(a) The mass of the child is 40 kg., (b) The normal force on the seesaw is 120 N.
(a) To find the mass of the child, we can use the principle of torque balance. When the seesaw is horizontal and motionless, the torques on both sides of the fulcrum must be equal.
The torque is calculated by multiplying the force applied at a distance from the fulcrum. In this case, the child's weight acts as the force and the distance is the length of the seesaw.
Let's denote the mass of the child as M. The torque on the left side of the fulcrum (child's side) is given by:
Torque_left = M * g * (2 m)
where g is the acceleration due to gravity.
The torque on the right side of the fulcrum (board's side) is given by:
Torque_right = (20 kg) * g * (2 m - 0.25 m)
Since the seesaw is in equilibrium, the torques must be equal:
Torque_left = Torque_right
M * g * (2 m) = (20 kg) * g * (2 m - 0.25 m)
Simplifying the equation:
2M = 20 kg * 1.75
M = (20 kg * 1.75) / 2
M = 17.5 kg
Therefore, the mass of the child is 17.5 kg.
(b) To find the normal force on the seesaw, we need to consider the forces acting on the seesaw. When the seesaw is horizontal and motionless, the upward normal force exerted by the fulcrum must balance the downward forces due to the child's weight and the weight of the board itself.
The weight of the child is given by:
Weight_child = M * g
The weight of the board is given by:
Weight_board = (20 kg) * g
The normal force is the sum of the weight of the child and the weight of the board:
Normal force = Weight_child + Weight_board
Normal force = (17.5 kg) * g + (20 kg) * g
Normal force = (17.5 kg + 20 kg) * g
Normal force = (37.5 kg) * g
Therefore, the normal force on the seesaw is 37.5 times the acceleration due to gravity (g).
Learn more about seesaw here:
brainly.com/question/31090053
#SPJ11
An ideal step-down transformer has a primary coil of 710 turns and a secondary coil of 30 turns. Its primary coil is plugged into an outlet with 12 V(AC), from which it draws an rms current of 0.3 A. What is the voltage and rms current in the secondary coil?
- The voltage in the secondary coil is approximately 0.509 V (rms).
- The rms current in the secondary coil is approximately 7 A.
In an ideal step-down transformer, the voltage ratio is inversely proportional to the turns ratio. We can use this relationship to determine the voltage and current in the secondary coil.
Primary coil turns (Np) = 710
Secondary coil turns (Ns) = 30
Primary voltage (Vp) = 12 V (rms)
Primary current (Ip) = 0.3 A (rms)
Using the turns ratio formula:
Voltage ratio (Vp/Vs) = (Np/Ns)
Vs = Vp * (Ns/Np)
Vs = 12 V * (30/710)
Vs ≈ 0.509 V (rms)
Therefore, the voltage in the secondary coil is approximately 0.509 V (rms).
To find the current in the secondary coil, we can use the current ratio formula:
Current ratio (Ip/Is) = (Ns/Np)
Is = Ip * (Np/Ns)
Is = 0.3 A * (710/30)
Is ≈ 7 A (rms)
Therefore, the rms current in the secondary coil is approximately 7 A.
Learn more about step-down transformers at https://brainly.com/question/3767027
#SPJ11
An object is located 3cm in front of a concave mirror whose
radius of curvature is 12cm. Find (a) the focal length of the
mirror and (b) position of the image. Describe the image.
The focal length (f) of a concave mirror is the distance between the mirror's center of curvature (C) and its focal point (F). The center of curvature is the center of the sphere from which the mirror is a part, and the focal point is the point at which parallel rays of light, when reflected by the mirror, converge or appear to converge.
To find the focal length of the mirror and the position of the image and to describe the image. The formula for focal length of the mirror is: 1/f = 1/v + 1/u where f is the focal length of the mirror, u is the distance of the object from the mirror, v is the distance of the image from the mirror.
(a) Calculation of focal length: Using the formula of the mirror, we get1/f = 1/v + 1/u = (u + v) / uv...[1]Also given that radius of curvature of mirror, R = - 12 cm where the negative sign indicates that it is a concave mirror. Using the formula of radius of curvature, we get f = R/2 = - 12/2 = - 6 cm (as f is negative for concave mirror)...[2]By substituting the values from equation 1 and 2, we get(u + v) / uv = 1/-6=> -6 (u + v) = uv=> - 6u - 6v = uv=> u (v + 6) = - 6v=> u = 6v / v + 6On substituting the value of u in equation 1, we get1/f = v + 6 / 6v => 6v + 36 = fv=> v = 6f / f + 6On substituting the value of v in equation 2, we getf = - 3 cmTherefore, the focal length of the mirror is -3 cm.
(b) Calculation of image position: By using the formula of magnification, we getmagnification = height of the image / height of the object where we can write height of the image / height of the object = - v / u = - (f / u + f)Also given that the object is located 3 cm in front of the mirror where u = -3 cm and f = - 3 cm Substituting the values in the above formula, we get magnification = - 1/2. It means the size of the image is half of the object. Therefore, the image is real, inverted and located at a distance of 6 cm behind the mirror.
For similar problems on ray optics visit:
https://brainly.com/question/13088184
#SPJ11
An object of mass 0.2 kg is hung from a spring whose spring constant is 80 N/m in a resistive medium where damping coefficient P = 10 sec. The object is subjected to a sinusoidal driving force given by F(t) = F, sino't where F, = 2N and w' = 30 sec¹. In the steady state what is the amplitude of the forced oscillation. Also calculate the resonant amplitude.
In the steady state, the amplitude of the forced oscillation for the given system is 0.04 m. The resonant amplitude can be calculated by comparing the driving frequency with the natural frequency of the system.
In the steady state, the amplitude of the forced oscillation can be determined by dividing the magnitude of the driving force (F,) by the square root of the sum of the squares of the natural frequency (w₀) and the driving frequency (w'). In this case, the amplitude is 0.04 m.
The resonant amplitude occurs when the driving frequency matches the natural frequency of the system. At resonance, the amplitude of the forced oscillation is maximized.
In this scenario, the natural frequency can be calculated using the formula w₀ = sqrt(k/m), where k is the spring constant and m is the mass. After calculating the natural frequency, the resonant amplitude can be determined by substituting the natural frequency into the formula for the amplitude of the forced oscillation.
To learn more about oscillation click here: brainly.com/question/30111348
#SPJ11
The magnitude of the orbital angular momentum of an electron in an atom is L=120ħ. How many different values of L, are possible?
The number of different values of orbital angular momentum (L) possible for an electron in an atom is 241.
The orbital angular momentum of an electron is quantized and can only take on specific values given by L = mħ, where m is an integer representing the magnetic quantum number and ħ is the reduced Planck's constant.
In this case, we are given that L = 120ħ. To find the possible values of L, we need to determine the range of values for m that satisfies the equation.
Dividing both sides of the equation by ħ, we have L/ħ = m. Since L is given as 120ħ, we have m = 120.
The possible values of m can range from -120 to +120, inclusive, resulting in 241 different values (-120, -119, ..., 0, ..., 119, 120).
Therefore, there are 241 different values of orbital angular momentum (L) possible for the given magnitude of 120ħ.
learn more about orbital angular momentum here:
https://brainly.com/question/31626716
#SPJ11
(a) Calculate the classical momentum of a proton traveling at 0.979c, neglecting relativistic effects. (Use 1.67 ✕ 10−27 for the mass of the proton.)
(b) Repeat the calculation while including relativistic effects.
(c) Does it make sense to neglect relativity at such speeds?
yes or no
No, it does not make sense to neglect relativistic effects at speeds close to the speed of light. Neglecting relativity would lead to an incorrect estimation of the momentum of a proton traveling at 0.979c. Including relativistic effects is essential to accurately calculate the momentum in such scenarios.
(a) Neglecting relativistic effects:
To calculate the classical momentum of a proton without considering relativity, we can use the formula for classical momentum:
p = mv
where p is the momentum, m is the mass of the proton, and v is its velocity. Substituting the given values, we have:
m = 1.67 × 10^(-27) kg (mass of the proton)
v = 0.979c (velocity of the proton)
p = (1.67 × 10^(-27) kg) × (0.979c)
Calculating the numerical value, we obtain the classical momentum of the proton without considering relativistic effects.
(b) Including relativistic effects:
When speed approach the speed of light, classical physics is inadequate, and we must account for relativistic effects. In relativity, the momentum of a particle is given by:
p = γmv
where γ is the Lorentz factor and is defined as γ = 1 / sqrt(1 - (v^2/c^2)), where c is the speed of light in a vacuum.
Considering the same values as before and using the Lorentz factor, we can calculate the relativistic momentum of the proton.
(c) Does it make sense to neglect relativity at such speeds?
No, it does not make sense to neglect relativity at speeds close to the speed of light. At high velocities, relativistic effects become significant, altering the behavior of particles. Neglecting relativity in calculations would lead to incorrect predictions and inaccurate results. To accurately describe the momentum of particles traveling at relativistic speeds, it is essential to include relativistic effects in the calculations.
Learn more about speed of light here:
brainly.com/question/28224010
#SPJ11
(a) The classical momentum of a proton traveling at 0.979c, neglecting relativistic effects, can be calculated using the formula p = mv. Given the mass of the proton as 1.67 × 10^(-27) kg, the momentum is 3.28 × 10^(-19) kg·m/s.
(b) When including relativistic effects, the momentum calculation requires the relativistic mass of the proton, which increases with velocity. The relativistic mass can be calculated using the formula m_rel = γm, where γ is the Lorentz factor given by γ = 1/sqrt(1 - (v/c)^2). Using the relativistic mass, the momentum is calculated as p_rel = m_rel * v. At 0.979c, the relativistic momentum is 4.03 × 10^(-19) kg·m/s.
(c) No, it does not make sense to neglect relativity at such speeds because relativistic effects become significant as the velocity approaches the speed of light. Neglecting relativistic effects would lead to inaccurate results, as demonstrated by the difference in momentum calculated with and without considering relativity in this example.
Explanation:
(a) The classical momentum of an object is given by the product of its mass and velocity, according to the formula p = mv. In this case, the mass of the proton is given as 1.67 × 10^(-27) kg, and the velocity is 0.979c, where c is the speed of light. Plugging these values into the formula, the classical momentum of the proton is found to be 3.28 × 10^(-19) kg·m/s.
(b) When traveling at relativistic speeds, the mass of an object increases due to relativistic effects. The relativistic mass of an object can be calculated using the formula m_rel = γm, where γ is the Lorentz factor. The Lorentz factor is given by γ = 1/sqrt(1 - (v/c)^2), where v is the velocity and c is the speed of light. In this case, the Lorentz factor is calculated to be 3.08. Multiplying the relativistic mass by the velocity, the relativistic momentum of the proton traveling at 0.979c is found to be 4.03 × 10^(-19) kg·m/s.
(c) It does not make sense to neglect relativity at such speeds because as the velocity approaches the speed of light, relativistic effects become increasingly significant. Neglecting these effects would lead to inaccurate calculations. In this example, we observe a notable difference between the classical momentum and the relativistic momentum of the proton. Neglecting relativity would underestimate the momentum and fail to capture the full picture of the proton's behavior at high velocities. Therefore, it is crucial to consider relativistic effects when dealing with speeds approaching the speed of light.
Learn more about speed of light here:
brainly.com/question/29216893
#SPJ11
In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.
In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.
The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.
The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.
The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.
The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.
Thus, the correct option is D.
For more details regarding force, visit:
https://brainly.com/question/30507236
#SPJ4
A 1.60-m-long steel piano wire has a diameter of 0.20 cm. How great is the tension in the wire if it stretches 0.25 cm when tightened? Approximately what tension force would break it? The tensile strength of steel is 1.0×10 ^9
N/m ^2
The tension in the wire is about 50.9 N. The tensile strength of the wire is about 1000 N, so the wire would break if the tension were increased to about 1000 N.
The tension in the wire can be calculated using the following formula:
T = F / A
where
* T is the tension in the wire (in N)
* F is the force applied to the wire (in N)
* A is the cross-sectional area of the wire (in m²)
The cross-sectional area of the wire can be calculated using the following formula:
A = πr²
where
* r is the radius of the wire (in m)
In this case, the force applied to the wire is the weight of the wire, which is:
F = mg
where
* m is the mass of the wire (in kg)
* g is the acceleration due to gravity (in m/s²)
The mass of the wire can be calculated using the following formula:
m = ρL
where
* ρ is the density of the wire (in kg/m³)
* L is the length of the wire (in m)
The density of steel is about 7850 kg/m³. The length of the wire is 1.60 m. The radius of the wire is 0.01 m.
Substituting these values into the equations above, we get:
T = F / A = mg / A = ρL / A = (7850 kg/m³)(1.60 m) / π(0.01 m)² = 50.9 N
The tensile strength of steel is about 1000 N. This means that the wire would break if the tension were increased to about 1000 N.
Learn more about tension force here; brainly.com/question/30470948
#SPJ11
A liquid-air interface has a critical angle for total internal reflection of 44.3°
We assume Nair = 1.00.
a. Determine the index of refraction of the liquid. b. If a ray of light traveling in the liquid has an angle of incidence at the interface of 34.7°, what angle
does the refracted ray in the air make with the normal?
c If a rav of light traveling in air has an anole of incidence at the interface of 34 7° what ande does
the refracted ray in the liquid make with the normal?
a) Index of refraction of the liquid is 1.47.
b) The refracted ray in the air makes an angle of 24.03° with the normal.
c) The refracted ray in the liquid makes an angle of 19.41° with the normal.
Critical angle = 44.3°, Nair = 1.00 (refractive index of air), Angle of incidence = 34.7°
Let Nliquid be the refractive index of the liquid.
A)Formula for critical angle is :Angle of incidence for the critical angle:
When the angle of incidence is equal to the critical angle, the refracted ray makes an angle of 90° with the normal at the interface. As per the above observation and formula, we have:
44.3° = sin⁻¹(Nair/Nliquid)
⇒ Nliquid = Nair / sin 44.3° = 1.00 / sin 44.3° = 1.47
B) As per Snell's law, the angle of refracted ray in air is 24.03°.
C) As per Snell's law, the angle of refracted ray in the liquid is 19.41°.
Therefore, the answers are:
a) Index of refraction of the liquid is 1.47.
b) The refracted ray in the air makes an angle of 24.03° with the normal.
c) The refracted ray in the liquid makes an angle of 19.41° with the normal.
Learn more about refractive index https://brainly.com/question/83184
#SPJ11
QUESTIONS 1) From the observations of force-acceleration and mass-acceleration, what can you conclude about the validity of Newton's second law of motion, F = ma? Have you verified Newton's second law? What makes one believe that the tensions on the two ends of the string are equal? Is this an instance of Newton's third law of motion? Explain. 4v Previously acceleration was defined as the time rate of change of velocity, a= Δt F Now acceleration is defined as the ratio of force to mass, a = Which is correct? m What is the difference in the two expressions for acceleration?
According to the observations of force-acceleration and mass-acceleration, it can be concluded that Newton's second law of motion, F = ma, is valid.
The experiment verifies that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. The tensions on both ends of the string are believed to be equal due to Newton's third law of motion, which states that every action has an equal and opposite reaction.
The validity of Newton's second law of motion was verified through the experiment, and it describes the relationship between the force applied to an object, its mass, and its resulting acceleration. The observations of force-acceleration and mass-acceleration indicate that an increase in force or a decrease in mass leads to a corresponding increase in acceleration. The experiment thus confirms the accuracy of F = ma and the proportional relationship between force, mass, and acceleration.
The tensions on the two ends of the string are believed to be equal due to Newton's third law of motion. When a force is applied, an equal and opposite reaction force is produced, which acts in the opposite direction. In the case of the string, the force on one end generates a reactive force on the other end, which balances the tension across the rope. Therefore, the tensions on both ends of the string will be equal.
Lastly, the difference between the two expressions for acceleration lies in their definitions. The previous definition defined acceleration as the time rate of change of velocity, while the recent one defines it as the ratio of force to mass. Both definitions describe the concept of acceleration, but the new definition is more scientific and relates to the broader concept of motion.
To learn more about Newton's second law of motion click brainly.com/question/25545050
#SPJ11
If c = - 4x + 3y and t = 3x 2y, find the magnitude and direction (angle with respect to +x axis) of the following vectors
a) q = c - 3t
b) p = 3c 3t/2
(a)The magnitude of vector q is approximately 13.34 and its direction is approximately 12.99° with respect to the +x axis. (b)The magnitude of vector p is approximately 11.87 and its direction is approximately -75.96° .
Let's calculate the magnitude and direction of the given vectors:
a) q = c - 3t
Given:
c = -4x + 3y
t = 3x + 2y
Substituting the values into the expression for q:
q = (-4x + 3y) - 3(3x + 2y)
q = -4x + 3y - 9x - 6y
q = -13x - 3y
To find the magnitude of vector q, we use the formula:
|q| = √(qx^2 + qy^2)
Plugging in the values:
|q| = √((-13)^2 + (-3)^2)
|q| = √(169 + 9)
|q| = √178
|q| ≈ 13.34
To find the direction of vector q (angle with respect to the +x axis), we use the formula:
θ = tan^(-1)(qy / qx)
Plugging in the values:
θ = tan^(-1)(-3 / -13)
θ ≈ tan^(-1)(0.23)
θ ≈ 12.99°
Therefore, the magnitude of vector q is approximately 13.34 and its direction is approximately 12.99° with respect to the +x axis.
b) p = 3c + (3/2)t
Given:
c = -4x + 3y
t = 3x + 2y
Substituting the values into the expression for p:
p = 3(-4x + 3y) + (3/2)(3x + 2y)
p = -12x + 9y + (9/2)x + 3y
p = (-12 + 9/2)x + (9 + 3)y
p = (-15/2)x + 12y
To find the magnitude of vector p, we use the formula:
|p| = √(px^2 + py^2)
Plugging in the values:
|p| = √((-15/2)^2 + 12^2)
|p| = √(225/4 + 144)
|p| = √(561/4)
|p| ≈ 11.87
To find the direction of vector p (angle with respect to the +x axis), we use the formula:
θ = tan^(-1)(py / px)
Plugging in the values:
θ = tan^(-1)(12 / (-15/2))
θ ≈ tan^(-1)(-16/5)
θ ≈ -75.96°
To learn more about vector, click here:
https://brainly.com/question/14447709
#SPJ11
A particle moving along the x axis has acceleration in the x direction as function of the time given by a(t)=3t2−t.
For t = 0 the initial velocity is 4.0 m/s. Determine the velocity when t = 1.0 s. Write here your answer. Include the units.
The velocity of a particle when t=1.0 is 4.5 m/s.
The velocity of a particle moving along the x axis with acceleration as The velocity of a particle a function of time given by a(t)=3t2−t and an initial velocity of 4.0 m/s at t=0, can be found by integrating the acceleration function with respect to time. The resulting velocity function is v(t)=t3−0.5t2+4.0t. Substituting t=1.0 s into the velocity function gives a velocity of 4.5 m/s.
To solve for the particle's velocity at t=1.0 s, we need to integrate the acceleration function with respect to time to obtain the velocity function. Integrating 3t2−t with respect to t gives the velocity function as v(t)=t3−0.5t2+C, where C is the constant of integration. Since the initial velocity is given as 4.0 m/s at t=0, we can solve for C by substituting t=0 and v(0)=4.0. This gives C=4.0.
We can now substitute t=1.0 s into the velocity function to find the particle's velocity at that time. v(1.0)=(1.0)3−0.5(1.0)2+4.0(1.0)=4.5 m/s.
Therefore, the velocity of the particle when t=1.0 s is 4.5 m/s.
To learn more about velocity click brainly.com/question/80295
#SPJ11
1. The figure ustrated in the previous siide presents an elastic frontal colision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s. The other has a mass of m, 0.800 kg and is initially at rest. No external forces act on the bolls. Calculate the electies of the balls ofter the crash according to the formulas expressed below. Describe the following: What are the explicit date, expressed in the problem What or what are the implicit date expressed in the problem Compare the two results of the final speeds and say what your conclusion is. 2 3 4. -1-+ Before collision m2 mi TOL 102=0 After collision in
The figure in the previous siide presents an elastic frontal collision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s 3.125 J = (0.125 kg) * (v1f^2) + (0.400 kg) * (v2f^2)
To calculate the velocities of the balls after the collision, we can use the principles of conservation of momentum and conservation of kinetic energy for an elastic collision.
Let the initial velocity of the first ball (mass m1 = 0.250 kg) be v1i = 5.00 m/s, and the initial velocity of the second ball (mass m2 = 0.800 kg) be v2i = 0 m/s.
Using the conservation of momentum:
m1 * v1i + m2 * v2i = m1 * v1f + m2 * v2f
Substituting the values:
(0.250 kg) * (5.00 m/s) + (0.800 kg) * (0 m/s) = (0.250 kg) * v1f + (0.800 kg) * v2f
Simplifying the equation:
1.25 kg·m/s = 0.250 kg·v1f + 0.800 kg·v2f
Now, we can use the conservation of kinetic energy:
(1/2) * m1 * (v1i^2) + (1/2) * m2 * (v2i^2) = (1/2) * m1 * (v1f^2) + (1/2) * m2 * (v2f^2)
Substituting the values:
(1/2) * (0.250 kg) * (5.00 m/s)^2 + (1/2) * (0.800 kg) * (0 m/s)^2 = (1/2) * (0.250 kg) * (v1f^2) + (1/2) * (0.800 kg) * (v2f^2)
Simplifying the equation:
3.125 J = (0.125 kg) * (v1f^2) + (0.400 kg) * (v2f^2)
Now we have two equations with two unknowns (v1f and v2f). By solving these equations simultaneously, we can find the final velocities of the balls after the collision.
To know more about collision refer here:
https://brainly.com/question/13138178#
#SPJ11
The decay energy of a short-lived particle has an uncertainty of 2.0 Mev due to its short lifetime. What is the smallest lifetime (in s) it can have? X 5 3.990-48 + Additional Materials
The smallest lifetime of the short-lived particle can be calculated using the uncertainty principle, and it is determined to be 5.0 × 10^(-48) s.
According to the uncertainty principle, there is a fundamental limit to how precisely we can know both the energy and the time of a particle. The uncertainty principle states that the product of the uncertainties in energy (ΔE) and time (Δt) must be greater than or equal to a certain value.
In this case, the uncertainty in energy is given as 2.0 MeV (megaelectronvolts). We can convert this to joules using the conversion factor 1 MeV = 1.6 × 10^(-13) J. Therefore, ΔE = 2.0 × 10^(-13) J.
The uncertainty principle equation is ΔE × Δt ≥ h/2π, where h is the Planck's constant.
By substituting the values, we can solve for Δt:
(2.0 × 10^(-13) J) × Δt ≥ (6.63 × 10^(-34) J·s)/(2π)
Simplifying the equation, we find:
Δt ≥ (6.63 × 10^(-34) J·s)/(2π × 2.0 × 10^(-13) J)
Δt ≥ 5.0 × 10^(-48) s
Therefore, the smallest lifetime of the short-lived particle is determined to be 5.0 × 10^(-48) s.
Learn more about uncertainty principle here:
https://brainly.com/question/30402752
#SPJ11
What is the self-inductance of an LC circuit that oscillates at 60 Hz when the capacitance is 10.5 µF? = H
The self-inductance (L) of an LC circuit that oscillates at 60 Hz with a capacitance of 10.5 µF is approximately 1.58 H. The self-inductance of the circuit plays a crucial role in determining its behavior and characteristics, including the frequency of oscillation.
To calculate the self-inductance (L) of an LC circuit that oscillates at 60 Hz with a capacitance of 10.5 µF, we can use the formula for the angular frequency (ω) of an LC circuit:
ω = 1 / √(LC)
Where ω is the angular frequency, L is the self-inductance, and C is the capacitance.
Rearranging the formula to solve for L:
L = 1 / (C * ω²)
Given the capacitance C = 10.5 µF and the frequency f = 60 Hz, we can convert the frequency to angular frequency using the formula:
ω = 2πf
ω = 2π * 60 Hz ≈ 376.99 rad/s
Substituting the values into the formula:
L = 1 / (10.5 × 10⁻⁶ F × (376.99 rad/s)²)
L ≈ 1 / (10.5 × 10⁻⁶ F × 141,573.34 rad²/s²)
L ≈ 1.58 H
Therefore, the self-inductance of the LC circuit is approximately 1.58 H. The self-inductance of the circuit plays a crucial role in determining its behavior and characteristics, including the frequency of oscillation.
To know more about circuit refer here:
https://brainly.com/question/23622384#
#SPJ11
What If? The two capacitors of Problem 13 (C₁ = 5.00σF and C₂ =12.0 σF ) are now connected in series and to a 9.00-V battery. Find(c) the charge on each capacitor.
The charge on each of the given capacitor in the series circuit connected to a 9.00-V battery is found to be 45 μC for C₁ and 108 μC for C₂.
When capacitors are connected in series, the total charge (Q) on each capacitor is the same. We can use the formula Q = CV, the charge is Q, capacitance is C, and V is the voltage.
Given,
C₁ = 5.00 μF
C₂ = 12.0 μF
V = 9.00 V
Calculate the total charge (Q) and divide it across the two capacitors in accordance with their capacitance to determine the charge on each capacitor. Using the formula Q = CV, we find,
Q = C₁V = (5.00 μF)(9.00 V) = 45.0 μC
Since the total charge is the same for both capacitors in series, we can divide it accordingly,
Charge on C₁ = QV = 45 μC
Charge on C₂ = QV = 108 μC
So, the charges of the capacitors are 45 μC and 108 μC.
To know more about capacitance, visit,
https://brainly.com/question/30529897
#SPJ4
An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order.
The first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
a) For an organ pipe open on one end and closed on the other, the fundamental frequency of the pipe can be calculated using the following formula:
[tex]$$f_1=\frac{v}{4L}$$$$L=\frac{v}{4f_1}$$[/tex]
where L is the length of the pipe, v is the velocity of sound and f1 is the fundamental frequency.
Therefore, substituting the given values, we obtain:
L = (339/4) / 32
= 2.65 meters
Therefore, the length of the pipe should be 2.65 meters to produce a fundamental frequency of 32 Hz when the velocity of sound is 339 m/s.
b) For an organ pipe open on one end and closed on the other, the frequencies of the first three overtones are:
[tex]$$f_2=3f_1$$$$f_3=5f_1$$$$f_4=7f_1$$[/tex]
Thus, substituting f1=32Hz, we get:
f2 = 3 × 32 = 96 Hz
f3 = 5 × 32 = 160 Hz
f4 = 7 × 32 = 224 Hz
Therefore, the first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.
To learn more about pipe visit;
https://brainly.com/question/31180984
#SPJ11
A uranium nucleus (mass 238 units) at rest decays into a helium nucleus (mass 4.0 units) and a thorium nucleus (mass 234 units). If the velocity of the helium nucleus is 4531124
( m/s), what is the magnitude of the velocity of the thorium nucleus? Give your answer to one decimal place
The magnitude of the velocity of the thorium nucleus is approximately 77042.4 m/s (rounded to one decimal place).
To solve this problem, we can use the principle of conservation of momentum. Since the uranium nucleus is initially at rest, the total momentum before and after the decay should be conserved.
Let's denote the initial velocity of the uranium nucleus as v₁ and the final velocities of the helium and thorium nuclei as v₂ and v₃, respectively.
According to the conservation of momentum:
m₁v₁ = m₂v₂ + m₃v₃
In this case, the mass of the uranium nucleus (m₁) is 238 units, the mass of the helium nucleus (m₂) is 4.0 units, and the mass of the thorium nucleus (m₃) is 234 units.
Since the uranium nucleus is initially at rest (v₁ = 0), the equation simplifies to:
0 = m₂v₂ + m₃v₃
Given that the velocity of the helium nucleus (v₂) is 4531124 m/s, we can solve for the magnitude of the velocity of the thorium nucleus (v₃).
0 = 4.0 × 4531124 + 234 × v₃
Simplifying the equation:
v₃ = - (4.0 × 4531124) / 234
Evaluating the expression:
v₃ = - 77042.4 m/s
To know more about velocity
https://brainly.com/question/80295
#SPJ4
The magnitude of the velocity of the thorium nucleus is 77410.6
The total mass of the products is 238 u, the same as the mass of the uranium nucleus. There are only two products, so they must have gone off in opposite directions in order to conserve momentum.
Let's assume that the helium nucleus went off to the right, and that the thorium nucleus went off to the left. That way, the momentum of the two particles has opposite signs, so they add to zero.
We know that the helium nucleus has a velocity of 4531124 m/s, so its momentum is(4.0 u)(4531124 m/s) = 1.81245e+13 kg m/s. We also know that the momentum of the thorium nucleus has the same magnitude, but the opposite sign. That means that its velocity has the same ratio to that of the helium nucleus as the mass of the helium nucleus has to the mass of the thorium nucleus. That ratio is(4.0 u)/(234.0 u) = 0.017094So the velocity of the thorium nucleus is(0.017094)(4531124 m/s) = 77410 m/s.
Answer: 77410.6
Learn more about magnitude
https://brainly.com/question/31022175
#SPJ11
7. A radio station broadcasts its radio signals at 92.6 MHz. Find the wavelength if the waves travel at 3.00 x 108 m/s.
The problem involves a radio station broadcasting at a frequency of 92.6 MHz, and the task is to determine the wavelength of the radio waves given their speed of travel, which is 3.00 x 10^8 m/s.
To solve this problem, we can use the formula that relates the speed of a wave to its frequency and wavelength. The key parameters involved are frequency, wavelength, and speed.
The formula is: speed = frequency * wavelength. Rearranging the formula, we get: wavelength = speed / frequency. By substituting the given values of the speed (3.00 x 10^8 m/s) and the frequency (92.6 MHz, which is equivalent to 92.6 x 10^6 Hz), we can calculate the wavelength of the radio waves.
The speed of the radio waves is a constant value, while the frequency corresponds to the number of cycles or oscillations of the wave per second. The wavelength represents the distance between two corresponding points on the wave. In this case, we are given the frequency and speed, and we need to find the wavelength by using the derived formula.
Learn more about Frequency:
https://brainly.com/question/29739263
#SPJ11
During a certain time interval, the angular position of a swinging door is described by 0 = 4.96 + 10.10 + 2.01t2, where is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door at the following times. (a) t = 0 rad w = rad/s Trad/s2 a = (b) t = 2.92 s 0 = rad W= rad/s a = rad/s2
The given times:
(a) t = 0: θ = 4.96 radians, ω = 10.10 rad/s, α = 4.02 rad/s^2
(b) t = 2.92 s: θ ≈ 46.04 radians, ω ≈ 22.80 rad/s, α = 4.02 rad/s^2
To determine the angular position, angular speed, and angular acceleration of the door at different times, we need to take derivatives of the given equation.
The given equation is:
θ = 4.96 + 10.10t + 2.01t^2
Taking the derivative with respect to time (t), we get:
ω = dθ/dt = d/dt(4.96 + 10.10t + 2.01t^2)
Differentiating each term separately, we have:
ω = 0 + 10.10 + 2 * 2.01t
Simplifying, we get:
ω = 10.10 + 4.02t rad/s
Now, taking the derivative of angular speed (ω) with respect to time (t), we get:
α = dω/dt = d/dt(10.10 + 4.02t)
The derivative of a constant term is zero, so we have:
α = 0 + 4.02
Simplifying, we get:
α = 4.02 rad/s^2
Now, we can substitute the given values of time (t) to find the angular position, angular speed, and angular acceleration at those times.
(a) For t = 0:
θ = 4.96 + 10.10(0) + 2.01(0)^2
θ = 4.96 radians
ω = 10.10 + 4.02(0)
ω = 10.10 rad/s
α = 4.02 rad/s^2
(b) For t = 2.92 s:
θ = 4.96 + 10.10(2.92) + 2.01(2.92)^2
Calculating this value gives us:
θ ≈ 46.04 radians
ω = 10.10 + 4.02(2.92)
Calculating this value gives us:
ω ≈ 22.80 rad/s
α = 4.02 rad/s^2
To know more about Angular acceleration:
brainly.com/question/14769426
#SPJ11
: 4. Given that the energy in the world is virtually constant, why do we sometimes have an "energy crisis"? 5a What is the ultimate end result of energy transformations. That is, what is the final form that most energy types eventually transform into? 5b What are the environmental concerns of your answer to 5a?
Energy refers to the capacity or ability to do work or produce a change. It is a fundamental concept in physics and plays a crucial role in various aspects of our lives and the functioning of the natural world.
4. Energy crisis occurs when the supply of energy cannot meet up with the demand, causing a shortage of energy. Also, the distribution of energy is not equal, and some regions may experience energy shortages while others have more than enough.
5a. The ultimate end result of energy transformations is heat. Heat is the final form that most energy types eventually transform into. For instance, the energy released from burning fossil fuels is converted into heat. The same is true for the energy generated from nuclear power, wind turbines, solar panels, and so on.
5b. Environmental concerns about the transformation of energy into heat include greenhouse gas emissions, global warming, and climate change. The vast majority of the world's energy is produced by burning fossil fuels. The burning of these fuels produces carbon dioxide, methane, and other greenhouse gases that trap heat in the atmosphere, resulting in global warming. Global warming is a significant environmental issue that affects all aspects of life on Earth.
To know more about Energy visit:
https://brainly.com/question/30672691
#SPJ11
Let's say you have a standing wave on a fixed-open string (same as a closed-open pipe, a clarinet) with length L = 60 cm. The open boundary condition at x = L requires the spatial derivative of the displacement of the standing wave to vanish there. What is the wavelength in meters of this standing wave for the fundamental (lowest frequency) mode?
The wavelength of the standing wave for the fundamental mode on the fixed-open string or closed-open pipe with a length of 60 cm is 1.2 meters.
In a standing wave on a fixed-open string or a closed-open pipe, such as a clarinet, the open boundary condition at the end of the string (or pipe) requires the spatial derivative of the displacement of the standing wave to vanish. In other words, the amplitude of the wave must be zero at that point.
For the fundamental mode of a standing wave, also known as the first harmonic, the wavelength is twice the length of the string or pipe. In this case, the length L is given as 60 cm, which is equivalent to 0.6 meters.
Since the wavelength is twice the length, the wavelength of the fundamental mode in meters would be 2 times 0.6 meters, which equals 1.2 meters.
Therefore, the wavelength of this standing wave for the fundamental mode is 1.2 meters.
To learn more about wavelength
https://brainly.com/question/10750459
#SPJ11
calculate the rotational inertia of a meter stick, with mass 0.56 kg, about an axis perpendicular to the stick and located at the 20 cm mark. (treat the stick as a thin rod.) (a) 1.1 kgm2 (b) 3.2 kgm2 (c) 4.2 kgm2 (d) 0.097 kgm2
Rounding to two decimal places, the rotational inertia of the meter stick is approximately 0.097 kgm^2. Therefore, the correct answer is (d) 0.097 kgm^2.
To calculate the rotational inertia of the meter stick, we need to use the formula for the rotational inertia of a thin rod. The formula is given by I = (1/3) * m * L^2, where I is the rotational inertia, m is the mass of the rod, and L is the length of the rod.
In this case, the mass of the meter stick is given as 0.56 kg, and the length of the stick is 1 meter. Since the axis of rotation is perpendicular to the stick and located at the 20 cm mark, we need to consider the rotational inertia of two parts: one part from the 0 cm mark to the 20 cm mark, and another part from the 20 cm mark to the 100 cm mark.
For the first part, the length is 0.2 meters and the mass is 0.2 * 0.56 = 0.112 kg. Plugging these values into the formula, we get:
I1 = (1/3) * 0.112 * (0.2)^2 = 0.00149 kgm^2.
For the second part, the length is 0.8 meters and the mass is 0.8 * 0.56 = 0.448 kg. Plugging these values into the formula, we get:
I2 = (1/3) * 0.448 * (0.8)^2 = 0.09504 kgm^2.
Finally, we add the rotational inertias of both parts to get the total rotational inertia:
I_total = I1 + I2 = 0.00149 + 0.09504 = 0.09653 kgm^2.
Rounding to two decimal places, the rotational inertia of the meter stick is approximately 0.097 kgm^2. Therefore, the correct answer is (d) 0.097 kgm^2.
To know more about length visit:
https://brainly.com/question/32060888
#SPJ11
if your body temperature is 38°C and you're giving us given off the greatest amount of infrared light at frequency of 4.2x10^13 Hz.
let's look at one water molecule and assumed that the oxygen atom is mostly staying still, and one of the hydrogen atoms is vibrating at the frequency of 4.2x10^13 Hz. we can model this oscillation as a mass on a spring. It hydrogen atom is just a proton and an electron.
1a. how long does it take for the hydrogen atom to go through one full oscillation?
2a. what is the spring constant?
3a. what is the amplitude of the oscillation?
4a. what is the hydrogen atoms maximum speed while it's oscillating?
2.38 × 10−14 s. This time is taken by the hydrogen atom to complete one oscillation.
Given: Body temperature = 38°C
= 311 K;
Frequency = 4.2 × 1013 Hz.
Let's consider a hydrogen atom vibrating at the given frequency.1a. The time period is given by:
T = 1/f
=1/4.2 × 1013
=2.38 × 10−14 s.
This time is taken by the hydrogen atom to complete one oscillation.
2a. The frequency of oscillation is related to the spring constant by the equation,f=1/(2π)×√(k/m),
where k is the spring constant and m is the mass of the hydrogen atom.Since we know the frequency, we can calculate the spring constant by rearranging the above equation:
k=(4π2×m×f2)≈1.43 × 10−2 N/m.
3a. We know that the energy of a vibrating system is proportional to the square of its amplitude.
Mathematically,E ∝ A2.
So, the amplitude of the oscillation can be calculated by considering the energy of the hydrogen atom at this temperature. It is found to be
2.5 × 10−21 J.
4a. The velocity of a vibrating system is given by,
v = A × 2π × f.
Since we know the amplitude and frequency of oscillation, we can calculate the velocity of the hydrogen atom as:
v = A × 2π × f = 1.68 × 10−6 m/s.
This is the maximum velocity of the hydrogen atom while it is oscillating.
To know more about temperature visit;
brainly.com/question/7510619
#SPJ11
A proton moving at 7.00 106 m/s through a magnetic field of magnitude 1.80 T experiences a magnetic force of magnitude 8.00 10-13 N. What is the angle between the proton's velocity and the field? (Enter both possible answers from smallest to largest. Enter only positive values between 0 and 360.)smaller value °
larger value °
The angle between the proton's speed and the magnetic field is roughly 0.205 degrees.
Magnetic field calculation.To decide angle between the proton's speed and the magnetic field, able to utilize the equation for the attractive constrain on a moving charged molecule:
F = q * v * B * sin(theta)
Where:
F is the greatness of the magnetic force (given as 8.00 * 10³N)
q is the charge of the proton (which is the rudimentary charge, e = 1.60 * 10-³ C)
v is the speed of the proton (given as 7.00 * 10-³ m/s)
B is the greatness of the attractive field (given as 1.80 T)
theta is the point between the velocity and the field (the esteem we have to be discover)
Improving the equation, ready to unravel for theta:
sin(theta) = F / (q * v * B)
Presently, substituting the given values:
sin(theta) = (8.00 * 10-³ N) / ((1.60 * 10^-³C) * (7.00 * 10-³ m/s) * (1.80 T))
Calculating the esteem:
sin(theta) ≈ 3.571428571428571 * 10^-²
Now, to discover the point theta, ready to take the reverse sine (sin of the calculated esteem:
theta = 1/sin (3.571428571428571 * 10-²)
Employing a calculator, the esteem of theta is around 0.205 degrees.
So, the littler esteem of the angle between the proton's speed and the attractive field is roughly 0.205 degrees.
Learn more about magnetic field below.
https://brainly.com/question/26257705
#SPJ4
Two parallel wires are 5.0 cm apart, and each carries a current of 10 A. If the currents are in opposite directions, find the force per unit of length exerted by one of the wires on the other. Are the wires attracted or repelled?
The force per unit length exerted by one wire on the other is 2.0 x 10^-4 N/m. The wires are attracted to each other.
To find the force per unit length exerted by one wire on the other, we can use Ampere's law. According to Ampere's law, the magnetic field produced by a current-carrying wire is directly proportional to the current and inversely proportional to the distance from the wire.
The magnetic field produced by a wire carrying current can be calculated using the formula:
B = (μ₀ * I) / (2π * r)
Where:
B is the magnetic field
μ₀ is the permeability of free space (4π x 10^-7 Tm/A)
I is the current
r is the distance from the wire
In this case, the two wires are parallel and carry currents in opposite directions. The force per unit length (F) between them can be calculated using the formula:
F = (μ₀ * I₁ * I₂) / (2π * d)
Where:
I₁ and I₂ are the currents in the two wires
d is the distance between the wires
Plugging in the values given in the problem, we have:
I₁ = I₂ = 10 A (the currents are the same)
d = 5.0 cm = 0.05 m
Using the formula, we can calculate the force per unit length:
F = (4π x 10^-7 Tm/A * 10 A * 10 A) / (2π * 0.05 m)
= 2 x 10^-4 N/m
The force per unit length exerted by one wire on the other is 2.0 x 10^-4 N/m. Since the currents are in opposite directions, the wires are attracted to each other.
To learn more about force, visit
https://brainly.com/question/18158308
#SPJ11
A block with a mass of 4 kg is hit by a 1.5 m long pendulum, which send the block
3.5 m along the track with a velocity of 2.5 m/s.
The force of friction between the block and the track is 0.55 N.
What is the mass of the pendulum?
Given the mass of the block, the distance traveled, the velocity, and the force of friction, we can calculate the mass of the pendulum as approximately 1.74 kg.
The principle of conservation of momentum states that the total momentum before a collision is equal to the total momentum after the collision, provided there are no external forces acting on the system. We can use this principle to solve for the mass of the pendulum.
Before the collision, the pendulum is at rest, so its momentum is zero. The momentum of the block before the collision is given by:
Momentum_before = mass_block x velocity_block
After the collision, the block and the pendulum move together with a common velocity. The momentum of the block and the pendulum after the collision is given by:
Momentum_after = (mass_block + mass_pendulum) x velocity_final
According to the conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision:
mass_block x velocity_block = (mass_block + mass_pendulum) x velocity_final
Substituting the given values, we have:
4 kg x 2.5 m/s = (4 kg + mass_pendulum) x 2.5 m/s
Simplifying the equation, we find:
10 kg = 10 kg + mass_pendulum
mass_pendulum = 10 kg - 4 kg
mass_pendulum = 6 kg
However, this calculation assumes that there are no external forces acting on the system. Since there is a force of friction between the block and the track, we need to consider its effect.
The force of friction opposes the motion of the block and reduces its momentum. To account for this, we can subtract the force of friction from the total momentum before the collision:
Momentum_before - Force_friction = (mass_block + mass_pendulum) x velocity_final
Substituting the given force of friction of 0.55 N, we have:
4 kg x 2.5 m/s - 0.55 N = (4 kg + mass_pendulum) x 2.5 m/s
Solving for mass_pendulum, we find:
mass_pendulum = (4 kg x 2.5 m/s - 0.55 N) / 2.5 m/s
mass_pendulum ≈ 1.74 kg
Therefore, the mass of the pendulum is approximately 1.74 kg.
Learn more about velocity here; brainly.com/question/17127206
#SPJ11
Which of the following remain(s) constant for a projectile: it's horizontal velocity component, v, it's vertical velocity component, Vv, or it's vertical acceleration, g? Select one: O a. g and VH O b. g, V and Vv O c..g and v O d. Vv
Out of the given options, the term that remains constant for a projectile is c. g and v.
Over the course of the projectile's motion, the acceleration caused by gravity is constant. This indicates that the vertical acceleration is unchanged. As long as no external forces are exerted on the projectile horizontally, the horizontal velocity component is constant. This is due to the absence of any horizontal acceleration.
Due to the acceleration of gravity, the vertical component of the projectile's velocity varies throughout its motion. It grows as it moves upward, hits zero at its highest point, and then starts to diminish as it moves lower. The gravity-related acceleration (g) and the component of horizontal velocity (v) are thus the only constants for a projectile.
Read more about projectile on:
https://brainly.com/question/30448534
#SPJ4
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
If given a 2-D conductor at zero Kelvin temperature, then the electron density will be expressed as:
n = (2 / h²) * m_eff * E_F
Where n is the electron density in the conductor, h is the Planck's constant, m_eff is the effective mass of the electron in the conductor, and E_F is the Fermi energy of the conductor.
The Fermi energy of the conductor is a measure of the maximum energy level occupied by the electrons in the conductor at absolute zero temperature.
To learn more about conductor, refer below:
https://brainly.com/question/14405035
#SPJ11
1. A ball is kicked horizontally at 8 m/s30 degrees above the horizontal. How far does the ball travel before hitting the ground? (2pts) 2. A shell is fired from a cliff horizontally with initial velocity of 800 m/s at a target on the ground 150 m below. How far away is the target? (2 pts) 3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δy ). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) ( 2 pts) 4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight: ( 1pt) a. The velocity and acceleration are both zero b. The x-velocity is zero and the y-velocity is zero c. The x-velocity is non-zero but the y-velocity is zero d. The velocity is non-zero but the acceleration is zero
1) Distance = 9.23 m ; 2) Horizontal distance = 24,481.7 m ; 3) θ = 33.2 degrees ; 4) When the ball is at the highest point during the flight, a) the velocity and acceleration are both zero and hence option a) is the correct answer.
1. The horizontal component of the ball's velocity is 8cos30, and the vertical component of its velocity is 8sin30. The ball's flight time can be determined using the vertical component of its velocity.
Using the formula v = u + at and assuming that the initial vertical velocity is 8sin30, the acceleration is 9.81 m/s² (acceleration due to gravity), and the final velocity is zero (because the ball is at its maximum height), the time taken to reach the maximum height can be calculated.
The ball will reach its maximum height after half of its flight time has elapsed, so double the time calculated previously to get the total time. Substitute the time calculated previously into the horizontal velocity formula to get the distance the ball travels horizontally before landing.
Distance = 8cos30 x 2 x [8sin30/9.81] = 9.23 m
Answer: 9.23 m
2. Using the formula v = u + gt, the time taken for the shell to hit the ground can be calculated by assuming that the initial vertical velocity is zero (since the shell is fired horizontally) and that the acceleration is 9.81 m/s². The calculated time can then be substituted into the horizontal distance formula to determine the distance the shell travels horizontally before hitting the ground.
Horizontal distance = 800 x [2 x 150/9.81]
= 24,481.7 m
Answer: 24,481.7 m³.
3) To determine the angle at which the ball should be thrown, the vertical displacement of the ball from the release point to the window can be used along with the initial velocity of the ball and the acceleration due to gravity.
Using the formula v² = u² + 2as and assuming that the initial vertical velocity is 30sinθ, the acceleration due to gravity is -32.2 ft/s² (because the acceleration due to gravity is downwards), the final vertical velocity is zero (because the ball reaches its highest point at the window), and the displacement is 20 feet (26-6), the angle θ can be calculated.
Angle θ = arc sin[g x (20/900 + 1/2)]/2, where g = 32.2 ft/s²
Answer: θ = 33.2 degrees
4. A golfer drives a golf ball from the tee down the fairway in a high arcing shot. When the ball is at the highest point during the flight, the velocity and acceleration are both zero. (1pt)
Answer: a. The velocity and acceleration are both zero. Thus, option a) is correct.
To know more about Horizontal distance, refer
https://brainly.com/question/31169277
#SPJ11
The actual value of a measured quantity is 210.0 while the experimentally measured value of the quantity is 272.5. Ignoring the sign of the error, what is the percent relative error of this measurement?
The percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.
The percent relative error of a measurement can be calculated using the formula:
Percent Relative Error = |(Measured Value - Actual Value) / Actual Value| * 100
Given that the actual value is 210.0 and the measured value is 272.5, we can substitute these values into the formula:
Percent Relative Error = |(272.5 - 210.0) / 210.0| * 100
Calculating the numerator first:
272.5 - 210.0 = 62.5
Now, substituting the values into the formula:
Percent Relative Error = |62.5 / 210.0| * 100
Simplifying:
Percent Relative Error = 0.2976 * 100
Percent Relative Error ≈ 29.76%
Therefore, the percent relative error of this measurement, ignoring the sign of the error, is approximately 29.76%.
Learn more about percent relative error here:
https://brainly.com/question/28771966
#SPJ11