A 4.00 kg ball is moving at 4.00 m/s to the EAST and a 6.00 kg ball is moving at 3.00 m/s to the NORTH. The total momentum of the system is:___________.A. 14.2 kg m/s at an angle of 48.4 degrees SOUTH of EAST.B. 48.2 kg m/s at an angle of 24.2 degrees SOUTH of EAST.C. 48.2 kg m/s at an angle of 48.4 degrees NORTH of EAST.D. 24.1 kg m/s at an angle of 24.2 degrees SOUTH of EAST.
E. 24.1 kg m/s at an angles of 48.4 degrees NORTH of EAST.

Answers

Answer 1

Answer:

The total momentum is 24.1 kg m/s at an angle of 48.4 degrees NORTH of EAST

Explanation:

Momentum = mass*velocity of a body

For a 4.00 kg ball is moving at 4.00 m/s to the EAST, its momentum = 4*4 = 16kgm/s

For a 6.00 kg ball is moving at 3.00 m/s to the NORTH;

its momentum = 6*3 = 18kgm/s

Total momentum = The resultant of both momentum

Total momentum = √16²+18²

Total momentum = √580

total momentum = 24.1kgm/s

For the direction:

[tex]\theta = tan^{-1} \frac{y}{x}\\\theta = tan^{-1} \frac{18}{16}\\ \theta = tan^{-1} 1.125\\\theta = 48.4^{0}[/tex]

The total momentum is 24.1 kg m/s at an angle of 48.4 degrees NORTH of EAST


Related Questions

A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.

Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?

1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.

Answers

Answer:

a) The distance from the cornea vertex to the retina is 2.37 cm

b) This distance is shorter than for the normal eye.

Explanation:

a) Let refractive index of air,

n(air) = x = 1

Let refractive index of lens,

n(lens) = y = 1.4

Object distance, s = 36 cm

Radius of curvature, R = 0.65 cm

The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.

Image distance, s' = ?

(x/s) + (y/s') = (y-x)/R

(1/36) + (1.4/s') = (1.4 - 1)/0.65

1.4/s' = 0.62 - 0.028

1.4/s' = 0.592

s' = 1.4/0.592

s' = 2.37 cm

Distance from the cornea vertex to the retina is 2.37 cm

(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivere

Answers

Complete question:

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivered to A to power delivered to B.

Answer:

The ratio of the power delivered to A to power delivered to B is 7 : 1

Explanation:

Cross sectional area of a wire is calculated as;

[tex]A = \frac{\pi d^2}{4}[/tex]

Resistance of a wire is calculated as;

[tex]R = \frac{\rho L}{A} \\\\R = \frac{4\rho L}{\pi d^2} \\\\[/tex]

Resistance in wire A;

[tex]R = \frac{4\rho _AL_A}{\pi d_A^2}[/tex]

Resistance in wire B;

[tex]R = \frac{4\rho _BL_B}{\pi d_B^2}[/tex]

Power delivered in wire;

[tex]P = \frac{V^2}{R}[/tex]

Power delivered in wire A;

[tex]P = \frac{V^2_A}{R_A}[/tex]

Power delivered in wire B;

[tex]P = \frac{V^2_B}{R_B}[/tex]

Substitute in the value of R in Power delivered in wire A;

[tex]P_A = \frac{V^2_A}{R_A} = \frac{V^2_A \pi d^2_A}{4 \rho_A L_A}[/tex]

Substitute in the value of R in Power delivered in wire B;

[tex]P_B = \frac{V^2_B}{R_B} = \frac{V^2_B \pi d^2_B}{4 \rho_B L_B}[/tex]

Take the ratio of power delivered to A to power delivered to B;

[tex]\frac{P_A}{P_B} = (\frac{V^2_A \pi d^2_A}{4\rho_AL_A} ) *(\frac{4\rho_BL_B}{V^2_B \pi d^2_B})\\\\ \frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{\rho_AL_A} )*(\frac{\rho_BL_B}{V^2_B d^2_B})\\\\[/tex]

The wires are made of the same material, [tex]\rho _A = \rho_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{L_A} )*(\frac{L_B}{V^2_B d^2_B})\\\\[/tex]

The wires are connected across the same potential; [tex]V_A = V_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{ d^2_A}{L_A} )* (\frac{L_B}{d^2_B} )[/tex]

wire A has seven times the diameter and seven times the length of wire B;

[tex]\frac{P_A}{P_B} = (\frac{ (7d_B)^2}{7L_B} )* (\frac{L_B}{d^2_B} )\\\\\frac{P_A}{P_B} = \frac{49d_B^2}{7L_B} *\frac{L_B}{d^2_B} \\\\\frac{P_A}{P_B} =\frac{49}{7} \\\\\frac{P_A}{P_B} = 7\\\\P_A : P_B = 7:1[/tex]

Therefore, the ratio of the power delivered to A to power delivered to B is

7 : 1

A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?

a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None

Answers

Answer:

Option B:

The normal force

Explanation:

The normal force does no work as the box slides down the ramp.

Work can only be done when the force succeeds in moving the object in the direction of the force.

All the other forces involved have a component that is moving the box in their direction.

However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)

High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discuss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior

Answers

Answer:

More current will be loss through the metal wire strands if the force on them was repulsive, and more stress will be induced on the wire strands due to internal and external flexing.

Explanation:

A wire bundle is made up of wire strands bunched together to increase flexibility that is not always possible in a single solid metal wire conductor. In the strands of wire carrying a high voltage power, each strand carries a certain amount of current, and the current through the strands all travel in the same direction. It is know that for two conductors or wire, separated by a certain distance, that carries current flowing through them in the same direction, an attractive force is produced on these wires, one on the other. This effect is due to the magnetic induction of a current carrying conductor. The forces between these strands of the high voltage wire bundle, pulls the wire strands closer, creating more bond between these wire strands and reducing internal flex induced stresses.

If the case was the opposite, and the wires opposed themselves, the effect would be that a lot of cost will be expended in holding these wire strands together. Also, stress within the strands due to the repulsion, will couple with external stress from the flexing of the wire, resulting in the weakening of the material.

The biggest problem will be that more current will be lost in the wire due to increased surface area caused by the repulsive forces opening spaces between the strand. This loss is a s a result of the 'skin effect' in wire transmission, in which current tends to flow close to the surface of the metal wire. The skin effect generates power loss as heat through the exposed surface area.

Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound

Answers

Answer:

t = 0.414s

Explanation:

In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:

[tex]t=\frac{d}{v}[/tex]         (1)

d: distance to the plate = 18.4m

v: speed of the ball = 160.0km/h

You first convert the units of the sped of the ball to appropriate units (m/s)

[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]

Then, you replace the values of the speed v and distance s in the equation (1):

[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]

THe ball takes 0.414s to reach the home plate

A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?

Answers

Answer:

[tex]v_B=3.78\times 10^5\ m/s[/tex]

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]

Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]

Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]

Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]

So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].

A small, rigid object carries positive and negative 3.00 nC charges. It is oriented so that the positive charge has coordinates (−1.20 mm, 1.20 mm) and the negative charge is at the point (1.70 mm, −1.30 mm).

Required:
a. Find the electric dipole moment of the object.
b. The object is placed in an electric field E = (7.80 103 î − 4.90 103 ĵ). Find the torque acting on the object.
c. Find the potential energy of the object–field system when the object is in this orientation.
d. Assuming the orientation of the object can change, find the difference between the maximum and the minimum potential energies of the system,

Answers

Answer:

Umax = 105.8nJ

Umin =-105.8nJ

Umax-Umin = 211.6nJ

Explanation:

Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.

Answers

Answer:

The two value of the wavelength for the out of tune guitar is  

[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]

Explanation:

From the question we are told that

     The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]

     The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]

     

Generally the frequency of the note played by the guitar that is in tune is  

        [tex]f_1 = \frac{v_s}{\lambda}[/tex]

Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]

       [tex]f_1 = \frac{343}{0.0065}[/tex]

      [tex]f_1 = 5276.9 \ Hz[/tex]

The difference in beat is mathematically represented as

       [tex]\Delta f = |f_1 - f_2|[/tex]

Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar

     [tex]f_2 =f_1 \pm \Delta f[/tex]

substituting values

      [tex]f_2 =f_1 + \Delta f[/tex]

      [tex]f_2 = 5276.9 + 17.0[/tex]  

     [tex]f_2 = 5293.9 \ Hz[/tex]

The wavelength for this frequency is

      [tex]\lambda_2 = \frac{343 }{5293.9}[/tex]

     [tex]\lambda_2 = 0.0648 \ m[/tex]

    [tex]\lambda_2 = 6.48 \ cm[/tex]

For the second value of the second frequency

     [tex]f_2 = f_1 - \Delta f[/tex]

     [tex]f_2 = 5276.9 -17[/tex]

      [tex]f_2 = 5259.9 Hz[/tex]

The wavelength for this frequency is

   [tex]\lambda _2 = \frac{343}{5259.9}[/tex]

   [tex]\lambda _2 = 0.0652 \ m[/tex]

   [tex]\lambda _2 = 6.52 \ cm[/tex]

This question involves the concepts of beat frequency and wavelength.

The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".

The beat frequency is given by the following formula:

[tex]f_b=|f_1-f_2|\\\\[/tex]

f₂ = [tex]f_b[/tex] ± f₁

where,

f₂ = frequency of the out-of-tune guitar = ?

[tex]f_b[/tex] = beat frequency = 17 Hz

f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]

Therefore,

f₂ = 5276.9 Hz ± 17 HZ

f₂ = 5293.9 Hz (OR) 5259.9 Hz

Now, calculating the possible wavelengths:

[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]

λ₂ = 6.48 cm (OR) 6.52 cm

Learn more about beat frequency here:

https://brainly.com/question/10703578?referrer=searchResults

In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in a time interval of Δt. In order to boost sales, a year later they introduced a more powerful engine (the "Model B") which could accelerate the car from 0 to speed 2.92v in the same time interval. Introducing the new engine did not change the mass of the car. Compare the power of the two cars, if we assume all the energy coming from the engine appears as kinetic energy of the car.

Answers

Answer: [tex]\frac{P_B}{P_A}[/tex] = 8.5264

Explanation: Power is the rate of energy transferred per unit of time: P = [tex]\frac{E}{t}[/tex]

The energy from the engine is converted into kinetic energy, which is calculated as: [tex]KE = \frac{1}{2}.m.v^{2}[/tex]

To compare the power of the two cars, first find the Kinetic Energy each one has:

K.E. for Model A

[tex]KE_A = \frac{1}{2}.m.v^{2}[/tex]

K.E. for model B

[tex]KE_B = \frac{1}{2}.m.(2.92v)^{2}[/tex]

[tex]KE_B = \frac{1}{2}.m.8.5264v^{2}[/tex]

Now, determine Power for each model:

Power for model A

[tex]P_{A}[/tex] = [tex]\frac{m.v^{2} }{2.t}[/tex]

Power for model B

[tex]P_B = \frac{m.8.5264.v^{2} }{2.t}[/tex]

Comparing power of model B to power of model A:

[tex]\frac{P_B}{P_A} = \frac{m.8.5264.v^{2} }{2.t}.\frac{2.t}{m.v^{2} }[/tex]

[tex]\frac{P_B}{P_A} =[/tex] 8.5264

Comparing power for each model, power for model B is 8.5264 better than model A.

Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If the person generates a new pulse like the first but more quickly, the pulse would be a) same size b) wider c) narrower If the person generates another pulse like the first but he moves his hand further, the pulse would be a) same size b) taller c) shorter If the person generates another pulse like the first but the rope is tightened, the pulse will move a) at the same rate b) faster c) slower Now the person moves his hand back and forth several times to produce several waves. You freeze the movie and get this snapshot. Underline your answer for each situation: If you advance the movie one frame, the knot at point A would be a) in the same place b) higher c) lower d) to the right e) to the left If you advance the movie one frame, the pattern of the waves will be _________relative to the hand. a) in the same place b) shifted right c) shifted left d) shifted up e) shifted down If the person starts over and moves his hand more quickly, the peaks of the waves will be a) the same distance apart b) further apart c) closer together If you lower the frequency of a wave on a string you will lower its speed. b) increase its wavelength. c). lower its amplitude. d) shorten its period.

Answers

Answer:

a) correct answer is b higher , b) correct answer is b higher , c) correct answer is b faster , d)  traveling wave , e)

Explanation:

A traveling wave is described by the expression

            y = A sin (kx - wt)

where k is the wave vector and w is the angular velocity

 

let's examine every situation presented

a) a new faster pulse is generated

A faster pulse should have a higher angular velocity

equal speed is related to the period and frequency

            w = 2π f = 2π / T

therefore in this case the period must decrease so that the angular velocity increases

the correct answer is c narrower

b) Generate a pulse, but move your hand more.

Moving the hand increases the amplitude (A) of the pulse

the correct answer is b higher

c) generates a pulse but the force is tightened

Set means that more tension force is applied to the string, so the velicate changes

       v = √ (T /μ)

the correct answer is b faster

d) move your hand back and forth

in this case you would see a pulse series whose sum corresponds to a traveling wave

e) Advance a frame the movie

in this case the wave will be displaced a whole period to the right

the correct answer is b

f) move your hand faster

the waves will have a maximum fast, so they are closer

answer C

g) decrease wave frequency

Since the speed of the wave is a constant m ak, decreasing the frequency must increase the wavelength to keep the velocity constant.

the correct answer is b increases its wavelength

A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20 J

Explanation:

From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.

m'u'+mu = V(m+m')........... Equation 1

Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.

make V the subject of the equation above

V = (m'u'+mu)/(m+m')............. Equation 2

Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).

Substitute into equation 2

V = [(2×5)+(8×0)]/(2+8)

V = 10/10

V = 1 m/s.

Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision

Total kinetic energy before collision = 1/2(2)(5²) = 25 J

Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J

Lost in kinetic energy = 25-5 = 20 J

The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.

Since there is a lost in kinetic energy, the collision is inelastic collision.  

m'u'+mu = V(m+m')

[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]  

Where

m' = mass of the moving object = 2 kg

m = mass of the stick = 8 kg,

u' = initial velocity of the moving object = 5 m/s

V = common velocity after collision= ?    

u = 0 m/s (at rest).

put the values in the formula,  

[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]

 

  kinetic energy before collision

[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]  

kinetic energy after collision

[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]  

Lost in kinetic energy = 25-5 = 20 J

Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.

To know more about Kinetic energy,

https://brainly.com/question/12669551

A piston of small cross-sectional area a is used in a hydraulic press to exert a small force f on the enclosed liquid. A connecting pipe leads to a larger piston of cross sectional area A. a) What force F will the larger piston sustain

Answers

Answer:

force on larger piston = [tex]\frac{fA}{a}[/tex]

Explanation:

we label the pistons as piston A and piston B

small piston A:

area = a

force = f

large piston B:

area = A

force  = ?

Pascal's law of pressure state that the pressure delivered to a liquid is transmitted undiminished to every portion of the fluid.

we know that pressure = force ÷ area

pressure of piston A = [tex]\frac{f}{a}[/tex]

pressure of piston B = [tex]\frac{(force on piston B)}{A}[/tex]

obeying Pascal's law, the system pressures must be equal. Therefore

[tex]\frac{f}{a} = \frac{(force on piston B)}{A}[/tex]

force on large piston (B) = F = [tex]\frac{fA}{a}[/tex]

In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (63.15 km/h), much lower than the limit on our interstate highways today. Repeat the calculations of Example 2.7 (assume the car accelerates for 6 miles to get up to speed, is then timed for a one-mile distance, and accelerates for another 6 miles to come to a stop) for the Jeantaud car. (Assume the car moves in the +x direction.)
Find the acceleration for the first 6 miles.

Answers

Answer:

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

Explanation:

Given that:

the initial speed v₁ = 0 m/s i.e starting from rest ; since the car accelerates at a distance Δx = 6 miles in order to teach that final speed v₂ of 63.15 km/h.

So;  the acceleration for the first 6 miles can be calculated by using the formula:

v₂² = v₁² + 2a (Δx)

Making acceleration  a the subject of the formula in the above expression ; we have:

v₂² - v₁² = 2a (Δx)

[tex]a = \dfrac{v_2^2 - v_1^2 }{2 \Delta x}[/tex]

[tex]a = \dfrac{(63.15 \ km/s)^2 - (0 \ m/s)^2 }{2 (6 \ miles)}[/tex]

[tex]a = \dfrac{(17.54 \ m/s)^2 - (0 \ m/s)^2 }{2 (9.65*10^3 \ m)}[/tex]

[tex]a =0.0159 \ m/s^2[/tex]

Thus;

Assume the car moves in the +x direction;

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.

Answers

Answer:

The found acceleration in terms of h and t is:

[tex]a=\frac{h}{5(t_1)^2}[/tex]

Explanation:

(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)

We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.

Stage 1

Constant acceleration, starts from rest.

Distance = [tex]y = \frac{1}{2}a(t_1)^2[/tex]

Velocity = [tex]v_1=at_1[/tex]

Stage 2

Constant velocity where

Velocity = [tex]v_o=v_1=at_1[/tex]

Distance =

[tex]y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\[/tex]Stage 3

Constant deceleration where

Velocity = [tex]v_0=v_1=at_1[/tex]

Distance =

[tex]y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2[/tex]

Total Height

Total height = y₁ + y₂ + y₃

Total height = [tex]\frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2[/tex]

Acceleration

Find acceleration by rearranging the found equation of total height.

Total Height = h

h = 5a(t₁)²

[tex]a=\frac{h}{5(t_1)^2}[/tex]

An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.

Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.

Answers

Answer:

a.     F = 2.32*10^-18 N

b.     The force F is 2.59*10^11 times the weight of the electron

Explanation:

a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:

[tex]v^2=v_o^2+2ax[/tex]         (1)

v: final speed of the electron = 6.60*10^5 m/s

vo: initial speed of the electron = 4.00*10^5 m/s

a: acceleration of the electron = ?

x: distance traveled by the electron = 5.40cm = 0.054m

you solve the equation (2) for a and replace the values of the parameters:

[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]

Next, you use the second Newton law to calculate the force:

[tex]F=ma[/tex]

m: mass of the electron = 9.11*10^-31kg

[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]

The magnitude of the force exerted on the electron is 2.32*10^-18 N

b. The weight of the electron is given by:

[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]

The quotient between the weight of the electron and the force F is:

[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]

The force F is 2.59*10^11 times the weight of the electron

Two red blood cells each have a mass of 9.0 x 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion from the excess charge prevents the cells from clumping together. One cell carries -2.5pC and the other -3.30 pC, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed.
1. What initial speed would each need so that they get close enough to just barely touch?
2. What is the maximum acceleration of the cells as they move toward each other and just barely touch?

Answers

Answer:

Explanation:

Given that:

The mass of the cell is 9.0 x 10^-14 kg

The charges of the cell is -2.5pC and the other -3.30 pC

[tex]q_1=-2.5\times10^{-12}C \ \ and \ \ q_2=-3.75\times10^{-12}C[/tex]

Radius is  3.75 × 10-6 m

The final distance is twice the radius

i.e [tex]2*(3.75 \times 10^{-6}) = 7.5*10^{-6}m[/tex]

The formula for the velocity of the cell is

[tex]mv^2=\frac{q_1q_2}{4\pi \epsilon 2 r} \\[/tex]

[tex]v=\sqrt{\frac{q_1q_2}{4\pi \epsilon 2 r} }[/tex]

[tex]=\sqrt{\frac{(-2.5\times10^{-12})(-3.3\times10^{-12}}{4(3.14)(8.85\times10^{-112}(2\times3.75\times10^{-6})(9\times10^{-14})} } \\\\=\sqrt{\frac{(-8.25\times10^{-24})}{(7503.03\times10^{-32})} } \\\\=\sqrt{109955.5779} \\\\=331.60m/s[/tex]

The maximum acceleration of the cells as they move toward each other and just barely touch is

[tex]ma= \frac{q_1q_2}{4\pi \epsilon (2r)^2} \\\\a= \frac{q_1q_2}{4\pi \epsilon (2r)^2(m)}[/tex]

[tex]=\frac{(-2.5\times10^{-12})(-3.3\times10^{-12})}{4(3.14)(8.85\times10^{-12})(2\times3.75\times10^{-6})^2(9\times10^{-14})}[/tex]

[tex]=\frac{(-8.25\times10^{-24})}{(56272.725\times10^{-38})} \\\\=1.47\times10^{10}m/s^2[/tex]

The answers obtained are;

1. The initial speed of each of the red blood cells is [tex]v= 331.66\,m/s[/tex].

2. The maximum acceleration of the cells is [tex]a=1.47\times 10^{10}\,m/s^2[/tex].

The answer is explained as shown below.

We have, the mass of the red blood cell;

[tex]m=9\times 10^{-14}\,kg[/tex]

Also, the charges of the cells are;

[tex]q_1=-2.5\times 10^{-12}\,C[/tex] and[tex]q_2=-3.30\times 10^{-12}\,C[/tex]

The distance between the charges when they barely touch will be two times the radius of each charge.

[tex]r=2\times r\,'=2\times3.75\times10^{-6}\,m=7.5\times10^{-6}\,m[/tex]

Kinetic Energy of moving charges

1. As both the cells are negatively charged they will repel each other.

So, for the cells to come nearly close, their kinetic energies must be equal to the electric potential between them.[tex]\frac{1}{2}mv^2+ \frac{1}{2}mv^2=k\frac{q_1 q_2}{r^2}[/tex]Where, [tex]k=9\times10^9\,Nm^2/C^2[/tex] is the Coulomb's constant.

Now, substituting all the known values in the equation, we get;

[tex](9\times 10^{-14}\,kg)\times v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m}[/tex]

[tex]v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m\times(9\times 10^{-14}\,kg)} =110000\,m^2/s^2[/tex]

[tex]\implies v=\sqrt{110000\,m^2/s^2}=331.66\,m/s[/tex]

Electrostatic force between two charges

2. Also as the force between them is repulsive, there must be an acceleration to make them barely touch each other.

[tex]ma=k\frac{q_1 q_2}{r^2}[/tex]

Substituting the known values, we get;

[tex](9\times 10^{-14}\,kg)\times a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2}[/tex]

[tex]\implies a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2\times(9\times 10^{-14}\,kg) }[/tex]

[tex]a=1.47\times 10^{10}\,m/s^2[/tex]

Find out more information about moving charges here:

https://brainly.com/question/14632877

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.

Answers

Answer:

v = 4.08m/s₂

Explanation:

An unknown charged particle passes without deflection through crossed electric and magnetic fields of strengths 187,500 V/m and 0.1250 T, respectively. The particle passes out of the electric field, but the magnetic field continues, and the particle makes a semicircle of diameter 25.05 cm.
Part A. What is the particle's charge-to-mass ratio?
Part B. Can you identify the particle?
a. can't identify
b. proton
c. electron
d. neutron

Answers

Answer:

Explanation:

Given that

The electric fields of strengths E = 187,500 V/m and

and The magnetic  fields of strengths B = 0.1250 T

The diameter d is 25.05 cm which is converted to 0.2505m

The radius is (d/2)

= 0.2505m / 2 = 0.12525m

The given formula to find the magnetic force is [tex]F_{ma}=BqV---(i)[/tex]

The given formula to find the electric force is [tex]F_{el}=qE---(ii)[/tex]

The velocity of electric field and magnetic field is said to be perpendicular

Electric field is equal to magnectic field

Equate equation (i) and equation (ii)

[tex]Bqv=qE\\\\v=\frac{E}{B}[/tex]

[tex]v=\frac{187500}{0.125} \\\\v=15\times10^5m/s[/tex]

It is said that the particles moves in semi circle, so we are going to consider using centripetal force

[tex]F_{ce}=\frac{mv^2}{r}---(iii)[/tex]

magnectic field is equal to centripetal force

Lets equate equation (i) and (iii)

[tex]Bqr=\frac{mv^2}{r} \\\\\frac{q}{m}=\frac{v}{Br} \\\\\frac{q}{m} =\frac{15\times 10^5}{0.125\times0.12525} \\\\=\frac{15\times10^5}{0.015656} \\\\=95808383.23\\\\=958.1\times10^5C/kg[/tex]

Therefore,  the particle's charge-to-mass ratio is [tex]958.1\times10^5C/kg[/tex]

b)

To identify the particle

Then 1/ 958.1 × 10⁵ C/kg

The charge to mass ratio is very close to that of a proton, which is about 1*10^8 C/kg

Therefore the particle is proton.

A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle

Answers

Answer:

88.29 N

Explanation:

mass of the ball = 4.5 kg

weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)

weight W = 4.5 x 9.81 = 44.145 N

centrifugal forces Tc act on the ball as it swings.

At the top point of the vertical swing,

Tension on the rope = Tc - W.

At the bottom point of the vertical swing,

Tension on the rope = Tc + W

therefore,

difference in tension between these two points will be;

Net tension = tension at bottom minus tension at the top

= Tc + W - (Tc - W) = Tc + W -Tc + W

= 2W

imputing the value of the weight W, we have

2W = 2 x 44.145 = 88.29 N

Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C

Answers

Answer:

Φ = 361872 N.m^2 / C

Explanation:

Given:-

- The area of the two plates, [tex]A_p = 180 cm^2[/tex]

- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]

- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]

- The radius for the flux region, [tex]r = 3.3 cm[/tex]

- The angle between normal to region and perpendicular to plates, θ = 4°

Find:-

Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.

Solution:-

- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

                             [tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):

                           σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]

                           σ = 0.00094 C / m^2

- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

                         [tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

                        [tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:

                        Φ = E_net * Ar * cos ( θ )

                        Φ = (106214689.26553) * (0.00342) * cos ( 5 )

                        Φ = 361872 N.m^2 / C

what is the orbital speed for a satellite 3.5 x 10^8m from the center of mars? Mars mass is 6.4 x 10^23 kg

Answers

Answer:

v = 349.23 m/s

Explanation:

It is required to find the orbital speed for a satellite [tex]3.5\times 10^8\ m[/tex] from the center of mass.

Mass of Mars, [tex]M=6.4\times 10^{23}\ kg[/tex]

The orbital speed for a satellite is given by the formula as follows :

[tex]v=\sqrt{\dfrac{GM}{r}} \\\\v=\sqrt{\dfrac{6.67\times 10^{-11}\times 6.4\times 10^{23}}{3.5\times 10^8}} \\\\v=349.23\ m/s[/tex]

So, the orbital speed for a satellite is 349.23 m/s.

During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices

Answers

Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.

Explanation:

Ok, let's write the definitions:

Displacement: The displacement is equal to the difference between the final position and the initial position.

Distance traveled: Total distance that you moved.

So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:

The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.

But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.

So no, we can have a displacement equal to zero, but a distance traveled different than zero.

The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1 W. HooRU's surface area is 1.55 m2 and the emissivity of its surface is 0.287. Ignoring the radiation that HooRU absorbs from the cold universe, what is HooRU's temperature T?

Answers

Answer:

The temperature is  [tex]T = 168.44 \ K[/tex]

Explanation:

From the question ewe are told that

   The rate of heat transferred is    [tex]P = 13.1 \ W[/tex]

     The surface area is  [tex]A = 1.55 \ m^2[/tex]

      The emissivity of its surface is  [tex]e = 0.287[/tex]

Generally, the rate of heat transfer is mathematically represented as

           [tex]H = A e \sigma T^{4}[/tex]

=>         [tex]T = \sqrt[4]{\frac{P}{e* \sigma } }[/tex]

where  [tex]\sigma[/tex] is the Boltzmann constant with value  [tex]\sigma = 5.67*10^{-8} \ W\cdot m^{-2} \cdot K^{-4}.[/tex]

substituting value  

             [tex]T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }[/tex]

            [tex]T = 168.44 \ K[/tex]

Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below.
Sun exposure Stem mass (g) Stem volume (mL)
30 275 1100
45 415 1215
60 563 1425
75 815 1610
90 954 1742
a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (mº).
b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m)
c. Convert the density values to scientific notation.

Answers

Given that,

Sun exposure = 30%, 45%, 60%, 75%, 90%

Stem mass (g) = 275, 415, 563, 815, 954

Stem volume (ml) = 1100, 1215, 1425, 1610, 1742

(a). We need to convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters

Using conversion of mass

[tex]1\ g=0.001\ kg[/tex]

Conservation of volume

[tex]1\ Lt=0.001\ m^3[/tex]

[tex]1\ mL=1\times10^{-6}\ m^3[/tex]

So, mass in kg

Stem mass (kg) = 0.275, 0.415, 0.563, 0.815, 0.954

Volume in m³,

Stem volume (m³) = 0.0011, 0.001215, 0.001425, 0.001610, 0.001742

(b). We need to calculate the density of the samples

Using formula of density

[tex]\rho=\dfrac{m}{V}[/tex]

Where, m = mass

V = volume

If the m = 0.275 kg and V = 0.0011 m³

Put the value into the formula

[tex]\rho=\dfrac{0.275}{0.0011}[/tex]

[tex]\rho=250\ kg/m^3[/tex]

If the m = 0.415 kg and V = 0.001215 m³

Put the value into the formula

[tex]\rho=\dfrac{0.415}{0.001215}[/tex]

[tex]\rho=341.56\ kg/m^3[/tex]

[tex]\rho=342\ kg/m^3[/tex]

If the m = 0.563 kg and V = 0.001425 m³

Put the value into the formula

[tex]\rho=\dfrac{0.563}{0.001425}[/tex]

[tex]\rho=395.08\ kg/m^3[/tex]

If the m = 0.815 kg and V = 0.001610 m³

Put the value into the formula

[tex]\rho=\dfrac{0.815}{0.001610}[/tex]

[tex]\rho=506.21\ kg/m^3[/tex]

If the m = 0.954 kg and V = 0.001742 m³

Put the value into the formula

[tex]\rho=\dfrac{0.954}{0.001742}[/tex]

[tex]\rho=547.6\ kg/m^3[/tex]

[tex]\rho=548\ kg/m^3[/tex]

(c). We need to convert the density values to scientific notation

In scientific notation

The densities are

[tex]\rho\ (kg/m^3)= 2.50\times10^{2}, 3.42\times10^{2}, 3.95\times10^{2}, 5.06\times10^{2}, 5.48\times10^{2}[/tex]

Hence, This is required solution.

a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?

Answers

Answer:

0.15 m

Explanation:

First calculating the center of mass from the saw horse

[tex]\frac{3.15}{2} -1=0.575 m[/tex]

from the free body diagram we can write

Taking moment about the saw horse

55.9×9.81×y=14.5×0.575×9.81

y= 0.15 m

So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.

A 25 kg box is 220 N pulled at constant speed up a frictionless inclined plane by a force that is parallel to the incline. If the plane is inclined at an angle of 25o above the horizontal, the magnitude of the applied force is

Answers

Answer:

F = 103.54N

Explanation:

In order to calculate the magnitude of the applied force, you take into account that the forces on the box are the applied force F and the weight of the box W.

The box moves with a constant velocity. By the Newton second law you have that the sum of forces must be equal to zero.

Furthermore, you have that the sum of forces are given by:

[tex]F-Wsin\theta=0[/tex]                (1)

F: applied force = ?

W: weight of the box = Mg = (25kg)(9.8m/s^2) = 245N

θ: degree of the incline = 25°

You solve the equation (1) for F:

[tex]F=Wsin\theta=(245N)sin(25\°)=103.54N[/tex]          (2)

The applied force on the box is 103.54N

A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.

Answers

Answer:

the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Explanation:

Given that:

Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³

temperature of the glass flask and mercury= 1.00° C

After heat is applied ; the final temperature = 52.00° C

Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C

Volume of the mercury overflow = 8.50 cm^3 = 8.50 ×  10⁻⁶ m³

the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K

The increase in the volume of the mercury =  10⁻³ m³ ×  51.00 × 1.80 × 10⁻⁴

The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]

Increase in volume of the glass =  10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]

Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask

the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]

[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]

[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]

[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]

A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m

Answers

Answer:

about 1 meter

Explanation:

   

The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m

We are given;

Mass of plank; m = 30 kg

Length of plank; L = 6m

Mass of man; M = 70 kg

Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.

Thus;

Moment of weight of plank about the right support;

τ_p = mg((L/2) - 2)

τ_p = 30 × 9.8((6/2) - 2)

τ_p = 294 N.m

Moment of weight of man about the right support;

τ_m = Mgx

where x is the distance past the edge the man will get before the plank starts to tip.

τ_m = 70 × 9.8x

τ_m = 686x

Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;

τ_m = τ_p

686x = 294

x = 294/686

x = 0.4285 m

Read more at; https://brainly.com/question/22150651

Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be​

Answers

Answer:

1.1ohms

Explanation:

According to ohms law E = IR

If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5

I = 0.36A (This will be the load current).

Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.

Voltage drop = 2.2V - 1.8V = 0.4V

Then we calculate the internal resistance using ohms law.

According to the law, V = Ir

V= voltage drop

I is the load current

r = internal resistance

0.4 = 0.36r

r = 0.4/0.36

r = 1.1 ohms

Other Questions
What are the coordinates of the image of R for a dilation with center (0,0) and scale factor 3? High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discuss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior To which category does galaxy #4 belong? Why does it belong in this category? Express the number using scientific notation: 0.000000067Select one:O a. 67 x 10-7O b. 6.7 x 10-7O c. can not be written in scientific formO d. 6.7 x 10 -8 ASAP HELP Which equation is equivalent to: 3r=905 ? A. 3r+5=90 B. 3r=905 C. 3r=90+5 D. 3r=90+5 A lottery is conducted using three urns. Each urn contains chips numbered from 0 to 9. One chip is selected at random from each urn. The total number of sample points in the sample space is:_______ a) 30 b) 100 c) 729 d) 1,000" Please answer this correctly Why did the agricultural revolution begin? Square ABCD has a side length of 12 centimeters . Find the area of the square Type a numerical answer in the space provided Do not include units or spaces in your answer If f(x) = x2 and g(x) = 3x - 1 find [ gf(x) Suppose a consumer has the following utility function defined over the 2 goods X and Y: a. If this consumer originally consumed 10 units of X and 24 units of Y, and if the consumption of X were increased to 12 units, how much Y would be would the consumer be willing to give up and maintain the initial level of satisfaction The Cash account of Gate City Security Systems reported a balance of 2400 at December 31, 2018. There were outstanding checks totaling 1300 and a December 31 deposit in transit of 400. The bank statement, which came from Tri Cities Bank, listed the December 31 balance of 3810. Included in the bank balance was a collection of 520 on account from Carol Lajoy, a Gate City customer who pays the bank directly. The bank statement also shows a 30 service charge and 20 of interest revenue that Gate City earned on its bank balance. Prepare Gate City's bank reconciliation at December 31. Cultural competence is a strategy used to eliminate health disparities. True False Write the expression 3*3*3*3*3 in exponential notation Which of the following statements about exponential growth curves is true?a. Exponential growth curves are common for R-selected species.b. Exponential growth curves show fast growth rates followed by slow growth rates.No organisms in nature experience exponential growth rates.d. Exponential growth curves are S-shaped.C.Please select the best answer from the choices providedBOOOOD What are the like terms in the algebraic expression? Negative a squared b + 6 a b minus 8 + 5 a squared b minus 6 a minus b Negative a squared b and negative 6 a Negative a squared b and 5 a squared b 6 a b and 5 a squared b 6 a b and negative 6 a Cane Company manufactures two products called Alpha and Beta that sell for $195 and $150, respectively. Each product uses only one type of raw material that costs $5 per pound. The company has the capacity to annually produce 123,000 units of each product. Its unit costs for each product at this level of activity are given belowAlpha BetaDirect materials $40 $15Direct labor 34 28Variable manufacturing overhead 22 20Traceable fixed manufacturing overhead 30 33Variable selling expenses 27 23Common fixed expenses 30 25Total cost per unit $183 $144The company considers its traceable fixed manufacturing overhead to be avoidable, whereas its common fixed expenses are deemed unavoidable and have been allocated to products based on sales dollars.1) What contribution margin per pound of raw material is earned by Alpha and Beta?2) Assume that Cane's customers would buy a maximum of 95,000 units of Alpha and 75,000 units of Beta. Also, assume that the company's raw material available for production is limited to 245,000 pounds. How many units of each product should Cane produce to maximize its profits?3) Assume that Cane's customers would buy a maximum of 95,000 units of Alpha and 75,000 units of Beta. Also, assume that the company's raw material available for production is limited to 245,000 pounds. What is the maximum contribution margin Cane Company can earn given the limited quantity of raw materials?4) Assume that Cane's customers would buy a maximum of 95,000 units of Alpha and 75,000 units of Beta. Also, assume that the company's raw material available for production is limited to 245,000 pounds. Up to how much should it be willing to pay per pound for additional raw materials? Phil has $20,000, part of which he invests at 8% interest and the rest at 6%. If the total income from the two investments was $1460, how much did he invest at 6%? An increase in average temperature around the planet is known as: A: sea level B: weather acceleration C: Global Warming D: Climate elevation PLEEEEEEEEEEEASE HELP The function f(n) represents an arithmetic sequence where the first term is 5 and each term increases by 5. What is f(8)?