7.53 m
Explanation:We are given:
Initial Horizontal Velocity of the Ball = 4.6 m/s
Initial Vertical Velocity of the Ball = 0 m/s
Height from which ball is kicked = 13.4 m
Time taken by the ball to reach the ground:
The ball has an initial vertical velocity of 0 m/s
it also has a downward acceleration of 10 m/s² due to gravity
Solving for the time taken:
s = ut + 1/2(at²) [second equation of motion]
replacing the values
13.4 = (0)(t) + 1/2 (10)(t²)
13.4 = 5t²
t² = 13.4/5 [dividing both sides by 5]
t² = 2.68
t = 1.637 seconds [taking the square root of both sides]
Horizontal distance covered by the ball:
Since there are no horizontal opposing forces on the ball,
the ball will more horizontally at a velocity of 4.6 m/s until it hits the ground
We calculated that the ball will hit the ground in 1.637 seconds
Distance covered:
s = ut + 1/2 (at²) [seconds equation of motion]
s = ut [since a = 0m/s² in the horizontal plane]
replacing the values
s = 4.6 * 1.637
s = 7.53 m
Hence, the ball landed 7.53 m from the cliff
A 3520 kg truck moving north makes an INELASTIC collision with an 1480 kg car moving 13.0 m/s east. After colliding, they have a velocity of 9.80 m/s at 66.9 degrees. What was the initial velocity of the truck? (m/s)
Answer:
v = 12.8 m/s
Explanation:
Assuming no external forces acting during the collision, total momentum must be conserved.Since momentum is a vector, their components must be conserved too.Choosing a pair of axes coincident with the N-S and W-E directions, naming x to the W-E axis and y to the N-S one, we can write the following algebraic equations:[tex]p_{ox} = p_{fx} (1)[/tex]
[tex]p_{oy} = p_{fy} (2)[/tex]
Since we know all the information needed to solve (1), assuming a completely inelastic collision, we can focus in (2), writing both sides of the equation as follows:[tex]p_{oy} = m_{t} * v_{ot} = 3520 kg* v_{ot} (3)[/tex]
[tex]p_{fy} = m_{f} * v_{fy} = 5000 kg* 9.8 m/s * sin 66.9 = 45080 kg*m/s (4)[/tex]
Since (4) and (3) are equal each other, we can solve for vot, as follows:[tex]v_{ot} =\frac{45080kg*m/s}{3520kg} = 12.8 m/s (5)[/tex]
a. What frequency is received by a person watching an oncoming ambulance moving at 115 km/h and emitting a steady 753 Hz sound from its siren?
b. What frequency does she receive after the ambulance has passed?
Answer:
A)828.8Hz
B)869.2Hz
Explanation:
Here is a complete question;
What frequency is received by a person watching an oncoming ambulance moving at 115 km/h and emitting a steady 753 Hz sound from its siren? Speed of sound is 345m/s
b. What frequency does she receive after the ambulance has passed?
Vs= speed of the ambulance
, We convert to m/s for unit consistency
= 115 km/h= 115km× 1000m/1m × 1hr/3600s= 31.94m/s
Dopler effect is when observed frequency of wave changes with respect to the source or when observed moves relative to transmitting medium can be expressed as
f'=[ (v + vo)/(v- vs)]*f
=[ (v )/(v- vs)]*f
The sign vo and vs depends on vthe direction of the velocity
f= frequency of ambulance siren= 753Hz
v= speed of sound in air= 345m/s
Vo= speed of observer= 0
A) we are to determine the f' of ambulance as heard by person as ambulance approaching.
To find the frequency f' observed by the person we use the expresion below
Then substitute the values
f'=[ (v )/(v- vs)]*f
=[ (345)/(345-31.94)]×753
= 828.8Hz
B)What frequency does she receive after the ambulance has passed?
To find the frequency f' observed by the person we use the expresion below
Then substitute the values
f'=[ (v )/(v + vs)]*f
=[ (345)/(345 + 31.94)]×753
= 869.2Hz
=
When particles get close to the surface, they interact with atoms in
the
(Finish the sentence)
The x component of vector A is -25.0m and the y component id +40.0m (a) what is the magnitude of A?(b) What is the angle between the direction of A and the positive direction of x?
Answer:
θ = 122°
Explanation:
Components of a Vector
A vector in the plane can be defined by its rectangular components:
[tex]\vec A =<x,y>[/tex]
Or also can be given by its polar components:
[tex]\vec A =<r,\theta>[/tex]
Where r is the magnitude of the vector and θ is the angle it forms with the positive direction of x.
The relation between them is:
[tex]r=\sqrt{x^2+y^2}[/tex]
[tex]\displaystyle \theta=\arctan\frac{y}{x}[/tex]
It's given the x-component of vector A is x=-25 m and the y-component is y=40 m
(a)
The magnitude of the vector is:
[tex]r=\sqrt{(-25)^2+40^2}[/tex]
[tex]r=\sqrt{625+1600}[/tex]
[tex]r=\sqrt{2225}[/tex]
[tex]r\approx 47.2\ m[/tex]
(b)
[tex]\displaystyle \theta=\arctan\frac{40}{-25}[/tex]
[tex]\displaystyle \theta=\arctan (-1.6)[/tex]
The calculator gives us the value
θ = -58°
But the real angle lies on the second quadrant since x is negative and y is positive, thus:
θ = -58° + 180° = 122°
θ = 122°
Which of the following is the main idea of Thomas Paine's "Common Sense"?
A wave has a period 2.00 s, an amplitude 20.0 cm, and a wavelength 3.00 m. What is the speed of the wave?
a. 10.0 cm/s
b. 0.100 cm/s
c. 340 m/s
d. 0.667 m/s
e. 1.50 m/s
Answer:
a)
Explanation:
because if in 2 seconds have 20.0 cm/2s cm in 1 second have 10.0 cm/s
If the particles were moving with a speed much less than c, the magnitude of the momentum of the second particle would be twice that of the first. However, what is the ratio of the magnitudes of momentum for these relativistic particles?
Answer:
p₂ / p₁ = 2 (v₁ / v₂)
Explanation:
The moment is a very useful concept, since it is one of the quantities that is conserved during shocks and explosions, for which it had to be redefined to be consistent with special relativity,
p = m v / √[1+ (v/c)² ]
for the case of speeds much lower than the speed of light this expression is close to
p = m v
In this exercise they indicate that the moment of the second particle is twice the moment of the first, when their velocities are small
p₂ = 2 p₁
p₂/p₁ = 2
in consecuense
m v₂ = 2 m v₁
v₂ = 2 v₁
consider particles of equal mass.
By the time their speeds increase they enter the relativistic regime
p₂ = mv₂ /√(1 + v₂² /c²)
p₁ = m v₁ /√(1 + v₁² / c²)
let's look for the relationship between these two moments
p₂ / p₁ = mv₂ / mv₁ [√ (1+ v₁² / c²) /√ (1 + v₂² / c²)
from the initial statement
p₂ / p₁ = 2 √(c² + v₁²) / (c² + v₂²)
we take c from the root
p₂ / p₁ = 2 √ [(1+ v₁²) / (1 + v₂²)]
this is the exact result, to have an approximate shape suppose that the velocities are much greater than 1
p₂ / p₁ = 2 √ [v₁² / v₂²] = 2 √ [(v₁ / v₂)²]
p₂ / p₁ = 2 (v₁ / v₂)
we see the value of the moment depends on the speed of the particles
How should the magnetic field lines be drawn for the magnets shown below?
Answer:
Magnetic field lines can be drawn by moving a small compass from point to point around a magnet. At each point, draw a short line in the direction of the compass needle.When opposite poles of two magnets are brought together, the magnetic field lines join together and become denser between the poles.
Explanation:
he gravitational force between two objects of masses m1m1m_1 and m2m2m_2 that are separated by distance rrr is
Answer:
[tex]F = \frac{6.67408m_1 m_2}{10^{11}r^2}[/tex]
Explanation:
Given
[tex]Object_1 = m_1[/tex]
[tex]Object_2 = m_2[/tex]
[tex]Distance = r[/tex]
Required
Determine the force of attraction
This is calculated as:
[tex]F = \frac{GMm}{d^2}[/tex]
Where
M = mass of object 1
m = mass of object 2
d = distance
Where G = gravitational constant
[tex]G = 6.67408 * 10^{-11}\ m^3 kg^{-1} s^{-2}[/tex]
Substitute these values in
[tex]F = \frac{GMm}{d^2}[/tex]
[tex]F = \frac{6.67408 * 10^{-11} * m_1 * m_2}{r^2}[/tex]
[tex]F = \frac{6.67408 * m_1 * m_2* 10^{-11}}{r^2}[/tex]
[tex]F = \frac{6.67408m_1 m_2* 10^{-11}}{r^2}[/tex]
[tex]F = \frac{6.67408m_1 m_2}{10^{11}*r^2}[/tex]
[tex]F = \frac{6.67408m_1 m_2}{10^{11}r^2}[/tex]
answer plz answer plzzz I am a little confused with full time
plzzzzzzzzzzzzzzzzzzzzzzzzzz help 20 points
Answer:
1.23
Explanation:
[tex]{\underline{\pink{\textsf{\textbf{ Answer : }}}}}[/tex]
➩ 1.23 feet
[tex]{\underline{\purple{\textsf{\textbf{Explanation : }}}}}[/tex]
Given :
Simon cuts a pipe that was 4.92 feet long Then he cuts it into four equal pieces.To find :
What is the length of the each piece.Solution :
As it is told that it's divided into four equal pieces
Therefore,
We must divide it by 4 to get the length of each piece.
So,
[tex] \sf \to \: \frac{4.92}{4} \\ \sf \to \: 1.23 \: feet \: ans.[/tex]
It increases, f = ma both mass and acceleration are directly proportional to force so if mass is constant acceleration must increase to increase the force.
Answer:
is that a question?
Explanation:
thankyou for the points
Power is the rate at which work is done true or false
Answer:
false
Explanation:
A plane starts from rest accelerates to 40 m/s in 10 seconds. How far did the plane travel during this time?
200 m
Explanation:We are given:
Initial velocity of the plane (u) = 0 m/s
Final velocity of the plane (v) = 40 m/s
Time interval (t) = 10 seconds
Displacement of the plane (s) = x m
Solving for x:
Acceleration of the plane
v = u + at [First equation of motion]
40 = 0 + a(10) [replacing known variables]
a = 4 m/s² [dividing both sides by 10]
Displacement of the Plane:
s = ut + 1/2 (at²) [Second equation of motion]
s = (0)(10) + 1/2(4)(10)² [replacing known variables]
s = 200 m
Hence, the Plane covers a distance of 200 m in the given time interval
What is the similarity between relative dating and radioactive dating? I will mark brainlest. I dont know how btw
Answer:
relative dating and radioactive dating are two methods in archeaology to determine the age of fossils and rocks
Explanation:
the act of or study of fossils is important for the determination of the kind of organism it represents how the organism lived and how it was preserved on the Earth’s surface over the past 4600000000 years
5.
An 80 newton force and a 45 newton force act on an object
as shown below.
80 N
30°
4S N
Which of the following vectors would bets represent an
equilibrant when added to this system?
(1) 24 N to the left (3) 24 N to the right
(2) 114 N to the right (4) 45 N to the left
Tirant Showroiculations
Answer:
the answer is a time your welcome
Answer:
(1)
Explanation:
A copper collar is to fit tightly about a steel shaft whose diameter is 6.0000 cm at 19°C. The inside diameter of the copper collar at that temperature is 5.9800 cm. To what temperature must the copper collar be raised so that it will just slip on the steel shaft, assuming the temperature of both the steel shaft and copper collar are raised simultaneously?
Answer:
T' = 865.15 °C
Explanation:
In order for the copper collar to just slip on the steel shaft the, assuming are heated simultaneously, we must find the final parameters of both and equate them. Because the final diameters of both must be same for the slipping to occur.
FOR COPPER COLLAR:
dc' = dc(1 + ∝c*ΔT)
where,
dc' = final diameter of copper ring
dc = initial diameter of copper ring = 5.98 cm
∝c = coefficient of linear expansion for copper = 16 x 10⁻⁶ °C⁻¹
ΔT = Change in Temperature
Therefore,
dc' = (5.98 cm)[1 + (16 x 10⁻⁶ °C⁻¹)ΔT] ------------- equation (1)
FOR STEEL SHAFT:
ds' = ds(1 + ∝s*ΔT)
where,
ds' = final diameter of steel shaft
ds = initial diameter of steel shaft = 6 cm
∝s = coefficient of linear expansion for steel = 12 x 10⁻⁶ °C⁻¹
ΔT = Change in Temperature
Therefore,
dc' = (6 cm)[1 + (12 x 10⁻⁶ °C⁻¹)ΔT] ------------- equation (2)
Comparing equation (1) and equation (2):
(5.98 cm)[1 + (16 x 10⁻⁶ °C⁻¹)ΔT] = (6 cm)[1 + (12 x 10⁻⁶ °C⁻¹)ΔT]
(5.98 cm/6 cm)[1 + (16 x 10⁻⁶ °C⁻¹)ΔT] = [1 + (12 x 10⁻⁶ °C⁻¹)ΔT]
0.9967 + (1.59 x 10⁻⁵ °C⁻¹)ΔT = 1 + (12 x 10⁻⁶ °C⁻¹)ΔT
1 - 0.9967 = [(15.9 -12) x 10⁻⁶ °C⁻¹]ΔT
0.0033/3.9 x 10⁻⁶ °C⁻¹ = ΔT
ΔT = 846.15 °C
but,
ΔT = T' - T = T' - 19°C = 846.15°C
T' = 846.15 °C + 19 °C
T' = 865.15 °C
Answer as soon as possible
Answer:
the velocity of the acorn
Explanation:
just do in in real life and see
Answer:
it is probably the velocity of the acorn
2) What does the specific heat capacity of a material tell you about how easy it is to heat up
that material
Answer:
High specific heat -> takes more energy to raise/lower object's temperature
Low specific heat -> takes less energy to raise/lower object's temperature
Explanation:
The specific heat capacity is the amount of heat required to raise the temperature of something per unit of mass.
A high specific heat value for an object means it takes more energy to raise or lower that object's temperature. A low specific heat value for an object means it does not take very much energy to heat or cool that object.
The atomic of nitrogen is 7. The number of electrons a neutral atom has is_, and its atomic mass is approximately_amu.
What type of meter would be connected on both sides of a resistor in a circuit?
Type of meter would be connected on both sides of a resistor in a circuit is a a voltmeter , which measures potential difference .
What is a voltmeter ?A voltmeter is an instrument used for measuring the potential difference , or voltage between two points in an electrical circuit .
A voltmeter is always attached in a series combination and an ammeter (which measures current in a circuit ) always attached in parallel combination with the circuit.
Since , in question it is given that a meter would be connected on both sides of a resistor in a circuit that means it must be a series combination
hence , correct answer is B) a voltmeter , which measures potential difference .
learn more about voltmeter
https://brainly.com/question/8505839?referrer=searchResults
#SPJ3
Can someone please answer how to convert mass into weight?
Answer:
To find the weight of something, simply multiply its mass by the value of the local gravitational field, and you get a result in newtons (N). For example, if your mass is 50 kg (about 110 pounds), then your weight is (50) (9.8). The point that must be overwhelmingly emphasized is that weight is a force.
Explanation:
How much work is done by the gravitational force on the block?
Answer:
Work = Mass * Gravity * Height and is measured in Joules. Imagine you find a 2 -Kg book on the floor and lift it 0.75 meters and put it on a table. Remember, that “force” is simply a push or a pull. If you lift 100 kg of mass 1-meter, you will have done 980 Joules of work.
Explanation:
As the skiers travel down the slope a portion of their total energy is lost. This means that when they perform their tricks, they will never go as high as they were when they first pushed off from the gate. Describe how this energy is lost.
Answer:
Explained below
Explanation:
In skying down a hill, usually the skiers start at an elevated position and this means that they possess a large quantity of potential energy since they are in vertical position.
Now, as the skiers start to descend down the hill, they will lose potential energy while they gain kinetic energy since they are in motion. This is because there is reduction in height which results in a loss of potential energy and there is an increase in their speed which results in an increase in kinetic energy.
Now, immediately the skiers reaches the bottom of the hill, it means they are now at zero level height which means potential energy is now zero and it implies they have completely depleted the potential they had at the beginning at the top of the hill.
In contrast, at this zero level height, their speed and kinetic energy would have reached a maximum and this kinetic energy state will be maintained until they encounter a section of unpacked snow where they have to skid to a stop under force of friction. This friction force will carry out work on the skiers which will make their total mechanical energy to decrease. This means that as the force of friction keeps acting over an increasing distance, the quantity of work will therefore increase while the mechanical energy of the skiers will gradually be dissipated.
Eventually, the skiers will run out of energy and comes to a rest position and therefore they wouldn't be able to go as high as they first were before pushing off from the gate.
(b) In the USA, drones are not allowed to be flown too high above the ground.
Suggest one possible risk of flying a drone too high above the ground.
Plz complete thank you in advance
The 400-foot altitude limit was put in place for the sake of airspace safety, and there is a risk to country security as well as the privacy of citizens.
What are drones?Unmanned aerial vehicles (UAVs), sometimes known as drones, are used for a variety of jobs, from routine to extremely dangerous. These robotic-looking planes can be seen practically everywhere, from delivering groceries to your home to rescuing avalanche victims.
The 400-foot altitude restriction was ultimately implemented for airspace safety. Given the breadth of the airspace above 400 feet, the likelihood of a drone colliding with a human aircraft is exceedingly remote, but the consequences might be disastrous.
Any aerial vehicle that uses software to fly autonomously or that may be controlled remotely by a pilot is referred to as a drone. Numerous drones come equipped with cameras to gather visual data and propellers to stabilize flying paths. Drone technology has been incorporated into industries like videography, search and rescue, agriculture, and transportation.
When in uncontrolled (Class G) airspace, your drone must be flown 400 feet above the ground or less.
To know more about drones:
https://brainly.com/question/27753670
#SPJ2
The cardinal, central, and secondary traits are all part of __________ categorized traits. A. Gordon Allport’s B. Robert McCrae’s C. Paul Costa’s D. Hans Eysenck’s
Answer:
Gordon Allport’s
Explanation:
edge2o2o
The cardinal, central, and secondary traits are all part of Gordon Allport’s categorized traits. The Correct option is A
Who was Gordon Allport ?
Gordon Willard Allport was born on 11 November 1897 and died 9 October 1967. He was an American psychologist. Allport was first psychologists who studied on personality. he has developed theory of personality. which was one of the greatest finding in the study of personality psychology. He was Appointed as a social science instructor at Harvard University in 1924,
Gordon Allport was a great trait theorist who categorized personality traits into three categories cardinal, central, and secondary.
Hence option A is Correct.
To know more about traits, click :
https://brainly.com/question/1463051
#SPJ3
A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. How far away is the cliff? The speed of sound in air a ordinary temperature is 343 m/s.
Answer:
480.2 m
Explanation:
The following data were obtained from the question:
Speed of sound (v) = 343 m/s.
Time (t) = 2.8 s
Distance (x) of the cliff =?
The distance of the cliff from the woman can be obtained as follow:
v = 2x /t
343 = 2x /2.8
Cross multiply
2x = 343 × 2.8
2x = 960.4
Divide both side by the coefficient of x i.e 2
x = 960.4/2
x = 480.2 m
Therefore, the cliff is 480.2 m away from the woman.
The distance should be 480.2 m
The calculation is as follows:Since A woman standing before a cliff claps her hands, and 2.8s later she hears the echo. And, there is the velocity of 343 m/s
[tex]v = 2x \div t\\\\343 = 2x \div 2.8\\\\2x = 343 \times 2.8[/tex]
2x = 960.4
x = 480.2 m
Learn more: https://brainly.com/question/1504221?referrer=searchResults
True or False when an object speeds up it gains momentum
Answer: True
Explanation:
A racecar accelerates from rest at 6.5 m/s2 for 4.1 s. How fast will it be going at the end of that time?
Answer:
The final velocity of the car is 26.65 m/s.
Explanation:
Given;
acceleration of the racecar, a = 6.5 m/s²
initial velocity of the car, u = 0
time of motion, t = 4.1 s
The final velocity of the car is given by;
v = u + at
where;
v is the final velocity of the car
suvstitute the givens
v = 0 + (6.5)(4.1)
v = 26.65 m/s.
Therefore, the final velocity of the car is 26.65 m/s.
A falling stone takes delta t = 0.32s to travel past a window 2.2m Tall. From what height above the top of the window did the stone fall?
Answer:
The height above the top of the window is 1.44 m
Explanation:
Given;
time of motion, t = 0.32 s
height traveled at the given time, h = 2.2m
determine the initial velocity of the stone;
h = ut + ¹/₂gt²
2.2 = u(0.32) + ¹/₂ x 9.8 x 0.32²
2.2 = 0.32u + 0.502
0.32u = 2.2 - 0.502
0.32u = 1.698
u = 1.698 / 0.32
u = 5.31 m/s
This initial velocity on top of the window becomes the final velocity from the height above the window.
v² = u² + 2gh
where;
u is the initial velocity of the stone from the height above the window;
5.31² = 0 + (2 x 9.8)h
19.6h = 28.196
h = 28.196/19.6
h = 1.44 m
Therefore, the height above the top of the window is 1.44 m