a bag contains 6 cherry 3 orange and 2 lemon candies. You reach in and take 3 pieces of candy at random. Find the probability of all lemons

Answers

Answer 1

Answer:

0.181818

Step-by-step explanation:

There are total 11 candies. The possibility of combinations is 165 which is found by using computation technique 11C3. It is assumed that order does not matter. There are 3 pieces of candy are selected at random. There are 6C2 which is 15 different ways to select cherry and lemon. There are 30 ways to choose 2 cherry and a lemon combination. The probability is [tex]\frac{30}{165}[/tex] = 0.181818


Related Questions

Plz. Can anyone explain and tell the answer of this question.I promise I will mark it as brainliest Question.

Answers

Answer:

x = 15

y = 90

Step-by-step explanation:

Step 1: Find x

We use Definition of Supplementary Angles

9x + 3x = 180

12x = 180

x = 15

Step 2: Find y

All angles in a triangle add up to 180°

3(15) + 3(15) + y = 180

45 + 45 + y = 180

90 + y = 180

y = 90°

Will mark as brainliess and thanks for awnsering this simple question

Answers

Answer:

x=-2

Step-by-step explanation:

2 times -2=-4+3=-1

Which equation represents a line that passes through (2,-2) and has a slope of 3?

y-2 = 3(x +
y – 3 = 2(x + ?)
y +
= 3(x - 2)
y +
= 2(x - 3)

Answers

y=3x-8 is the answer , maybe u can find it in this equations

What is the value of x?

Enter your answer in the box.

Answers

Answer:

x=11

Step-by-step explanation:

Since the lines in the middle are parallel, we know that both sides are proportional to each other.

6:48 can be simplified to 1:8

Since we know the left side ratio is 1:8, we need to match the right side with the same ratio

We can multiply the ratio by 5 to match 5:3x+7

5:40

5:3x+7

Now we can set up the equation: 40=3x+7

Subtract 7 from both sides

3x=33

x=11

6.1.3
What requirements are necessary for a normal probability distribution to be a standard normal probability distribution?

Answers

Answer:

μ = 0σ = 1

Step-by-step explanation:

A standard normal probability distribution is a normal distribution that has a mean of zero and a standard deviation of 1.

The Mathalot Company makes and sells textbooks. They have one linear function that represents the cost of producing textbooks and another linear function that models how much income they get from those textbooks. Describe the key features that would determine if these linear functions ever intercepted. (10 points)

Answers

this is the answer trust me i got it right

Suppose a polling agency reported that 44.4​% of registered voters were in favor of raising income taxes to pay down the national debt. The agency states that results are based on telephone interviews with a random sample of 1049 registered voters. Suppose the agency states the margin of error for 95​% confidence is 3.0​%. Determine and interpret the confidence interval for the proportion of registered voters who are in favor of raising income taxes to pay down the national debt.

Answers

Answer:

95% of confidence interval for the proportion of registered voters who are in favor of raising income taxes to pay down the national debt.

(0.414 ,0.474)

Step-by-step explanation:

Step(i):-

Given sample proportion

                                    p⁻ = 44.4 % = 0.444

Random sample size 'n' = 1049

Given margin of error for 95% confidence level = 3 % = 0.03

Step(ii):-

95% of confidence interval for the proportion is determined by

[tex](p^{-} - Z_{\alpha }\sqrt{\frac{p^{-} (1-p^{-} }{n} } , p^{-} + Z_{\alpha }\sqrt{\frac{p^{-} (1-p^{-} }{n} })[/tex]

we know that

Margin of error for 95% confidence level is determined by

[tex]M.E = Z_{\alpha }\sqrt{\frac{p^{-} (1-p^{-}) }{n} }[/tex]

Step(iii):-

Now

95% of confidence interval for the proportion is determined by

[tex](p^{-} - M.E, p^{-} + M.E)[/tex]

Given Margin of error

                              M.E = 0.03

Now 95% of confidence interval for the proportion

[tex](0.444 - 0.03, 0.444+ 0.03)[/tex]

(0.414 ,0.474)

Conclusion:-

95% of confidence interval for the proportion of registered voters who are in favor of raising income taxes to pay down the national debt.

(0.414 ,0.474)

What’s the probability of getting each card out of a deck?

Determine the probability of drawing the card(s) at random from a well-shuffled regular deck of 52 playing cards.​

a. a seven​​​​​​​​​​​​ __________

b. a six of clubs​​​​​​​​​​​​. ___________

c. a five or a queen​​​​​​​​​​​ ___________

d. a black card​​​​​​​​​​​​. ___________

e. a red card or a jack​​​​​. ___________

f. a club or an ace​​​​​​​​​​​. ___________

g. a diamond or a spade​​​​​​​​​​​. ___________

Answers

Answer:

a. 1/13

b. 1/52

c. 2/13

d. 1/2

e. 15/26

f. 17/52

g. 1/2

Step-by-step explanation:

a. In a deck of cards, there are 4 suits and each of them has a 7. Therefore, the probability of drawing a 7 is:

P(7) = 4/52 = 1/13

b. There is only one 6 of clubs, therefore, the probability of drawing a 6 of clubs is:

P(6 of clubs) = 1/52

c. There 4 fives (one for each suit) and 4 queens in a deck of cards. Therefore, the probability of drawing a five or a queen​​​​​​​​​​​ is:

P(5 or Q) = P(5) + P(Q)

= 4/52 + 4/52

= 1/13 + 1/13

P(5 or Q) = 2/13

d. There are 2 suits that are black. Each suit has 13 cards. Therefore, there are 26 black cards. The probability of drawing a black card is:

P(B) = 26/52 = 1/2

e. There are 2 suits that are red. Each suit has 13 cards. Therefore, there are 26 red cards. There are 4 jacks. Therefore:

P(R or J) = P(R) + P(J)

= 26/52 + 4/52

= 30/52

P(R or J) = 15/26

f. There are 13 cards in clubs suit and there are 4 aces, therefore:

P(C or A) = P(C) + P(A)

= 13/52 + 4/52

P(C or A) = 17/52

g. There are 13 cards in the diamonds suit and there are 13 in the spades suit, therefore:

P(D or S) = P(D) + P(S)

= 13/52 + 13/52

= 26/52

P(D or S) = 1/2

Still timed. More math needing help with, i'll double points and mark brainliest! 1. (y - 6) (y + 3) 2. (4x - 5) (x - 7) 3.(3x - 2) ( 4x - 1)

Answers

Answer:

1. y² - 3x - 18

2. 4x² - 33x + 35

3. 12x² - 11x + 2

Step-by-step explanation:

All we do with these questions are expanding the factored binomials. Use FOIL:

1. y² + 3y - 6y - 18

y² - 3y - 18

2. 4x² - 28x - 5x + 35

4x² - 33x + 35

3. 12x² - 3x - 8x + 2

12x² - 11x + 2

Answer:

1) (y-6) (y+3)

=> [tex]y^2+3y-6y-18[/tex]

=> [tex]y^2-3y-18[/tex]

2) (4x-5) (x-7)

=> [tex]4x^2-28x-5x+35[/tex]

=> [tex]4x^2-33x+35[/tex]

3) (3x - 2) ( 4x - 1)

=> [tex]12x^2-3x-8x+3[/tex]

=> [tex]12x^2-11x+3[/tex]

At a high school, 9th and 10th graders were asked whether they would prefer
robotics or art as an elective. The results are shown in the relative frequency
table.
To the nearest percent, what percentage of 10th graders surveyed preferred robotics?

Answers

Using the percentage concept, it is found that 51% of 10th graders surveyed preferred robotics, hence option B is correct.

What is a percentage?

The percentage of an amount a over a total amount b is given by a multiplied by 100% and divided by b, that is:

[tex]P = \frac{a}{b} \times 100\%[/tex]

In this problem, we have that 33% out of 65% of the students are 7th graders who preferred robotics, hence the percentage is given by:

[tex]P = \frac{33}{65} \times 100\% = 51%[/tex]

Which means that option B is correct.

More can be learned about percentages at https://brainly.com/question/14398287

#SPJ1

Answer:

It's A. 61% The dude above me is wrong.

Step-by-step explanation:

I just took the test

If TU = 6 units, what must be true? SU + UT = RT RT + TU = RS RS + SU = RU TU + US = RS

Answers

Answer:

Since RT = 12, TU = 6 and RS = 24, T and U are the midpoints of RS and TS respectively. This means that SU + UT = RT.

Answer:

su+ut=rt

Step-by-step explanation:

BIG Corporation advertises that its light bulbs have a mean lifetime, μ, of 2800 hours. Suppose that we have reason to doubt this claim and decide to do a statistical test of the claim. We choose a random sample of light bulbs manufactured by BIG and find that the mean lifetime for this sample is 2620 hours and that the sample standard deviation of the lifetimes is 650 hours.

In the context of this test, what is a Type II error?

A type II error is (rejecting/failing to reject) the hypothesis that μ is (less than/less than or equal to/greater than/greater than or equal to/not equal to/equal to) ____ when in fact, μ is (less than/less than or equal to/greater than/greater than or equal to/not equal to/equal to) ______.

Answers

Answer:

A type II error is failing to reject the hypothesis that μ is equal to 2800 when in fact, μ is less than 2800.

Step-by-step explanation:

A Type II error happens when a false null hypothesis is failed to be rejected.

The outcome (the sample) probability is still above the level of significance, so it is consider that the result can be due to chance (given that the null hypothesis is true) and there is no enough evidence to claim that the null hypothesis is false.

In this contest, a Type II error would be not rejecting the hypothesis that the mean lifetime of the light bulbs is 2800 hours, when in fact this is false: the mean lifetime is significantly lower than 2800 hours.

is a parallelogram sometimes always or never a trapezoid

Answers

yes

Step-by-step explanation:

parallelogram are quadrilaterals with two sets of parallel sides. since square must be quadrilaterals with two sets of parallel sides ,then all squares are parallelogram ,a trapezoid is quadrilateral.

Use the graph to find estimates of the solutions to the equation x2 + x-6=-2

Answers

Answer:

The solutions are the roots of the quadratic. They are found where the graph crosses the x-axis.

Step-by-step explanation:

if a to the power x by y is equal to 1 then the value of x is​

Answers

Answer:

a^x/y=1              x: 0

Step-by-step explanation: w.k.t,        a^0=1( any variable raised to 0 is 1)

                                    so, here the exponent is x/y which should have been 0 so that answer was 1.

Someone help me please​

Answers

The correct answer is 3

Explain

Given that there are 54 colored stickers across all six faces, then we could assume that the total surface area is 54 square units.


Cube formula

S A = 6s ^2


6s^2 =54

S^2=54/6

Divide by 6

S^2 =9

S = √9

S =3

The nth term of a geometric sequence is given by an = 27(0.1)n - 1. Write the first five terms of this sequence.

Answers

Answer:

The first first five terms of this sequence are

27 ,2.7 ,0.27 ,0.027 , 0.0027

Step-by-step explanation:

[tex]a(n) = 27(0.1)^{n - 1} [/tex]

where n is the number of term

For the first term

n = 1

[tex]a(1) = 27(0.1)^{1 - 1} = 27(0.1) ^{0} [/tex]

= 27(1)

= 27

Second term

n = 2

[tex]a(2) = 27(0.1)^{2 - 1} = 27(0.1)^{1} [/tex]

= 27(0.1)

= 2.7

Third term

n = 3

[tex]a(3) = 27(0.1)^{3 - 1} = 27(0.1)^{2} [/tex]

= 0.27

Fourth term

n = 4

[tex]a(4) = 27(0.1)^{4 - 1} = 27(0.1)^{3} [/tex]

= 0.027

Fifth term

n = 5

[tex]a(5) = 27(0.1)^{5 - 1} = 27(0.1)^{4} [/tex]

= 0.0027

Hope this helps you

Find f o g and g o f to determine if f and g are inverse functions. If they are not inverses, pick the function that would be the inverse with f(x). f(x) = (-2/x) – 1; g(x) = -2/(x+1) Choices: a. g(x) has to be: (1+x)/2 b. g(x) has to be: x/2 c. g(x) has to be: 2 – (1/x) d. Inverses

Answers

Answer:

(f o g) = x, then, g(x) is the inverse of f(x).

Step-by-step explanation:

You have the following functions:

[tex]f(x)=-\frac{2}{x}-1\\\\g(x)=-\frac{2}{x+1}[/tex]

In order to know if f and g are inverse functions you calculate (f o g) and (g o f):

[tex]f\ o\ g=f(g(x))=-\frac{2}{-\frac{2}{x+1}}-1=x+1-1=x[/tex]

[tex]g\ o\ f=g(f(x))=-\frac{2}{-\frac{2}{x}+1}=-\frac{2}{\frac{-2+x}{x}}=\frac{2x}{2-x}[/tex]

(f o g) = x, then, g(x) is the inverse of f(x).

The time it takes me to wash the dishes is uniformly distributed between 10 minutes and 15 minutes. What is the probability that washing dishes tonight will take me between 12 and 14 minutes

Answers

Answer:

The probability that washing dishes tonight will take me between 12 and 14 minutes is 0.1333.

Step-by-step explanation:

Let the random variable X represent the time it takes to wash the dishes.

The random variable X is uniformly distributed with parameters a = 10 minutes and b = 15 minutes.

The probability density function of X is as follows:

[tex]f_{X}(x)=\frac{1}{b-a};\ a<X<b,\ a<b[/tex]

Compute the probability that washing dishes will take between 12 and 14 minutes as follows:

[tex]P(12\leq X\leq 14)=\int\limits^{12}_{14} {\frac{1}{15-10} \, dx[/tex]

                           [tex]=\frac{1}{5}\int\limits^{12}_{14} {1} \, dx \\\\=\frac{1}{5}\times [x]^{14}_{12}\\\\=\frac{1}{15}\times [14-12]\\\\=\frac{2}{15}\\\\=0.1333[/tex]

Thus, the probability that washing dishes tonight will take me between 12 and 14 minutes is 0.1333.

A team of four boys and five girls is to be chosen from a group of six boys and eight girls. How many different teams are possible?​

Answers

Answer:

There are a total of 840 possible different teams

Step-by-step explanation:

Given

Number of boys = 6

Number of girls = 8

Required

How many ways can 4 boys and 5 girls be chosen

The keyword in the question is chosen;

This implies that, we're dealing with combination

And since there's no condition attached to the selection;

The boys can be chosen in [tex]^6C_4[/tex] ways

The girls can be chosen in [tex]^8C_5[/tex] ways

Hence;

[tex]Total\ Selection = ^6C_4 * ^8C_5[/tex]

Using the combination formula;

[tex]^nCr = \frac{n!}{(n-r)!r!}[/tex]

The expression becomes

[tex]Total\ Selection = \frac{6!}{(6-4)!4!} * \frac{8!}{(8-5)!5!}[/tex]

[tex]Total\ Selection = \frac{6!}{2!4!} * \frac{8!}{3!5!}[/tex]

[tex]Total\ Selection = \frac{6 * 5* 4!}{2!4!} * \frac{8 * 7 * 6 * 5!}{3!5!}[/tex]

[tex]Total\ Selection = \frac{6 * 5}{2!} * \frac{8 * 7 * 6}{3!}[/tex]

[tex]Total\ Selection = \frac{6 * 5}{2*1} * \frac{8 * 7 * 6}{3*2*1}[/tex]

[tex]Total\ Selection = \frac{30}{2} * \frac{336}{6}[/tex]

[tex]Total\ Selection =15 * 56[/tex]

[tex]Total\ Selection =840[/tex]

Hence, there are a total of 840 possible different teams

The scientist performs additional analyses and observes that the number of major earthquakes does appear to be decreasing but wonders whether the relationship is statistically significant. Based on the partial regression output below and a 5% significance level, is the year statistically significant in determining the number of earthquakes above magnitude 7.0?Dependent Variable: Earthquakes above Magnitude 7.0 Coefficients Standard t Stat P-value Lower 95% Upper 95% ErrorIntercept 64.67 38.08 4.32 89.22 240.12Year -0.07 0.02 -3.82 -0.11 -0.04

Answers

Answer:

Step-by-step explanation:

Hello!

A regression model was determined in order to predict the number of earthquakes above magnitude 7.0 regarding the year.

^Y= 164.67 - 0.07Xi

Y: earthquake above magnitude 7.0

X: year

The researcher wants to test the claim that the regression is statistically significant, i.e. if the year is a good predictor of the number of earthquakes with magnitude above 7.0 If he is correct, you'd expect the slope to be different from zero: β ≠ 0, if the claim is not correct, then the slope will be equal to zero: β = 0

The hypotheses are:

H₀: β = 0

H₁: β ≠ 0

α: 0.05

The statistic for this test is a student's t: [tex]t= \frac{b - \beta }{Sb} ~~t_{n-2}[/tex]

The calculated value is in the regression output [tex]t_{H_0}= -3.82[/tex]

This test is two-tailed, meaning that the rejection region is divided in two and you'll reject the null hypothesis to small values of t or to high values of t, the p-value for this test will also be divided in two.

The p-value is the probability of obtaining a value as extreme as the one calculated under the null hypothesis:

p-value: [tex]P(t_{n-2}\leq -3.82) + P(t_{n-2}\geq 3.82)[/tex]

As you can see to calculate it you need the information of the sample size to determine the degrees of freedom of the distribution.

If you want to use the rejection region approach, the sample size is also needed to determine the critical values.

But since this test is two tailed at α: 0.05 and there was a confidence interval with confidence level 0.95 (which is complementary to the level of significance) you can use it to decide whether to reject the null hypothesis.

Using the CI, the decision rule is as follows:

If the CI includes the "zero", do not reject the null hypothesis.

If the CI doesn't include the "zero", reject the null hypothesis.

The calculated interval for the slope is: [-0.11; -0.04]

As you can see, both limits of the interval are negative and do not include the zero, so the decision is to reject the null hypothesis.

At a 5% significance level, you can conclude that the relationship between the year and the number of earthquakes above magnitude 7.0 is statistically significant.

I hope this helps!

(full output in attachment)

The amount of syrup that people put on their pancakes is normally distributed with mean 63 mL and standard deviation 13 mL. Suppose that 43 randomly selected people are observed pouring syrup on their pancakes. Round all answers to 4 decimal places where possible.

What is the distribution of XX? XX ~ N(_______,_________)
What is the distribution of ¯xx¯? ¯xx¯ ~ N(______,_________)
If a single randomly selected individual is observed, find the probability that this person consumes is between 61.4 mL and 62.8 mL. ________
For the group of 43 pancake eaters, find the probability that the average amount of syrup is between 61.4 mL and 62.8 mL. _________
For part d), is the assumption that the distribution is normal necessary? No Yes
please only answer if you are able to answer all parts correctly

Answers

Answer:

(a) X ~ N([tex]\mu=63, \sigma^{2} = 13^{2}[/tex]).

    [tex]\bar X[/tex] ~ N([tex]\mu=63,s^{2} = (\frac{13}{\sqrt{43} } )^{2}[/tex]).

(b) If a single randomly selected individual is observed, the probability that this person consumes is between 61.4 mL and 62.8 mL is 0.0398.

(c) For the group of 43 pancake eaters, the probability that the average amount of syrup is between 61.4 mL and 62.8 mL is 0.2512.

(d) Yes, for part (d), the assumption that the distribution is normally distributed necessary.

Step-by-step explanation:

We are given that the amount of syrup that people put on their pancakes is normally distributed with mean 63 mL and a standard deviation of 13 mL.

Suppose that 43 randomly selected people are observed pouring syrup on their pancakes.

(a) Let X = amount of syrup that people put on their pancakes

The z-score probability distribution for the normal distribution is given by;

                      Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean amount of syrup = 63 mL

            [tex]\sigma[/tex] = standard deviation = 13 mL

So, the distribution of X ~ N([tex]\mu=63, \sigma^{2} = 13^{2}[/tex]).

Let [tex]\bar X[/tex] = sample mean amount of syrup that people put on their pancakes

The z-score probability distribution for the sample mean is given by;

                      Z  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean amount of syrup = 63 mL

            [tex]\sigma[/tex] = standard deviation = 13 mL

            n = sample of people = 43

So, the distribution of [tex]\bar X[/tex] ~ N([tex]\mu=63,s^{2} = (\frac{13}{\sqrt{43} } )^{2}[/tex]).

(b) If a single randomly selected individual is observed, the probability that this person consumes is between 61.4 mL and 62.8 mL is given by = P(61.4 mL < X < 62.8 mL)

   P(61.4 mL < X < 62.8 mL) = P(X < 62.8 mL) - P(X [tex]\leq[/tex] 61.4 mL)

  P(X < 62.8 mL) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{62.8-63}{13}[/tex] ) = P(Z < -0.02) = 1 - P(Z [tex]\leq[/tex] 0.02)

                                                           = 1 - 0.50798 = 0.49202

  P(X [tex]\leq[/tex] 61.4 mL) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{61.4-63}{13}[/tex] ) = P(Z [tex]\leq[/tex] -0.12) = 1 - P(Z < 0.12)

                                                           = 1 - 0.54776 = 0.45224

Therefore, P(61.4 mL < X < 62.8 mL) = 0.49202 - 0.45224 = 0.0398.

(c) For the group of 43 pancake eaters, the probability that the average amount of syrup is between 61.4 mL and 62.8 mL is given by = P(61.4 mL < [tex]\bar X[/tex] < 62.8 mL)

   P(61.4 mL < [tex]\bar X[/tex] < 62.8 mL) = P([tex]\bar X[/tex] < 62.8 mL) - P([tex]\bar X[/tex] [tex]\leq[/tex] 61.4 mL)

  P([tex]\bar X[/tex] < 62.8 mL) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{62.8-63}{\frac{13}{\sqrt{43} } }[/tex] ) = P(Z < -0.10) = 1 - P(Z [tex]\leq[/tex] 0.10)

                                                           = 1 - 0.53983 = 0.46017

  P([tex]\bar X[/tex] [tex]\leq[/tex] 61.4 mL) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{61.4-63}{\frac{13}{\sqrt{43} } }[/tex] ) = P(Z [tex]\leq[/tex] -0.81) = 1 - P(Z < 0.81)

                                                           = 1 - 0.79103 = 0.20897

Therefore, P(61.4 mL < X < 62.8 mL) = 0.46017 - 0.20897 = 0.2512.

(d) Yes, for part (d), the assumption that the distribution is normally distributed necessary.

Let r(t)=〈t2,1−t,4t〉. Calculate the derivative of r(t)⋅a(t) at t=2

Assuming that a(2)=〈7,−3,7〉 and a′(2)=〈3,2,4〉

ddtr(t)⋅a(t)|t=2=______

Answers

Answer:

101

Step-by-step explanation:

We are given that

r(t)=[tex]<t^2,1-t,4t>[/tex]

We have to find the derivative of r(t).a(t) at t=2

a(2)=<7,-3,7> and a'(2)=<3,2,4>

We know that

[tex]\frac{d(uv)}{dx}=u'v+v'u[/tex]

Using the formula

[tex]\frac{d(r(t)\cdot at(t))}{dt}=r'(t)\cdot a(t)+r(t)\cdot a'(t)[/tex]

[tex]\frac{d(r(t)\cdot at(t))}{dt}=<2t,-1,4>\cdot a(t)+<t^2,1-t,4t>\cdot a'(t)[/tex]

Substitute t=2

[tex]\frac{d(r(t)\cdot at(t))}{dt}_|t=2=<4,-1,4>\cdot a(2)+<4,-1,8>\cdot a'(2)[/tex]

[tex]\frac{d(r(t)\cdot at(t))}{dt}_|t=2=<4,-1,4>\cdot <7,-3,7>+<4,-1,8>\cdot <3,2,4>[/tex]

[tex]\frac{d(r(t)\cdot at(t))}{dt}_|t=2=28+3+28+12-2+32=101[/tex]

The derivation of the equation will be "101".

Differentiation:

Given expression is:

r(t) = 〈t², 1 - t, 4t〉

Let,

a(2) = <7, -3, 7>

a'(2) = <3, 2, 4>

As we know,

→ [tex]\frac{d(uv)}{dx}[/tex] = u'v + v'u

By using the formula, the derivation will be:

→ [tex]\frac{d(r(t).at(t))}{dt}[/tex] = r'(t).a(t) + r(t).a'(t)

                  = <2t, -1, 4>.a(t) + <t², 1 - t, 4t>.a'(t)

By substituting "t = 2", we get

                  =  <4, -1, 4>.a(2) + <4, -1, 8>. a'(2)

                  = <4, -1, 4>.<7, -3, 7> + <4, -1, 8>.<3, 2, 4>

                  = 28 + 3 + 28 + 12 - 2 + 32

                  = 101

Thus the response above is appropriate.

Find out more information about derivatives here:

https://brainly.com/question/22068446

Simplify -4 • -4 • -4

Answers

Answer: -64

Step-by-step explanation: Since we know that -4 x -4 is a positive, it equals 16, then a positive plus a negative equals a negative, so 16 x -4 equals -64

Answer:

-64

Step-by-step explanation:

-4 • -4 • -4

-4*-4 = 16

16*-4

-64

When Vlad moved to his new home a few years ago, there was a young oak tree in his backyard. He measured it once a year and found that it grew by 26 centimeters each year. 4.5 years after he moved into the house, the tree was 292 centimeters tall. How tall was the tree when Vlad moved into the house? centimeters How many years passed from the time Vlad moved in until the tree was 357 centimeters tall? years

Answers

Answer:

The tree was 175 centimeters tall when Vlad moved into the house.

7 years passed from the time Vlad moved in until the tree was 357 centimeters tall.

Step-by-step explanation:

The height of the tree, in centimeters, in t years after Vlad moved into the house is given by an equation in the following format:

[tex]H(t) = H(0) + at[/tex]

In which H(0) is the height of the tree when Vlad moved into the house and a is the yearly increase.

He measured it once a year and found that it grew by 26 centimeters each year.

This means that [tex]a = 26[/tex]

So

[tex]H(t) = H(0) + 26t[/tex]

4.5 years after he moved into the house, the tree was 292 centimeters tall. How tall was the tree when Vlad moved into the house?

This means that when t = 4.5, H(t) = 292. We use this to find H(0).

[tex]H(t) = H(0) + 26t[/tex]

[tex]292 = H(0) + 26*4.5[/tex]

[tex]H(0) = 292 - 26*4.5[/tex]

[tex]H(0) = 175[/tex]

The tree was 175 centimeters tall when Vlad moved into the house.

How many years passed from the time Vlad moved in until the tree was 357 centimeters tall?

This is t for which H(t) = 357. So

[tex]H(t) = H(0) + 26t[/tex]

[tex]H(t) = 175 + 26t[/tex]

[tex]357 = 175 + 26t[/tex]

[tex]26t = 182[/tex]

[tex]t = \frac{182}{26}[/tex]

[tex]t = 7[/tex]

7 years passed from the time Vlad moved in until the tree was 357 centimeters tall.

Amanda is constructing equilateral triangle JKL inscribed in circle M. To construct the inscribed polygon, she is going to use a compass to partition the circle into congruent arcs. To what width should she set the compass when partitioning the circle? A. The width must be equal to the radius of circle M. B. The width must be equal the diameter of circle M. C. The width can be equal to either the radius or the diameter of circle M. D. The width can be any size greater than the radius but less than the diameter of circle M. E. The width must be less than the radius of circle M. help meee please!!!!!!!!!!!!!!!!!

Answers

Given:

An equilateral triangle JKL inscribed in circle M.

Solution:

To draw an equilateral triangle inscribed in circle follow the steps:

1: Draw a circle with any radius.

2. Take any point A, anywhere on the circumference of the circle.

3.  Place the compass on point A, and swing a small arc crossing the circumference of the circle.

Remember the span of the compass should be the same as the radius of the circle.

4. Place the compass at the intersection of the previous arc and the circumference and draw another arc but don't change the span of the compass.

5. Repeat this process until you return to point A.

6. Join the intersecting points on the circle to form the equilateral triangle.

So the correct option is A. The width must be equal to the radius of circle M.

An experiment consists of dealing 7 cards from a standard deck of 52 playing cards. What is the probability of being dealt exactly 4 clubs and 3 spades?

Answers

Answer: 0.00153

Step-by-step explanation:

Given: An experiment consists of dealing 7 cards from a standard deck of 52 playing cards.

Number of ways of dealing 7 cards from 52 cards = [tex]^{52}C_7[/tex]

Since there are 13 clubs and 13 spades.

Number of ways of getting exactly 4 clubs and 3 spades=[tex]^{13}C_4\times\ ^{13}C_3[/tex]

Now, the probability of being dealt exactly 4 clubs and 3 spades

[tex]=\dfrac{^{13}C_4\times\ ^{13}C_3}{^{52}C_7}\\\\\\=\dfrac{{\dfrac{13!}{4!(9!)}\times\dfrac{13!}{3!10!}}}{\dfrac{52!}{7!45!}}\\\\=\dfrac{715\times286}{133784560}\\\\=0.00152850224271\approx0.00153[/tex]

Hence,  the probability of being dealt exactly 4 clubs and 3 spades = 0.00153

An expression is shown below: 3pf^2 − 21p^2f + 6pf − 42p^2 Part A: Rewrite the expression by factoring out the greatest common factor. (4 points) Part B: Factor the entire expression completely. Show the steps of your work. (6 points)

Answers

Hey there! I'm happy to help!

PART A

Let's break down each terms in the expression to find the factors that make it up and see the greatest thing they all have in common

To break up the numbers, we keep on dividing it until there are only prime numbers left.

TERM #1

Three is a prime number, so there is no need to split it up.

3pf²= 3·p·f·f              

TERM #2

We have a negative coefficient here. First, let's ignore the negative sign and find all of the factors, which are just 7 and 3. One of them has to be negative and one has to be positive for it to be negative. It could be either way, and when comparing to other, we might want one to be negative or positive to match another part of the expression to find the greatest common factor. So, we will use the plus or minus sign ±, knowing that one must be positive and one must be negative.

-21p²2f= ±7·±3 (must be opposite operations) ·p·p·f

TERM #3

6pf= 2·3·p·f

TERM #4

Since 42 is made up of 3 prime factors (2,3,7), one of them or all three must be negative, because two negatives would make it positive. We will use the plus-minus sign again on all three because it could be just one is negative or all three are, but we don't know. We can use these later to find the greatest common factor when matching.

-42p²= ±2·±3·±7·p·p

Now, let's pull out all of our factors and see the greatest thing all four terms have in common

TERM 1: 3·p·f·f  

TERM 2: ±7·±3·p·p·f     (7 and 3 must end up opposite signs)

TERM 3: 2·3·p·f

TERM 4: ±2·±3·±7·p·p   (one or three of the coefficients will be negative)

Let's first look at the numbers they share. All of them have a three. We will rewrite Term 2 as -7·3·p·p·f afterwards because 3 must be positive to match. With term four, the 3 has to positive so not all three can be negative, so that means that either the 2 or 7 has to be negative, but in the end we they will make a -14 so it does not matter which one because.

Now, with variables. All of them have one p, so we will keep this.

Almost all had an f except the fourth, so this cannot be part of the GCF.

So, all the terms have 3p in common. Let's take the 3p out of each term and see what we have left. In term 4 we will combine our ±7 and ±2 to be -14 because one has to be negative.

TERM 1: f·f

TERM 2: -7·p·f

TERM 3: 2·f

TERM 4: -14·p

The way we will write this is we will put 3p outside parentheses and put what is left of all of our terms on the inside of the parentheses.

3p(f·f+-7·p·f+2·f-14·p)

We simplify these new terms.

3p(f²-7pf+2f-14p)

Now we combine like terms.

3p(f²-7pf-14p)

If you used the distributive property to undo the parentheses you could end up with our original expression.

PART B

Completely factoring means the equation is factored enough that you cannot factor anymore. The only things we have left to factor more are the terms inside the parentheses. Although there won't be something common between all of them, one might have pairs with one and not another, and this can still be factored out, and this can be put into (a+b)(a+c). Let's find what we have in common with the three terms in the parentheses.

TERM 1: f·f

TERM 2: -7·p·f

TERM 3: 2· -7·p (I just put 7 as negative and 2 as positive already for matching)

Term 1 and 2 have an f in common.

Terms 2 and 3 have a -7p in common.

So, we see that the f and the -7p are what can be factored out among all of the terms, so let's take it out of all of them and see what is left.

Term 1: f

Term 2: nothing left here

Term 3: 2

So, this means that all we have left is f+2. If we multiply that by f-7p we will have what was in the parentheses in our answer from Part A, and we cannot simplify this any further. This means that our parentheses from Part A= (f-7p)(f+2). This shows that (f-7p) is multiplied by (f+2)

Don't forget the GCF 3p; that's still outside the parentheses!

Therefore, the answer here is 3p(f-7p)(f+2).

Have a wonderful day! :D

Make a matrix A whose action is described as follows: The hit by A rotates everything Pi/4 counterclockwise radians, then stretches by a factor of 1.8 along the x-axis and a factor of 0.7 along the y-axis and then rotates the result by Pi/3 clockwise radians.

Answers

Answer:

The required matrix is[tex]A = \left[\begin{array}{ccc}1.07&-0.21\\-0.86&1.35\end{array}\right][/tex]

Step-by-step explanation:

Matrix of rotation:

[tex]P = \left[\begin{array}{ccc}cos\pi/4&-sin\pi/4\\sin\pi/4&cos\pi/4\end{array}\right][/tex]

[tex]P = \left[\begin{array}{ccc}1/\sqrt{2} &-1/\sqrt{2} \\1/\sqrt{2} &1/\sqrt{2}\end{array}\right][/tex]

x' + iy' = (x + iy)(cosθ + isinθ)

x' = x cosθ - ysinθ

y' = x sinθ + ycosθ

In matrix form:

[tex]\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}cos\theta&-sin\theta\\sin \theta&cos\theta\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right][/tex]

The matrix stretches by 1.8 on the x axis and 0.7 on the y axis

i.e. x' = 1.8x

y' = 0.7y

[tex]\left[\begin{array}{ccc}x'\\y'\end{array}\right] = \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right][/tex]

[tex]Q = \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right][/tex]

According to the question, the result is rotated by pi/3 clockwise radians

[tex]R = \left[\begin{array}{ccc}cos(-\pi/3)& -sin(-\pi/3)\\-sin(\pi/3)&cos(\pi/3)\end{array}\right][/tex]

[tex]R = \left[\begin{array}{ccc}1/2&\sqrt{3}/2 \\-\sqrt{3}/2 &1/2\end{array}\right][/tex]

To get the matrix A, we would multiply matrices R, Q and P together.

[tex]A = RQP = \left[\begin{array}{ccc}1/2&\sqrt{3}/2 \\-\sqrt{3}/2 &1/2\end{array}\right] \left[\begin{array}{ccc}1.8&0\\0&0.7\end{array}\right] \left[\begin{array}{ccc}1/\sqrt{2} &-1/\sqrt{2} \\1/\sqrt{2} &1/\sqrt{2}\end{array}\right][/tex]

[tex]A = \left[\begin{array}{ccc}1.07&-0.21\\-0.86&1.35\end{array}\right][/tex]

A triangle has sides of lengths 9, 7, and 12. Is it a right triangle? Explain.

Answers

Answer:

Yes based on the numbers .

Step-by-step explanation:

Answer:Yes

Step-by-step explanation:Based on the number given, it shows that there is a hypotenuse (The longest side of a right triangle, in this case being 12), And opposite (Another part of the right triangle, that could be either 9 or 7), and the adjacent (The line next to the opposite, which could be 9 or 7)

Other Questions
Quarry Corp. has the following costs related to a mine it acquired this year. Cost of land and natural resource rights $200,000 Asset retirement obligation to restore land 50,000 Costs of extraction during year 1 35,000 Equipment used for mining 100,000 Exploration and drilling costs to prepare quarry for extraction 40,000 What amount should be included as an asset for natural resources What is not an example of toxic waste?O adhesivesO plastic wrapO dry-cleaning sjafventsO herbicides A divorced woman with 2 young children has just re-entered the workforce part time and earns $3,000 from this work. She collects another $2,400 per year in alimony payments. The woman wishes to make a contribution to an Individual Retirement Account this year. Which statement is TRUE Read and choose the option with the correct conjugation to complete the sentence. Sandrita y Julin ________ al parque de atracciones. voy vas va van This month the company reported an increase in profit of 25%. If the company made $45,000 last month, how much did they make this month? A. $5,400 B. $5,625 C. $54,000 D. $56,250 J.C Coats Inc. carefully develops standards for its coat making operation. Its specifications call for 2 square yards of wool per coat. The budgeted price of wool is $50 per square yard. The actual price for the wool was $38 and the usage was only 1.6 yards of wool per coat. What would be the standard cost per output for the wool? THE FIRST TO GET IT RIGHT GETS A BRAINLIEST :) A three-digit number, XYZ, is formed of three different non-zero digits X, Y , and Z. A new number is formed by rearranging the same three digits. What is the greatest possible difference between the two numbers? (For example, 345 could be rearranged into 435, for a difference of 435 345 = 90.) a bag contains only red and blue counters the probability that a counter is blue is 0.58 A counter is picked at random What is the probability that it is red Why may a hotel charge high prices for wine,soft drinks or bottled water and quite reasonable prices for food and still get away with such high prices Read this passage from the Ramayana by R. K. Narayan. What cultural context is being explored in this passage? The King looked woebegone and desperate, and the sage relented enough to utter a word of comfort. You cannot count on the physical proximity of someone you love, all the time. A seed that sprouts at the foot of its parent tree remains stunted until it is transplanted. Rama will be in my care, and he will be quite well. But ultimately, he will leave me too. Every human being, when the time comes, has to depart and seek his fulfillment in his own way. Customs Values Setting Lifestyle Find the surface area of a cylinder with radius r = 6 and height h = 14.8 to the nearest tenth of a square cm. Use = 3.14 At a playground, two young children are on identical swings. One child appears to be about twice as heavy as the other. Part A If you pull them back together the same distance and release them to start them swinging, what will you notice about the oscillations of the two children Use your calculated discharge results to estimate the probability of flooding, using the following procedure: 1. Use the Annual Exceedance Probability Chart below (also in the Chapter 16 Investigation in your textbook or on the worksheet that corresponds to this exercise). Find the position of your calculated discharge to fill the notch on the vertical axis of the plot. 2. Draw a horizontal line from that value to the right until you intersect the probability line. 3. From the point of intersection, draw a vertical line down to the horizontal axis of the plot, read off the corresponding probability of exceedance, and choose the best answer below. The probability to fill the notch is: Now determine the probability of flooding of the middle terrace, using the same approach as before. Remember you must use the total amount of discharge required to fill the notch and bottomland up to the level of the middle terrace. Choose the best answer below. The probability of flooding the middle terrace is: Which layer in the model of Earth could be described as similar to oozing peanut butter moving slowly towards the surface when hot and falling back slowly towards the inner core when cool? Select one: a. The upper mantle b. The lower mantle c. The crust d. The lithosphere PLEASE HELP!!!!! Which of the following similarity statements is formattedcorrectly?Triangle MNO = PQRTriangle MNO ~ PQRTriangle MNO = Triangle PQRTriangle MNO ~Triangle PQR How to score good marks in exams of class 9th While calculating HCF using index notation, we choose ____________ index of common prime factors. The function h = -16t + 240t represents the height h (in feet) of a rocket t seconds after it is launched. The rocket explodes at its highest point. after how many seconds does the rocket explode How did the Zimmermann Telegram help push the United States into World War I? a. How many moles of C are needed to react with 0.500 molof SO?b. How many moles of CO are produced when 1.2 molof C reacts ?c. How many moles of SO2 are required to produce 0.50 molof CS2?d. How many moles of CS2 are produced when 2.5 molof C reacts?