A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer 1

Answer:

20J

Explanation:

In a collision, whether elastic or inelastic, momentum is always conserved. Therefore, using the principle of conservation of momentum we can first get the final velocity of the two bodies after collision. This is given by;

m₁u₁ + m₂u₂ = (m₁ + m₂)v          ---------------(i)

Where;

m₁ and m₂ are the masses of first and second objects respectively

u₁ and u₂ are the initial velocities of the first and second objects respectively

v  is the final velocity of the two objects after collision;

From the question;

m₁ = 2.0kg

m₂ = 8.0kg

u₁ = 5.0m/s

u₂ = 0        (since the object is initially at rest)

Substitute these values into equation (i) as follows;

(2.0 x 5.0) + (8.0 x 0) = (2.0 + 8.0)v

(10.0) + (0) = (10.0)v

10.0 = 10.0v

v = 1m/s

The two bodies stick together and move off with a velocity of 1m/s after collision.

The kinetic energy(KE₁) of the objects before collision is given by

KE₁ = [tex]\frac{1}{2}[/tex]m₁u₁² +  [tex]\frac{1}{2}[/tex]m₂u₂²       ---------------(ii)

Substitute the appropriate values into equation (ii)

KE₁ = ([tex]\frac{1}{2}[/tex] x 2.0 x 5.0²) +  ([tex]\frac{1}{2}[/tex] x 8.0 x 0²)

KE₁ = 25.0J

Also, the kinetic energy(KE₂) of the objects after collision is given by

KE₂ = [tex]\frac{1}{2}[/tex](m₁ + m₂)v²      ---------------(iii)

Substitute the appropriate values into equation (iii)

KE₂ = [tex]\frac{1}{2}[/tex] ( 2.0 + 8.0) x 1²

KE₂ = 5J

The kinetic energy lost (K) by the system is therefore the difference between the kinetic energy before collision and kinetic energy after collision

K = KE₂ - KE₁

K = 5 - 25

K = -20J

The negative sign shows that energy was lost. The kinetic energy lost by the system is 20J


Related Questions

describe the relation among density, temperature, and volume when the pressure is constant, and explain the blackbody radiation curve

Answers

Answer:

in all cases with increasing temperature the density should decrease.

Black body radiation is a construction that maintains a constant temperature and a hole is opened, this hole is called a black body,

Explanation:

Let's start for ya dream gas

        PV = nRT

Since it indicates that the pressure is constant, we see that the volume is directly proportional to the temperature.

The density of is defined by

        ρ = m / V

As we saw that volume increases with temperature, this is also true for solid materials, using linear expansion. Therefore in all cases with increasing temperature the density should decrease.

Black body radiation is a construction that maintains a constant temperature and a hole is opened, this hole is called a black body, since all the radiation that falls on it is absorbed or emitted.

This type of construction has a characteristic curve where the maximum of the curve is dependent on the tempera, but independent of the material with which it is built, to explain the behavior of this curve Planck proposed that the diaconate in the cavity was not continuous but discrete whose energy is given by the relationship

             E = h f

To understand the standard formula for a sinusoidal traveling wave.
One formula for a wave with a y displacement (e.g., of a string) traveling in the x direction is
y(x,t)=Asin(kxâÏt).
All the questions in this problem refer to this formula and to the wave it describes.
1) What is the phase Ï(x,t) of the wave?
Express the phase in terms of one or more given variables ( A, k, x, t, and Ï) and any needed constants like Ï
Ï(x,t)=
2) What is the wavelength λ of the wave?
Express the wavelength in terms of one or more given variables ( A, k, x, t, and Ï) and any needed constants like Ï.
λ=
3) What is the period T of this wave?
Express the period in terms of one or more given variables ( A, k, x, t, and Ï) and any needed constants like Ï.
T=
4) What is the speed of propagation v of this wave?
Express the speed of propagation in terms of one or more given variables ( A, k, x, t, and Ï) and any needed constants like Ï.
v=

Answers

Answer:

1) Φ=zero

2)  λ = 2π / k

3)   T = 2π / w

4)  v = w / k

Explanation:

The equation of a traveling wave is

     y = A sin (ka - wt + Ф)

Let's answer using this equation the different questions

1) we see that the equation given in the problem the phase is zero

2) wavelength

       

     k = 2π /λ

      λ = 2π / k

3) The perido

angular velocity is related to frequency

       w = 2π f

frequency and period are related

       f = 1 / T

         

       w = 2 π / T

        T = 2π / w

4) the wave speed is

         v = λ f

          λ = 2π / k

          f = w / 2π

          v = 2π /k  w /2π

           v = w / k

hich muscle fibers are best suited for activities that involve lifting large, heavy objects for a short period of time? cardiac slow twitch intermediate fast twitch

Answers

Answer:

Dead lifting uses tho muscle fundamentals

Explanation:

Answer:

Fast twitch

Explanation:

Edmentum

Which of the following is not a benefit of improved cardiorespiratory fitness

Answers

Answer:

C - Arteries grow smaller

Explanation:

The option choices are:

A. Faster post-exercise recovery time

B. Lungs expand more easily

C. Arteries grow smaller

D. Diaphragm grows stronger

Explanation:

There are many advantages of cardiorespiratory fitness. It can decrease the risk of heart disease, lung cancer, type 2 diabetes, stroke, and other diseases. Cardiorespiratory health helps develop lung and heart conditions and enhances feelings of well-being.

How would the magnetic field lines appear for a bar magnet cut at the midpoint, with the two pieces placed end to end with a space in between such that the cut edges are closest to each other? What would the general shape of the field lines look like? What would the field lines look like in between the two pieces?

Answers

Answer:

Explanation:

check this out and rate me

If the current flowing through a circuit of constant resistance is doubled, the power dissipated by that circuit will Group of answer choices

Answers

Answer:

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

Explanation:

The power dissipation by an electrical circuit is given by the following formula:

Power Dissipation = (Voltage)(Current)

P = VI

but, from Ohm's Law, we know that:

Voltage = (Current)(Resistance)

V = IR

Substituting this in formula of power:

P = (IR)(I)

P = I²R   ---------------- equation 1

Now, if we double the current , then the power dissipated by that circuit will be:

P' = I'²R

where,

I' = 2 I

Therefore,

P' = (2 I)²R

P' = 4 I²R

using equation 1

P' = 4 P

Therefore, the power dissipated by the circuit will becomes four times of its initial value.

What is the relationship between the magnitudes of the collision forces of two vehicles, if one of them travels at a higher speed?

Answers

Explanation:

The collision forces are equal and opposite.  Therefore, the magnitudes are equal.

A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation between the plates is increased, what will happen to the charge on the capacitor and the electric potential across it

Answers

Answer:

The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)

Explanation:

The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. [tex]Q[/tex], the amount of charge stored in this capacitor, will stay the same.

The formula [tex]\displaystyle Q = C\, V[/tex] relates the electric potential across a capacitor to:

[tex]Q[/tex], the charge stored in the capacitor, and[tex]C[/tex], the capacitance of this capacitor.

While [tex]Q[/tex] stays the same, moving the two plates apart could affect the potential [tex]V[/tex] by changing the capacitance [tex]C[/tex] of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:

[tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex],

where

[tex]\epsilon[/tex] is the permittivity of the material between the two plates.[tex]A[/tex] is the area of each of the two plates.[tex]d[/tex] is the distance between the two plates.

Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of [tex]\epsilon[/tex]. Neither will that change the area of the two plates.

However, as [tex]d[/tex] (the distance between the two plates) increases, the value of [tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex] will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.

On the other hand, the formula [tex]\displaystyle Q = C\, V[/tex] can be rewritten as:

[tex]V = \displaystyle \frac{Q}{C}[/tex].

The value of [tex]Q[/tex] (charge stored in this capacitor) stays the same. As the value of [tex]C[/tex] becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.  

Find the average value of position x, momentump, and square of the mometum p2 for the ground and first excited states of the particle-in-a-box with mass m and box length L.

Answers

Answer:

Explanation:

Find the average value of position x, momentump, and square of the mometum p2 for the ground and first excited states of the particle-in-a-box with mass m and box length L.

A student is conducting an experiment that involves adding hydrochloric acid to various minerals to detect if they have carbonates in them. The student holds a mineral up and adds hydrochloric acid to it. The acid runs down the side and onto the student’s hand causing irritation and a minor burn. If they had done a risk assessment first, how would this situation be different? A. It would be the same, there is no way to predict the random chance of acid dripping off the mineral in a risk assessment. B. The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. C. The student would be safer because he would have been wearing goggles, but his hand still would not have been protected. D. The student would not have picked up the mineral because he would know that some of the minerals have dangerous chemicals in them.

Answers

The answer would be D because it could have been prevented

By  the experiment "The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. "

What is experiment ?

An experiment would be a technique used to confirm or deny a hypothesis, as well as assess the likelihood or effectiveness of something that has never been tried before.

What is hydrochloric acid?

Hydrochloric acid is a kind of compound in which hydrogen and chlorine element is present.

Maintain a safe distance between your hands and your body, mouth, eyes, as well as a face when utilizing lab supplies and chemicals.

By  the experiment "By  the experiment "The student would have no injuries because he would know hydrochloric acid is dangerous and would be wearing gloves when using it. "

To know more about experiment and hydrochloric acid

https://brainly.com/question/13770820

#SPJ3

The cost of energy delivered to residences by electrical transmission varies from $0.070/kWh to $0.258/kWh throughout the United States; $0.110/kWh is the average value.

Required:
At this average price, calculate the cost of:

a. leaving a 40-W porch light on for two weeks while you are on vacation?
b. making a piece of dark toast in 3.00 min with a 970-W toaster
c. drying a load of clothes in 40.0 min in a 5.20 x 10^3-W dryer.

Answers

Answer:

Cost = $ 1.48

Cost = $ 0.005

Cost = $ 0.38

Explanation:

given data

electrical transmission varies = $0.070/kWh to $0.258/kWh

average value = $0.110/kWh

solution

when leaving a 40-W porch light on for two weeks while you are on vacation so cost will be

first we get here energy consumed that is express as

E = Pt    .................1

here E is Energy Consumed and Power Delivered is P and t is time

so power is here 0.04 KW and t = 2 week = 336 hour

so

put value in 1 we get

E = 0.04 × 336

E = 13.44 KWh

so cost will be as

Cost = E × Unit Price    .............2

put here value and we get

Cost = 13.44 × 0.11

Cost = $ 1.48

and

when you making a piece of dark toast in 3.00 min with a 970-W toaster

so energy consumed will be by equation 1 we get

E = Pt

power is = 0.97 KW and time = 3 min = 0.05 hour

put value in equation 1 for energy consume

E = 0.97 × 0.05 h

E = 0.0485 KWh

and we get cost by w\put value in equation 2 that will be

cost =  E × Unit Price

cost = 0.0485 × 0.11

Cost = $ 0.005

and

when drying a load of clothes in 40.0 min in a 5.20 x 10^3-W dryer

from equation 1 we get energy consume

E = Pt

Power Delivered = 5.203 KW and time = 40 min = 0.67 hour

E = 5.203 × 0.67

E = 3.47 KWh

and

cost will by put value in equation 2

Cost = E × Unit Price

Cost = 3.47 × 0.11

Cost = $ 0.38

A wheel starts from rest and rotates with constant angular acceleration to reach an angular speed of 12.9 rad/s in 2.98 s.
(a) Find the magnitude of the angular acceleration of the wheel.
(b) Find the angle in radians through which it rotates in this time interval.

Answers

Explanation:

(a) Find the magnitude of the angular acceleration of the wheel.

angular acceleration = angular speed /timeangular acceleration = 12.9/2.98 = 4.329rad/s²

(b) Find the angle in radians through which it rotates in this time interval.

angular speed = 2x3.14xf12.9rad = 2 x3.14

rad = 6.28/12.9rad = 0.487

Now we convert rad to angle

1 rad = 57.296°0.487 = unknown angleunknown angle =57.296 x 0.487 = 27.9°

The angle in radians = 27.9°

A wet shirt is put on a clothesline to dry on a sunny day. Do water molecules lose heat and condense, gain heat and condense or gain heat and evaporate

Answers

gain heat energy and evaporate

For a wet shirt is put on a clothesline to dry on a sunny day, water molecules gain heat and evaporate.

When a clothe is placed on a line to dry, the idea is to ensure that the water molecules should evaporate.

For the water molecules to evaporate, they must gain more energy that will enable them to transit from liquid to gaseous state.

Recall that he change from liquid to vapor requires energy, this is why water molecules gain energy when they evaporate.

Learn more: https://brainly.com/question/5019199

Now moving horizontally, the skier crosses a patch of soft snow, where the coefficient of friction is μk = 0.160. If the patch is of width 62.0 m and the average force of air resistance on the skier is 160 N , how fast is she going after crossing the patch?

Answers

Answer:

14.1 m/s

Explanation:

From the question,

μk = a/g...................... Equation 1

Where μk = coefficient of kinetic friction, a= acceleration of the skier, g = acceleration due to gravity.

make a the subject of the equation

a = μk(g).................. Equation 2

Given: μk = 0.160, g = 9.8 m/s²

Substitute into equation 2

a = 0.16(9.8)

a = 1.568 m/s²

Using,

F = ma

Where F = force, m = mass.

Make m the subject of the equation

m = F/a................... Equation 3

m = 160/1.568

m = 102.04 kg.

Note: The work done against air resistance by the skier+ work done against friction is equal to the kinetic energy after cross the patch.

Assuming the initial velocity of the skier to be zero

Fd+mgμ = 1/2mv²........................Equation 4

Where v = speed of the skier after crossing the patch, d = distance/width of the patch.

v = √2(Fd+mgμ)/m)................ Equation 5

Given: F = 160 N, m = 102.04 kg, d = 62 m, g = 9.8 m/s, μk = 0.16

Substitute these values into equation 5

v = √[2[(160×62)+(102.04×9.8×0.16)]/102.04]

v = √197.57

v = 14.1 m/s

v = 9.86 m/s

If you could see stars during the day, this is what the sky would look like at noon on a given day. The Sun is near the stars of the constellation Gemini. Near which constellation would you expect the Sun to be located at sunset?

Answers

Answer:

The sun will be located near the Gemini constellation at sunset

An archer shoots an arrow toward a 300-g target that is sliding in her direction at a speed of 2.10 m/s on a smooth, slippery surface. The 22.5-g arrow is shot with a speed of 37.5 m/s and passes through the target, which is stopped by the impact. What is the speed of the arrow after passing through the target

Answers

Answer:

The speed of the arrow after passing through the target is 30.1 meters per second.

Explanation:

The situation can be modelled by means of the Principle of Linear Momentum, let suppose that the arrow and the target are moving on the same axis, where the velocity of the first one is parallel to the velocity of the second one. The Linear Momentum model is presented below:

[tex]m_{a}\cdot v_{a,o} + m_{t}\cdot v_{t,o} = m_{a}\cdot v_{a,f} + m_{t}\cdot v_{t,f}[/tex]

Where:

[tex]m_{a}[/tex], [tex]m_{t}[/tex] - Masses of arrow and target, measured in kilograms.

[tex]v_{a,o}[/tex], [tex]v_{a,f}[/tex] - Initial and final speeds of the arrow, measured in meters per second.

[tex]v_{t,o}[/tex], [tex]v_{t,f}[/tex] - Initial and final speeds of the target, measured in meters per second.

The final speed of the arrow is now cleared:

[tex]m_{a} \cdot v_{a,f} = m_{a} \cdot v_{a,o} + m_{t}\cdot (v_{t,o}-v_{t,f})[/tex]

[tex]v_{a,f} = v_{a,o} + \frac{m_{t}}{m_{a}} \cdot (v_{t,o}-v_{t,f})[/tex]

If [tex]v_{a,o} = 2.1\,\frac{m}{s}[/tex], [tex]m_{t} = 0.3\,kg[/tex], [tex]m_{a} = 0.0225\,kg[/tex], [tex]v_{t,o} = 2.10\,\frac{m}{s}[/tex] and [tex]v_{t,f} = 0\,\frac{m}{s}[/tex], the speed of the arrow after passing through the target is:

[tex]v_{a,f} = 2.1\,\frac{m}{s} + \frac{0.3\,kg}{0.0225\,kg}\cdot (2.10\,\frac{m}{s} - 0\,\frac{m}{s} )[/tex]

[tex]v_{a,f} = 30.1\,\frac{m}{s}[/tex]

The speed of the arrow after passing through the target is 30.1 meters per second.

If the velocity of a pitched ball has a magnitude of 47.0 m/s and the batted ball's velocity is 55.0 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

Answer:

14.79 kgm/s

Explanation:

Data provided in the question

Let us assume the mass of baseball =  m = 0.145 kg

The Initial velocity of pitched ball = [tex]v_i[/tex] = 47 m/s

Final velocity of batted ball in the opposite direction = [tex]v_f[/tex]= -55m/s

Based on the above information, the change in momentum is

[tex]\Delta P = m(v_f -v_i)[/tex]

[tex]= 0.145 kg(-55m/s - 47m/s)[/tex]    

= 14.79 kgm/s

Hence, the magnitude of the change in momentum of the ball is 14.79 kg m/s

An electric heater is constructed by applying a potential different of 120V across a nichrome wire that has a total resistant of 8 ohm .the current by the wire is

Answers

Answer:

15amps

Explanation:

V=IR

I=V/R

I = 120/8

I = 15 amps

A ranger needs to capture a monkey hanging on a tree branch. The ranger aims his dart gun directly at the monkey and fires the tranquilizer dart. However, the monkey lets go of the branch at exactly the same time as the ranger fires the dart. Will the monkey get hit or will it avoid the dart?

Answers

Answer:

Yes the monkey will get hit and it will not avoid the dart.

Explanation:

Yes, the monkey will be hit anyway because the dart will follow a hyperbolic path and and will thus fall below the branches, so if the monkey jumps it will be hit.

No, the monkey will not avoid the dart because dart velocity doesn't matter. The speed of the bullet doesn’t even matter in this case because a faster bullet will hit the monkey at a higher height and while a slower bullet will simply hit the monkey closer to the ground.

When you are told that the wind has a "Small Coriolis force" associated with it, what is that "small force" exactly

Answers

Answer:

Coriolis force is a type of force of inertia that acts on objects that is in motion within a frame of reference that rotates with respect to an inertial frame. Due to the rotation of the earth, circulating air is deflected result of the Coriolis force, instead of the air circulating between the earth poles and the equator in a straight manner. Because of the effect of the Coriolis force,  air movement deflects toward the right in the Northern Hemisphere and toward the left in the Southern Hemisphere, eventually taking a curved path of travel.

A uniform 2.0-kg rod that is 0.92 m long is suspended at rest from the ceiling by two springs, one at each end. Both springs hang straight down from the ceiling. The springs have identical lengths when they are unstretched. Their spring constants are 29 N/m and 66 N/m. Find the angle that the rod makes with the horizontal.

Answers

Answer:

11.7°

Explanation:

See attached file

what is thermodynamic?​

Answers

Answer:

Thermodynamics is a branch of physics which deals with the energy and work of a system. It was born in the 19th century as scientists were first discovering how to build and operate steam engines. Thermodynamics deals only with the large scale response of a system which we can observe and measure in experiment.

Answer:

thermodynamics is the branch of physics which deals with the study of heat and other forms energy and their mutual relationship(relation ship between them)

Explanation:

i hope this will help you :)

The buoyant force on an object placed in a liquid is (a) always equal to the volume of the liquid displaced. (b) always equal to the weight of the object. (c) always equal to the weight of the liquid displaced. (d) always less than the volume of the liquid displaced.

Answers

Answer:

(c) always equal to the weight of the liquid displaced.

Explanation:

Archimedes principle (also called physical law of buoyancy) states that when an object is completely or partially immersed in a fluid (liquid, e.t.c), it experiences an upthrust (or buoyant force) whose magnitude is equal to the weight of the fluid displaced by that object.

Therefore, from this principle the best option is C - always equal to the weight of the liquid displaced.

When a nucleus at rest spontaneously splits into fragments of mass m1 and m2, the ratio of the momentum of m1 to the momentum of m2 is

Answers

Answer:

  p₁ = - p₂

the moment value of the two particles is the same, but its direction is opposite

Explanation:

When a nucleus divides spontaneously, the moment of the nucleic must be conserved, for this we form a system formed by the initial nucleus and the two fragments of the fission, in this case the forces during the division are internal and the moment is conserved

initial instant. Before fission

               p₀ = 0

since they indicate that the nucleus is at rest

final moment. After fission

             [tex]p_{f}[/tex] = m₁ v₁ + m₂ v₂

             p₀ = p_{f}

             0 = m₁ v₁ + m₂v₂

             m₁ v₁ = -m₂ v₂

           

              p₁ = - p₂

this indicates that the moment value of the two particles is the same, but its direction is opposite

Which jovian planet should have the most extreme seasonal changes? a. Saturn b. Neptune c. Jupiter d. Uranus

Answers

Answer:

D). Uranus.

Explanation:

Jovian planets are described as the planets which are giant balls of gases and located farthest from the sun which primarily include Jupiter, Saturn, Uranus, and Neptune.

As per the question, 'Uranus' is the jovian planet that would have the most extreme seasonal changes as its tilted axis leads each season to last for about 1/4 part of its 84 years orbit. The strong tilted axis encourages extreme changes in the season on Uranus. Thus, option D is the correct answer.

A current carrying wire is oriented along the y axis It passes through a region 0.45 m long in which there is a magnetic field of 6.1 T in the z direction The wire experiences a force of 15.1 N in the x direction.1. What is the magnitude of the conventional current inthe wire?I = A2. What is the direction of the conventional current in thewire?-y+y

Answers

Answer:

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

Explanation:

- To find the direction of the conventional current in the wire you use the following formula:

[tex]\vec{F}=i\vec{l}\ X\ \vec{B}[/tex]       (1)

i: current in the wire = ?

F: magnitude of the magnetic force on the wire = 15.1N

B: magnitude of the magnetic field = 6.1T

l: length of the wire that is affected by the magnetic field = 0.45m

The direction of the magnetic force is in the x direction (+^i) and the direction of the magnetic field is in the +z direction (+^k).

The direction of the current must be in the +y direction (+^j). In fact, you have:

^j X ^k = ^i

The current and the magnetic field are perpendicular between them, then, you solve for i in the equation (1):

[tex]F=ilBsin90\°\\\\i=\frac{F}{lB}=\frac{15.1N}{(0.45m)(6.1T)}=5.5A[/tex]

The magnitude of the current in the wire is 5.5A, and the direction of the current is in the positive y direction.

As an ice skater begins a spin, his angular speed is 3.14 rad/s. After pulling in his arms, his angular speed increases to 5.94 rad/s. Find the ratio of teh skater's final momentum of inertia to his initial momentum of inertia.

Answers

Answer:

I₂/I₁ = 0.53

Explanation:

During the motion the angular momentum of the skater remains conserved. Therefore:

Angular Momentum of Skater Before Pulling Arms = Angular Momentum of Skater After Pulling Arms

L₁ = L₂

but, the formula for angular momentum is:

L = Iω

Therefore,

I₁ω₁ = I₂ω₂

I₂/I₁ = ω₁/ω₂

where,

I₁ = Initial Moment of Inertia

I₂ = Final Moment of Inertia

ω₁ = Initial Angular Velocity = 3.14 rad/s

ω₂ = Final Angular velocity = 5.94 rad/s

Therefore,

I₂/I₁ = (3.14 rad/s)/(5.94 rad/s)

I₂/I₁ = 0.53

Approximately what applied force is needed to keep the box moving with a constant velocity that is twice as fast as before? Explain

Answers

Complete question:

A force F is applied to the block as shown (check attached image). With an applied force of 1.5 N, the block moves with a constant velocity.

Approximately what applied force is needed to keep the box moving with a constant velocity that is twice as fast as before? Explain

Answer:

The applied force that is needed to keep the box moving with a constant velocity that is twice as fast as before, is 3 N

Force is directly proportional to velocity, to keep the box moving at the double of initial constant velocity, we must also double the value of the initially applied force.

Explanation:

Given;

magnitude of applied force, F = 1.5 N

Apply Newton's second law of motion;

F = ma

[tex]F = m(\frac{v}{t} )\\\\F = \frac{m}{t} v\\\\Let \ \frac{m}{t} \ be \ constant = k\\F = kv\\\\k = \frac{F}{v} \\\\\frac{F_1}{v_1} = \frac{F_2}{v_2}[/tex]

The applied force needed to keep the box moving with a constant velocity that is twice as fast as before;

[tex]\frac{F_1}{v_1} = \frac{F_2}{v_2} \\\\(v_2 = 2v_1, \ and \ F_1 = 1.5N)\\\\\frac{1.5}{v_1} = \frac{F_2}{2v_1} \\\\1.5 = \frac{F_2}{2}\\\\F_2 = 2*1.5\\\\F_2 = 3 N[/tex]

Therefore, the applied force that is needed to keep the box moving with a constant velocity that is twice as fast as before, is 3 N

Force is directly proportional to velocity, to keep the box moving at the double of initial constant velocity, we must also double the value of the applied force.

Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.0° above the horizontal, and the second arrow is fired straight upward. Assume an isolated system and choose the reference configuration at the initial position of the arrows.
(a) what is the maximum height of each of the arrows?
(b) What is the total mechanical energy of the arrow-Earth system for each of the arrows at their maximum height?

Answers

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

[tex]U_{g,1} + K_{x,1} + K_{y,1} = U_{g,2} + K_{x,2} + K_{y,2}[/tex]

Where:

[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Initial and final gravitational potential energy, measured in joules.

[tex]K_{x,1}[/tex], [tex]K_{x,2}[/tex] - Initial and final horizontal translational kinetic energy, measured in joules.

[tex]K_{y,1}[/tex], [tex]K_{y,2}[/tex] - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

[tex]m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0[/tex]

[tex]g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})[/tex]

[tex]y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}[/tex]

Where:

[tex]y_{1}[/tex]. [tex]y_{2}[/tex] - Initial and final height of the arrow, measured in meters.

[tex]v_{y,1}[/tex], [tex]v_{y,2}[/tex] - Initial and final vertical speed of the arrow, measured in meters.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

[tex]v_{y,1} = v_{1}\cdot \sin \theta[/tex]

Where:

[tex]v_{1}[/tex] - Magnitude of the initial velocity, measured in meters per second.

[tex]\theta[/tex] - Initial angle, measured in sexagesimal degrees.

If [tex]v_{1} = 82\,\frac{m}{s}[/tex] and [tex]\theta = 24^{\circ}[/tex], the initial vertical speed is:

[tex]v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}[/tex]

[tex]v_{y,1} \approx 33.352\,\frac{m}{s}[/tex]

If [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{y,1} \approx 33.352\,\frac{m}{s}[/tex] and [tex]v_{y,2} = 0\,\frac{m}{s}[/tex], the maximum height of the first arrow is:

[tex]y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]y_{2} - y_{1} = 56.712\,m[/tex]

Second arrow

[tex]U_{g,1} + K_{y,1} = U_{g,3} + K_{y,3}[/tex]

Where:

[tex]U_{g,1}[/tex], [tex]U_{g,3}[/tex] - Initial and final gravitational potential energy, measured in joules.

[tex]K_{y,1}[/tex], [tex]K_{y,3}[/tex] - Initial and final vertical translational kinetic energy, measured in joules.

[tex]m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0[/tex]

[tex]g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})[/tex]

[tex]y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}[/tex]

If [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{y,1} = 82\,\frac{m}{s}[/tex] and [tex]v_{y,3} = 0\,\frac{m}{s}[/tex], the maximum height of the first arrow is:

[tex]y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]y_{3} - y_{1} = 342.816\,m[/tex]

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

[tex]E = U + K_{x}[/tex]

The expression is now expanded:

[tex]E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}[/tex]

Where [tex]v_{x}[/tex] is the horizontal speed of the arrow, measured in meters per second.

[tex]v_{x} = v_{1}\cdot \cos \theta[/tex]

If [tex]v_{1} = 82\,\frac{m}{s}[/tex] and [tex]\theta = 24^{\circ}[/tex], the horizontal speed is:

[tex]v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}[/tex]

[tex]v_{x} \approx 74.911\,\frac{m}{s}[/tex]

If [tex]m = 0.06\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{max} = 56.712\,m[/tex] and [tex]v_{x} \approx 74.911\,\frac{m}{s}[/tex], the total mechanical energy is:

[tex]E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}[/tex]

[tex]E = 201.720\,J[/tex]

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

[tex]E = m\cdot g \cdot y_{max}[/tex]

[tex]m = 0.06\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]y_{max} = 342.816\,m[/tex]

[tex]E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)[/tex]

[tex]E = 201.720\,J[/tex]

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

a wave with a high amplitude______?

Answers

. . . is carrying more energy than a wave in the same medium with a lower amplitude.

Other Questions
Cuntame sobre la maldicin de la mujer que llora! A person on a merry-go-round is constantly accelerating away from the center?true or false change into comparative degree:A Tania is not us qualified as nived for this job.B. Viswananth is the most respected person in the office. Solve: -1/2+ c =31/4 c=8 c=7 c=33/4 c=29/4 Will give brainliest. Write the recursive sequence for: 64, 16, 4, 1, ... Which of the following was created in 1949 in response to the Berlin blockade? the United Nations the Warsaw Pact the North Atlantic Treaty Organization the League of Nations Select the oxidation reduction reactions?? 4(13) + (18 4 27)4(10) + 4(3) + (18 + 27)40 - 12 + (+ 27) Please sb help and write it down on paper then send a pic Check Your UnderstandingSuppose the radius of the loop-the-loop inExample 7.9is 15 cm and thetoy car starts from rest at a height of 45 cm above the bottom. What is its speed at the top of the loop A 30-g bullet is fired with a horizontal velocity of 450 m/s and becomes embedded in block B which has a mass of 3 kg. After the impact, block B slides on a 30-kg carrier C until it impacts the end of the carrier.Knowing the impact between B and C is perfectly plastic determine (a) velocity of the bullet and B after the first impact, (b) the final velocity of the carrier(Distance between C and B is 0.5 m) What did the Emergency Banking Act do?A. Replaced the bank managers with members of the Brain TrustB. Consolidated small banks into larger, federal banksC. Provided extra funds to banks to stay openD. Closed banks to prevent further withdrawals Given an objective function value of 150 and a shadow price for resource 1 of 5, if 10 more units of resource 1 are added (assuming the allowable increase is greater than 10), what is the impact on the objective function value? Rearrange the letters in the word 'MASTER' to mean a water body. A starem B stream C merats D treams Manueala scored -4 \dfrac124 2 1 minus, 4, start fraction, 1, divided by, 2, end fraction points relative to her season average against the China Dragons. She scored 1 \dfrac121 2 1 1, start fraction, 1, divided by, 2, end fraction points relative to her season average against the Canada Moose. Drag the white cards onto the gray rectangle to write an inequality that correctly compares Manueala's relative numbers of points. Which one of the following descriptions is correct? Choose 1 answer: Choose 1 answer: (Choice A) A Manueala scored more points against the China Dragons than against the Canada Moose. (Choice B) B Manueala scored more points against the Canada Moose than against the China Dragons. Geraldo is driving 504 miles to his grandparents house for the holidays. So far he has driven 21 miles in 20.3 minutes. If he continues to drive at this average rate of speed, estimate how long the entire trip will take. what are the soultions of 3(x-4) (2x-3)= 0 check all Please answer this question in two minutes Given that IG is perpendicular to FT, which of the following statements is true?