylinder of radius 10 cm has a thread wrapped around its edge. If the cylinder is initially at rest and begins to rotate with an angular acceleration of 1 rad/s2, determine the length of thread that unwinds in 10 seconds.

Answers

Given

,Radius of cylinder

= r = 10 cm = 0.1 mAngular acceleration of cylinder = α = 1 rad/s²Time = t = 10s

Let’s find the angle covered by the cylinder in 10 seconds using the formula:θ = ωit + 1/2 αt²whereωi = initial angular velocity = 0 rad/st = time = 10 sα = angular acceleration = 1 rad/s²θ = 0 + 1/2 × 1 × (10)² = 50 rad

Now, let's find the length of the

thread

that unwinds using the formula:L = θrL = 50 × 0.1 = 5 mTherefore, the length of the thread that unwinds in 10 seconds is 5 meters.

Here, we used the formula for the arc

length of a circle

, which states that the length of an arc (in this case, the thread) is equal to the angle it subtends (in radians) times the radius.

to know more about

,Radius of cylinder

pls visit-

https://brainly.com/question/6499996

#SPJ11

Two point charges produce an electrostatic force of 6.87 × 10-3 N Determine the electrostatic force produced if charge 1 is doubled, charge 2 is tripled and the distance between them is
alf.
elect one:
) a. 1.65 x 10-1 N • b. 6.87 × 10-3 N ) c. 4.12 × 10-2.N
) d. 2.06 x 10-2 N

Answers

The electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N. None of the provided answer choices (a), (b), (c), or (d) match this value.

To determine the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved, we can use Coulomb's Law.

Coulomb's Law states that the electrostatic force (F) between two point charges is given by the equation:

F = k * (|q1| * |q2|) / r^2

where k is the electrostatic constant (k ≈ 8.99 × 10^9 Nm^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between them.

Let's denote the original values of charge 1, charge 2, and the distance as q1, q2, and r, respectively. Then the modified values can be represented as 2q1, 3q2, and r/2.

According to the problem, the electrostatic force is 6.87 × 10^(-3) N for the original configuration. Let's denote this force as F_original.

Now, let's calculate the modified electrostatic force using the modified values:

F_modified = k * (|(2q1)| * |(3q2)|) / ((r/2)^2)

= k * (6q1 * 9q2) / (r^2/4)

= k * 54q1 * q2 / (r^2/4)

= 216 * (k * q1 * q2) / r^2

Since k * q1 * q2 / r^2 is the original electrostatic force (F_original), we have:

F_modified = 216 * F_original

Substituting the given value of F_original = 6.87 × 10^(-3) N into the equation, we get:

F_modified = 216 * (6.87 × 10^(-3) N)

= 1.48 N

Therefore, the electrostatic force produced when charge 1 is doubled, charge 2 is tripled, and the distance between them is halved is approximately 1.48 N.

None of the provided answer choices matches this value, so none of the options (a), (b), (c), or (d) are correct.

To learn more about electrostatic force visit : https://brainly.com/question/17692887

#SPJ11

A quantity is calculated bases on (20 + 1) + [(50 + 1)/(5.0+ 0.2)] value of the quantity is 30, but what is the uncertainty in this?

Answers

Thus, the uncertainty in the calculated quantity is approximately 0.10. The formula to calculate the uncertainty of a quantity is given by δQ=√(δA²+δB²)

Given (20 + 1) + [(50 + 1)/(5.0+ 0.2)] = 30. (20 + 1) + [(50 + 1)/(5.0+ 0.2)] is the quantity whose uncertainty we want to calculate.

We know that: δA = uncertainty in 20.1 = ±0.1δ

B = uncertainty in (50 + 1)/(5.0+ 0.2) = uncertainty in (51/5.2)

We have to calculate δB:δB = uncertainty in (51/5.2) = δ[(50 + 1)/(5.0+ 0.2)] = δ(51/5.2) = [(1/5.2)² + (0.2*51)/(5.2²)]½= (0.00641 + 0.00293)½= 0.0083

∴δQ = √(δA² + δB²) = √(0.1² + 0.0083²) = √(0.01009) = 0.1005 ≈ 0.10

Thus, the uncertainty in the calculated quantity is approximately 0.10.

Learn further about uncertainty of quantities: https://brainly.com/question/31185232

#SPJ11

Part A What is the approximate radius of an a particle (He)? Express your answer to two significant figures and include the appropriate units. ? HA Value Units The Submit Request Answer

Answers

As per the details, the approximate radius of an alpha particle (He) is 1.2 fm.

The Rutherford scattering formula, which connects the scattering angle to the impact parameter and the particle radius, can be used to estimate the approximate radius of an alpha particle (He). The formula is as follows:

θ = 2 * arctan ( R / b )

Here,

θ = scattering angle

R = radius of the particle

b = impact parameter

An alpha particle (He) is made up of two protons and two neutrons that combine to produce a helium nucleus. A helium nucleus has a radius of about 1.2 femtometers (fm) or [tex]1.2* 10^{(-15)[/tex] metres.

Therefore, the approximate radius of an alpha particle (He) is 1.2 fm.

For more details regarding alpha particle, visit:

https://brainly.com/question/24276675

#SPJ4

Problem 14: (10 Points) Cork has a density of 0,24 g/cm? Calculate the fraction of a cork's volume that is submerged when it floats in water. a Problem 15: (10 Points) Calculate the speed of an electron accelerated by the 20,000-V poten- tial difference found in the CRT in Figure 10.5. The mass of an elec- tron is 9.11 x 10 31 kg.

Answers

Problem 14: Approximately 24% of a cork's volume is submerged when it floats in water, Problem 15: The speed of an electron accelerated by a 20,000-V potential difference is approximately 5.93 x 10^6 m/s.

Problem 14:

To calculate the fraction of a cork's volume that is submerged when it floats in water, we can use the concept of buoyancy.

Given:

Density of cork (ρ_cork) = 0.24 g/cm³ (or 0.24 x 10³ kg/m³)

Density of water (ρ_water) = 1000 kg/m³ (approximately)

The fraction of the cork's volume submerged (V_submerged / V_total) can be determined using the Archimedes' principle:

V_submerged / V_total = ρ_cork / ρ_water

Substituting the given values:

V_submerged / V_total = (0.24 x 10³ kg/m³) / 1000 kg/m³

Simplifying the expression:

V_submerged / V_total = 0.24

Therefore, the fraction of a cork's volume that is submerged when it floats in water is 0.24, or 24%.

Problem 15:

To calculate the speed of an electron accelerated by the 20,000-V potential difference, we can use the concept of electrical potential energy and kinetic energy.

Given:

Potential difference (V) = 20,000 V

Mass of an electron (m) = 9.11 x 10⁻³¹ kg

The electrical potential energy gained by the electron is equal to the change in kinetic energy. Therefore, we can equate them:

(1/2) m v² = qV

Where:

v is the speed of the electron

q is the charge of the electron (1.6 x 10⁻¹⁹ C)

Rearranging the equation to solve for v:

v = √(2qV / m)

Substituting the given values:

v = √((2 x 1.6 x 10⁻¹⁹ C x 20,000 V) / (9.11 x 10⁻³¹ kg))

Calculating the value:

v ≈ 5.93 x 10⁶ m/s

Therefore, the speed of the electron accelerated by the 20,000-V potential difference is approximately 5.93 x 10⁶ m/s.

To know more about speed, click here:

brainly.com/question/17661499

#SPJ11

Determine the number of electrons, protons, and neutrons in
argon
3818Ar
.
HINT
(a)
electrons
(b)
protons
(c)
neutrons

Answers

The number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20.

Now, let's proceed to the second part of the question. Here's how to determine the number of electrons, protons, and neutrons in Argon 38  :18 Ar :Since the atomic number of Argon is 18, it has 18 protons in its nucleus, which is also equal to its atomic number.

Since Argon is neutral, it has 18 electrons orbiting around its nucleus.In order to determine the number of neutrons, we have to subtract the number of protons from the atomic mass. In this case, the atomic mass of Argon is 38.

Therefore: Number of neutrons = Atomic mass - Number of protons Number of neutrons = 38 - 18 Number of neutrons = 20 Therefore, the number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20

Know more about electrons here:

https://brainly.com/question/12001116

#SPJ11

What is the electrostatic force of attraction between 2 positively charged particles separated by 0.30 meter distance and with a charge of 8.0x10-6 C and 5.0x10-6 C respectively? A
8.0×10^5 N 1.2 N
2.4×10^5 N 4.0 N

Answers

The electrostatic force of attraction between the two positively charged particles is approximately 4.4 × 10^-9 N.

The electrostatic force of attraction between two charged particles can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as:

F = (k * q1 * q2) / r^2

Where: F is the electrostatic force of attraction, k is the electrostatic constant (approximately 9 × 10^9 Nm^2/C^2), q1 and q2 are the charges of the particles, and r is the distance between the particles.

Plugging in the given values: q1 = 8.0 × 10^-6 C q2 = 5.0 × 10^-6 C r = 0.30 m

F = (9 × 10^9 Nm^2/C^2) * (8.0 × 10^-6 C) * (5.0 × 10^-6 C) / (0.30 m)^2

Simplifying the equation: F = (9 × 8.0 × 5.0 × 10^-6 × 10^-6) / (0.09) F = 36 × 10^-12 / 0.09 F = 4 × 10^-10 / 0.09 F ≈ 4.4 × 10^-9 N

Therefore, the electrostatic force of attraction between the two positively charged particles is approximately 4.4 × 10^-9 N.

Learn more about electrostatic force from the link

https://brainly.com/question/20797960

#SPJ11

Eric wants to test his caramel candies he made to see if they are sticky. He designs a tube he can put the clay in, pump it up with air, and release it with an impressive velocity. A particular piece of caramel is 14.0 g and is launched horizontally at a 124.0 g wooden block initially at rest on a level driveway. The caramel sticks to the block. The caramel and block slide 9.5 m before coming to rest. As measured in an earlier lab exercise, the coefficient of friction between block and pavement is 0.580 (it is pretty rough). What was the speed of the caramel (in m/s) immediately before impact with the block?
m/s

Answers

The speed of the caramel immediately before impact with the block was approximately 8.63 m/s.

Given:

- Mass of caramel (m₁) = 14.0 g = 0.014 kg

- Mass of wooden block (m₂) = 124.0 g = 0.124 kg

- Distance traveled (d) = 9.5 m

- Coefficient of friction (μ) = 0.580

To find the speed of the caramel before impact, we can use the principle of conservation of mechanical energy. The initial mechanical energy of the system is equal to the final mechanical energy.

The initial mechanical energy is the kinetic energy of the caramel, and the final mechanical energy is the work done by friction.

The initial kinetic energy (KE₁) of the caramel can be calculated using:

KE₁ = (1/2) * m₁ * v₁²

The work done by friction (W_friction) can be calculated using:

W_friction = μ * m₂ * g * d

Setting the initial kinetic energy equal to the work done by friction, we have:

(1/2) * m₁ * v₁² = μ * m₂ * g * d

Solving for v₁ (the speed of the caramel before impact), we get:

v₁ = sqrt((2 * μ * m₂ * g * d) / m₁)

Plugging in the given values, we have:

v₁ = sqrt((2 * 0.580 * 0.124 kg * 9.8 m/s² * 9.5 m) / 0.014 kg) ≈ 8.63 m/s

Therefore, the speed of the caramel immediately before impact with the block was approximately 8.63 m/s.

The speed of the caramel immediately before impact with the block was approximately 8.63 m/s.

To know more about impact visit:

https://brainly.com/question/29972013

#SPJ11

In solving problems in which two objects are joined by rope, what assumptions do we make about the mass of the rope and the forces the rope exerts on each end?

Answers

When two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite.

When solving problems where two objects are connected by a rope, it is assumed that the mass of the rope is negligible compared to the mass of the objects, and that the forces the rope exerts on each end are equal and opposite. This is known as the assumption of massless, frictionless ropes.

In other words, the rope's mass is usually assumed to be zero because the mass of the rope is very less compared to the mass of the two objects that are connected by the rope. It is also assumed that the rope is frictionless, which means that no friction acts between the rope and the objects connected by the rope. Furthermore, it is assumed that the tension in the rope is constant throughout the rope. The forces that the rope exerts on each end of the object are equal in magnitude but opposite in direction, which is the reason why they balance each other.

Learn more about mass https://brainly.com/question/86444

#SPJ11

A beam of laser light with a wavelength of =510.00 nm passes through a circular aperture of diameter =0.177 mm. What is the angular width of the central diffraction maximum formed on a screen?

Answers

The angular width of the central diffraction maximum formed on a screen is 0.00354 rad.

The angular width of the central diffraction maximum formed on a screen when a beam of laser light with a wavelength of = 510.00 nm passes through a circular aperture of diameter = 0.177 mm is given by the formula below;

[tex]$\theta=1.22\frac{\lambda}{d}$[/tex]

where ;λ = 510.00 nm

= 510.00 x 10⁻⁹ m is the wavelength of light passing through the circular aperture.

d = 0.177 mm = 0.177 x 10⁻³ m is the diameter of the circular aperture.

θ is the angular width of the central diffraction maximum formed on a screen.

Substituting the given values into the formula above;

[tex]$\theta=1.22\frac{\lambda}{d}=1.22\frac{510.00\times10^{-9}}{0.177\times10^{-3}}=0.00354\;rad$[/tex]

To know more about angular width visit:

https://brainly.com/question/32239395

#SPJ11

How far apart are an object and an image formed by a 75 -cm-focal-length converging lens if the image is 2.25× larger than the object and is real? Express your answer using two significant figures.

Answers

The magnification (M) of the image formed by a lens can be calculated using the formula:

M = -di/do

where di is the image distance and do is the object distance.

Given:

Focal length (f) = 75 cm

Magnification (M) = 2.25

Since the image is real and the magnification is positive, we can conclude that the lens forms an enlarged, upright image.

To find the object distance, we can rearrange the magnification formula as follows:

M = -di/do

2.25 = -di/do

do = -di/2.25

Now, we can use the lens formula to find the image distance:

1/f = 1/do + 1/di

Substituting the value of do obtained from the magnification formula:

1/75 = 1/(-di/2.25) + 1/di

Simplifying the equation:

1/75 = 2.25/di - 1/di

1/75 = 1.25/di

di = 75/1.25

di = 60 cm

Since the object and image are on the same side of the lens, the object distance (do) is positive and equal to the focal length (f).

do = f = 75 cm

The distance between the object and the image is the sum of the object distance and the image distance:

Distance = do + di = 75 cm + 60 cm = 135 cm

Therefore, the object and image are approximately 135 cm apart.

To know more about magnification click this link -

brainly.com/question/21370207

#SPJ11

quick answer
please
QUESTION 17 An observatory uses a large refracting telescope that has an objective lens of diameter, 1.00 m. The telescope resolves images with green light of wavelength 550 nm. If the telescope can b

Answers

The telescope can resolve objects with an angular size greater than or equal to 1.21 arcseconds.

The resolving power of a telescope determines its ability to distinguish fine details in an observed object. It is determined by the diameter of the objective lens or mirror and the wavelength of the light being observed. The formula for resolving power is given by:

R = 1.22 * (λ / D)

Where R is the resolving power, λ is the wavelength of light, and D is the diameter of the objective lens or mirror.

In this case, the diameter of the objective lens is given as 1.00 m, and the wavelength of green light is 550 nm (or 550 x 10^-9 m). Plugging in these values into the formula, we can calculate the resolving power:

R = 1.22 * (550 x 10^-9 m / 1.00 m)

R ≈ 1.21 x 10^-3 radians

To convert the resolving power to angular size, we can use the fact that there are approximately 206,265 arcseconds in a radian:

Angular size = R * (206,265 arcseconds/radian)

Angular size ≈ 1.21 x 10^-3 radians * 206,265 arcseconds/radian

The result is approximately 1.21 arcseconds. Therefore, the telescope can resolve objects with an angular size greater than or equal to 1.21 arcseconds.

Learn more about telescope here: brainly.com/question/31173247

#SPJ11

Describe the difference between airspeed, windspeed and
groundspeed when solving vector problems associated with airplane
flight.

Answers

Answer:

:))

Explanation:

SCROLL ALL THE WAY DOWN FOR A SHORTER ANSWER.

When solving vector problems associated with airplane flight, it is important to understand the difference between airspeed, windspeed, and groundspeed.

Airspeed is the speed of the airplane relative to the air surrounding it. An airplane's airspeed is measured using an airspeed indicator and is typically expressed in knots. Airspeed does not take into account the effects of wind on the airplane's motion.

Windspeed is the speed and direction of the wind relative to the ground. Windspeed can be measured using a weather station or by observing the effect of the wind on objects such as flags and trees. Windspeed is important in airplane flight because it can affect the airplane's motion by changing its airspeed and direction of flight.

Groundspeed is the speed and direction of the airplane relative to the ground. Groundspeed takes into account the effects of both the airplane's airspeed and the windspeed. In other words, groundspeed is the actual speed and direction at which an airplane is moving over the ground.

When solving vector problems associated with airplane flight, it is important to understand the relationship between airspeed, windspeed, and groundspeed. For example, if an airplane is flying with an airspeed of 100 knots into a headwind with a windspeed of 20 knots, its groundspeed will be slower than its airspeed at only 80 knots. On the other hand, if the airplane is flying with the same airspeed of 100 knots but with a tailwind with a windspeed of 20 knots, its groundspeed will be faster at 120 knots. Therefore, understanding how airspeed, windspeed, and groundspeed are related will help pilots to accurately navigate and plan their flights.

Airspeed is the speed relative to the air. Windspeed is the speed and direction of wind relative to the ground. Groundspeed is the speed and direction relative to the ground. Understanding their relationship is important for accurate navigation and flight planning.

Abusive behavior inventory total scale (abi) 36. 05 07. 49 psychological abuse 25. 40 6. 35 physical abuse 10. 66 1. 74

Answers

The total scale score of the Abusive Behavior Inventory (ABI) is 36.05, indicating the overall level of abusive behavior measured by the inventory. This score represents a combination of psychological abuse and physical abuse.

The psychological abuse score on the ABI is 25.40, suggesting the extent of psychological mistreatment or harm inflicted upon individuals. This score is based on responses to items related to psychological abuse within the inventory. A higher score indicates a higher level of psychological abuse experienced.

The physical abuse score on the ABI is 10.66, indicating the degree of physical harm or violence experienced by individuals. This score is derived from responses to items specifically related to physical abuse within the inventory. A higher score reflects a higher level of physical abuse endured.

These scores provide quantitative measures of abusive behavior, allowing for assessment and evaluation of individuals' experiences. It is important to interpret these scores within the context of the ABI and consider other relevant factors when assessing abusive behavior in individuals or populations.

To know more about Abusive Behavior with the given link

brainly.com/question/10279566

#SPJ

Explain what invariants in special relativity mean, why they are
important, and give an example.

Answers

Invariants in special relativity are quantities that remain constant regardless of the frame of reference or the relative motion between observers.

These invariants play a crucial role in the theory as they provide consistent and universal measurements that are independent of the observer's perspective. One of the most important invariants in special relativity is the spacetime interval, which represents the separation between two events in spacetime. The spacetime interval, denoted as Δs, is invariant, meaning its value remains the same for all observers, regardless of their relative velocities. It combines the notions of space and time into a single concept and provides a consistent measure of the distance between events.

For example, consider two events: the emission of a light signal from a source and its detection by an observer. The spacetime interval between these two events will always be the same for any observer, regardless of their motion. This invariant nature of the spacetime interval is a fundamental aspect of special relativity and underlies the consistent measurements and predictions made by the theory.

Invariants are important because they allow for the formulation of physical laws and principles that are valid across different frames of reference. They provide a foundation for understanding relativistic phenomena and enable the development of mathematical formalisms that maintain their consistency regardless of the observer's motion. Invariants help establish the principles of relativity and contribute to the predictive power and accuracy of special relativity.

To know more about spacetime interval, visit:

https://brainly.com/question/28232104

#SPJ11

A block, W 180 lbs rests on a rough level plane. The coefficient of friction is 0.42, what horizontal push will cause the block to move? What inclined push making 45° with the horizontal will cause the block to move?

Answers

The inclined push making a 45° angle with the horizontal should satisfy the equation: Horizontal component = inclined push × cos(45°) ≥ Frictional force

To determine the horizontal push required to make the block move, we need to consider the force of friction acting on the block. The force of friction can be calculated using the formula:

Frictional force = coefficient of friction × normal force

The normal force is equal to the weight of the block, which is 180 lbs. Therefore, the normal force is 180 lbs × acceleration due to gravity.

To find the horizontal push, we need to overcome the force of friction. The force of friction is given by the equation:

Frictional force = coefficient of friction × normal force

Let's calculate the force of friction:

Frictional force = 0.42 × (180 lbs × acceleration due to gravity)

Now we can calculate the horizontal push:

Horizontal push = Frictional force

To Know the inclined push making a 45° angle with the horizontal, we need to consider the force components acting on the block. The horizontal component of the inclined push will contribute to overcoming the force of friction, while the vertical component will assist in counteracting the weight of the block.

Since the inclined push makes a 45° angle with the horizontal, the horizontal component can be calculated using the formula:

Horizontal component = inclined push × cos(45°)

To make the block move, the horizontal component of the inclined push should be equal to or greater than the force of friction calculated previously.

Therefore, the inclined push making a 45° angle with the horizontal should satisfy the equation:

Horizontal component = inclined push × cos(45°) ≥ Frictional force

Learn more about Frictional force from the link

https://brainly.com/question/24386803

#SPJ11

How much heat in joules is required to convery 1.00 kg of ice at 0 deg C into steam at 100 deg C? (Lice = 333 J/g; Lsteam= 2.26 x 103 J/g.)

Answers

The heat required to convert 1.00 kg of ice at 0°C to steam at 100°C is 1.17 x 10⁶ J.

To calculate the heat required to convert 1.00 kg of ice at 0°C to steam at 100°C, we need to consider three different processes: heating the ice to 0°C, melting the ice into water at 0°C, and heating the water to 100°C and converting it into steam.

1. Heating the ice to 0°C:

The heat required is given by Q1 = m × Cice × ∆T, where m is the mass of ice, Cice is the heat capacity of ice, and ∆T is the temperature change.

Q1 = 1.00 kg × (333 J/g) × (0 - (-273.15)°C) = 3.99 x 10⁵ J

2. Melting the ice into water at 0°C:

The heat required is given by Q2 = m × L_ice, where Lice is the heat of fusion of ice.

Q2 = 1.00 kg × (333 J/g) = 3.33 x 10⁵ J

3. Heating the water to 100°C and converting it into steam:

The heat required is given by Q3 = m × Cwater × ∆T + m × Lsteam, where Cwater is the heat capacity of water, Lsteam is the heat of vaporization of water, and ∆T is the temperature change.

Q3 = 1.00 kg × (4.18 J/g°C) × (100 - 0)°C + 1.00 kg × (2.26 x 10³ J/g) = 4.44 x 10⁵ J

The total heat required is the sum of the three processes:

Total heat = Q1 + Q2 + Q3 = 3.99 x 10⁵ J + 3.33 x 10⁵ J + 4.44 x 10⁵ J = 1.17 x 10⁶ J

Therefore, the heat required to convert 1.00 kg of ice at 0°C to steam at 100°C is 1.17 x 10⁶ J.

Read more on Heat Capacity here: https://brainly.com/question/29792498

#SPJ11

Other Questions
An experiment is replicable if the same scientist does the experiment twice and gets similar data. True False Who has the primary responsibility for delivering a project in accordance with the contract documents? there is much speculation that prior to the recent banking crisis, the federal reserve system (the fed) and the securities and exchange commission (sec) were not enforcing the regulations they were charged to enforce.O TRUEO FALSE . An object 1.7 cm high is held 2.5 cm from a person's cornea, and its reflected image is measured to be 0.167 cm high. Think & Prepare 1. What kind of mirror is the cornea, convex or concave? Question 1 Solve the exponential equation. If necessary, round the answer to 4 decimal places. 5X+3 =525 Question 2 Solve the exponential equation. If necessary, round the answer to 4 decimal places. 3x+7=9x Question 3 Solve the exponential equation. If necessary, round the answer to 4 decimal places. 20 = 56 Question 4 Solve the exponential equation. If necessary, round the answer to 4 decimal places. ex-1-5=5 10 pts 10 pts 10 pts 10 pts 1. Calculate the corporate valuation for Under Armour using thevarious valuation methods given in chapter what is the ice age analogy? and what is a good example of it ofa tv show represeting it Subject: Research Methods in Psychology1. When participants change in some way between the pretest and post-test, it can affect the scores on the post-test. This is called ____________.A) HistoryB) ImplementationC) Regression to the meanD) Maturation White smoke billowed from Warehouse 1, next to the port's massive grain silos, during a series of chemical plant explosions at Telok Y. Later, the warehouse's roof caught fire, resulting in a large initial explosion followed by a series of smaller blasts that some witnesses described as sounding like fireworks going off. After about 300 seconds, there was a massive explosion that launched a mushroom can into the air and sent a supersonic blast wave through the city. The blast wave leveled buildings near the port and wreaked havoc on much of the rest of the capital, which has a population of two million people. According to preliminary findings, the detonation was caused by 200,000 kg of METHYLCYCLOHEXANE that had been improperly stored in a port warehouse. As a safety engineer in the plant, you must make some predictions about the severity of the accident. Predict the distance from the blast's source at which all of the people at the chemical plant will be saved from lung haemorrhage while suffering only 85 percent structural damage.*Hint: a) The distance prediction range is 0 to 500 m; b) The explosion efficiency is 3%. rebecca m. woods, jarred m. lorusso, harry g. potter, joanna c. neill, jocelyn d. glazier, reinmar hager, maternal immune activation in rodent models: a systematic review of neurodevelopmental changes in gene expression and epigenetic modulation in the offspring brain, neuroscience A = 500 x (3/4) what does the fraction represent How is organizing history by theme different from organizing by region? A block with a mass m is floating on a liquid with a massdensity . The block has a cross-sectional area andheight . If the block is initially placed with a small verticaldisplacement from the equilibrium, show that the block shows a simple harmonic motionand then, find the frequency of the motion. Assume uniform vertical gravity with theacceleration g An important news announcement is transmitted by radio waves to people who are 300 km away and sitting next to their radios, and also by sound waves to people sitting 4.00 m from the newscaster in a newsroom. Who receives the news first? people in the newsroom both at the same time At = people next to their radios What is the difference in time At between each group of people receiving the news? Quesrion 4 Consider o LPP Maximize Z=2x_1+2x_2+x_3-3X_4subject to3x_1+x_2-x1x_1+x_2+x_3+x_42-3x_1+2x_3 +5x_x46X_1, X_2, X_3,X_4, X_5, X_6, X_7>=0Adding the slack variables and applying Simplex we arrive at the following finalX X2 X3 X4 X5 X6 X7 sbv X3 -2 0 1 2 -1 1 0 1X2 3 1 0 -1 1 0 0 1 X7 1 0 0 1 2 -2 1 4 Z 2 0 0 3 1 1 0 3 tableau.4.1-Write the dual (D) of the problem (P) 4.2-Without solving (D), use tableau simplex and find the solution of (D)4.3- Determine B^(-1)4.4-Suppose that a change in vector b (resources) was necessary for [3 2 4]. The previous viable solution? Case remains optimal negative, use the Dual Simplex Method to restore viability In the figure(Figure 1) the coefficient of static friction between mass mA and the table is 0.43, whereas the coefficient of kinetic friction is 0.33.What value of mAmA will keep the system moving at constant speed? If the future value of an ordinary, 4-year annuity is $1,000 andinterest rates are 6 percent, what is the future value of the sameannuity due? How would you research the question, "How will the social distancing, stay-at-home orders, and other measures during 2020 impact the American government." What would be your hypothesis? What words would you search for? What database would you conduct your research and how would you narrow down your choices to the selected article. What are the beginning steps of your process? X+x+y+ycan anyone simplify this for Mathswach as 2x+2y ain't work The dampening material in an ultrasound system is often made of_________, and its function is to _______the pulses.