Answer:
k = 3.5 N/m
Explanation:
It is given that the time period the bob in pendulum is the same as its time period in spring mass system:
[tex]Time\ Period\ of\ Pendulum = Time\ Period\ of\ Spring-Mass\ System\\2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{m}{k}[/tex]
[tex]\frac{l}{g} = \frac{m}{k}\\\\ k = g\frac{m}{l}[/tex]
where,
k = spring constant = ?
g = acceleration due to gravity = 9.81 m/s²
m = mass of bob = 125 g = 0.125 kg
l = length of pendulum = 35 cm = 0.35 m
Therefore,
[tex]k = (9.81\ m/s^2)(\frac{0.125\ kg}{0.35\ m})\\\\[/tex]
k = 3.5 N/m
define electric potential at a point and find expression for it.
Answer:
Recall that the electric potential is defined as the potential energy per unit charge, i.e. V=PEq V = PE q . ... The equation for the electric potential due to a point charge is V=kQr V = kQ r , where k is a constant equal to 9.0×109 N⋅m2/C2.
Explanation:
Mary and John are seated on a bench a distance 2 part. Suddenly, John moves closer to Mary and claims that he has been drawn by the gravitational force. Is John’s claim justifiable? Show quantitatively. (Assume the masses of John and Mary are 67 and 55 respectively, and the coefficient of static friction between John and the bench is 0.15). [4]
Answer:
no
gravitational force between them is far smaller than the frictional force between the guy and the bench
A ball is thrown horizontally at a height of 1.5 meters at a velocity of 70 m/s. Assume no air resistance. How long until the ball reaches the ground?
0.25 s
0.38 s
0.55 s
0.67 s
Answer:
[tex]t = 0.55[/tex]
Explanation:
Given
[tex]Height, s = 1.5m[/tex]
[tex]Velocity, v = 70m/s[/tex]
Required
Determine the time to hit the ground
Using free fall formula:
[tex]S = \frac{1}{2}gt^2[/tex]
Take g as 9.8 and substitute value for S
[tex]1.5 = \frac{1}{2} * 9.8 * t^2[/tex]
[tex]1.5 = 4.9 * t^2[/tex]
Make t^2 the subject
[tex]t^2 = \frac{1.5}{4.9}[/tex]
[tex]t^2 = 0.30612244898[/tex]
Solve for t
[tex]t = \sqrt{0.30612244898[/tex]
[tex]t = 0.55[/tex] -- approximated
Please help meeeee
For a velocity versus time graph how do you know what the velocity is at a certain time? How do you know the acceleration at a certain time?
Answer:
Explained below
Explanation:
For a velocity time graph, the y - axis will represent velocity while the x - axis will represent time.
Now, to calculate velocity at a certain time t, we will draw a perpendicular line from the time on the x-axis to the graph line and trace the horizontal line from that point to the y-axis which will give the corresponding velocity at that time.
Now, for the acceleration at a time t. After getting the velocity like explained above, we now divide the velocity by the time.
The scientific method can easily be misinterpreted as ___________. Question 1 options: a great magical trick, or slide of hands, rather than factual an "auto mechanics" guide to Science Investigation a "cookbook" recipe for performing scientific investigations the perfect method for finding the answers to all questions
Answer:
I think the answer is
a "cookbook" recipe for performing scientific investigations
Explanation:
If a marble is dropped from a cliff, how fast is the marble going after falling for 3.6 seconds?
PLEEEEAAASSSEEEEEE HELPPPP MEEEE>
Answer:
35.28m/s
Explanation:
Given
Time t = 3.6secs
Required
Final speed v
Using the equation of motion;
v = u + gt
Substitute;
v = 0 + 9.8(3.6)
v = 0 + 35.28
v = 35.28m/s
Hence the speed of the marble is 35.28m/s
HELP right awayyy !!!
Answer:
Question 4 is actually Acceleration
A 3 kg mass is travelling in a circle of 0.1 m radius with a speed of 2 m/s. What is the centripetal acceleration?
a = v² / R = (2 m/s)² / (0.1 m) = 40 m/s²
A particular engine has a power output of 5 kW and an efficiency of 30%. If the engine expels 6464 J of thermal energy in each cycle, find the heat absorbed in each cycle. Answer in units of J.
Answer:
The heat absorbed in each cycle is 9,234.286 J
Explanation:
Given;
power output, P = 5 kW = 5,000 W
efficiency of the engine, e = 30 % = 0.3
thermal heat expelled, [tex]Q_c[/tex] = 6464 J
let the heat absorbed = [tex]Q_h[/tex]
The efficiency of the engine is given as;
[tex]e = \frac{W}{Q_h} = \frac{Q_h-Q_c}{Q_h} = \frac{Q_h}{Q_h} - \frac{Q_c}{Q_h} = 1-\frac{Q_c}{Q_h}\\\\e = 1-\frac{Q_c}{Q_h}\\\\0.3 = 1-\frac{Q_c}{Q_h}\\\\\frac{Q_c}{Q_h} = 1-0.3\\\\\frac{Q_c}{Q_h} = 0.7\\\\Q_h = \frac{Q_c}{0.7} \\\\Q_h = \frac{6464}{0.7} = 9,234.286 \ J.[/tex]
Therefore, the heat absorbed in each cycle is 9,234.286 J.
A diver 50 m deep in 10∘C fresh water exhales a 1.0-cm-diameter bubble. What is the bubble's diameter just as it reaches the surface of the lake, where the water temperature is 20∘C?
Answer:
18.2mm
Explanation:
D = 50m
T1 = 10+273 = 283K
T2 = 20+273 = 293K
R1 = 5x10^-3
Absolute pressure at 50m
P1 = pA + pwateer x g x d
= 101000+ 1000x9.81x50
= 591500pa
New volume of bubble
= P1v1/T1 = p2v2/T2
= 125x10^-9 x 591500x293/101000*283
= 757.9x10^-9m³
R2 = 9.2x10^-3
D2 = 18.2mm
Or 1.82cm
Two wave pulses pass each other on a string. The pulse traveling toward the right has positive amplitude, whereas the pulse traveling toward the left has equal amplitude in the negative direction. What happens when they occupy the same region of space at the same time?
a. constructive interference occurs
b. destructive interference occurs.
c. a standing wave is produced.
d. a traveling wave is produced.
e. a wave pulse is produced.
Answer:
destructive interference occurs
Why does a stop sign appear red?
Answer:
because it’s suppose to be red like a stop light.
Explanation:
So it tells you to stop
A person holds a ladder horizontally at its center. Treating the ladder as a uniform rod of length 4.15 m and mass 7.98 kg, find the torque the person must exert on the ladder to give it an angular acceleration of 0.396 rad/s2.
Answer:
4.535 N.m
Explanation:
To solve this question, we're going to use the formula for moment of inertia
I = mL²/12
Where
I = moment of inertia
m = mass of the ladder, 7.98 kg
L = length of the ladder, 4.15 m
On solving we have
I = 7.98 * (4.15)² / 12
I = (7.98 * 17.2225) / 12
I = 137.44 / 12
I = 11.45 kg·m²
That is the moment of inertia about the center.
Using this moment of inertia, we multiply it by the angular acceleration to get the needed torque. So that
τ = 11.453 kg·m² * 0.395 rad/s²
τ = 4.535 N·m
The Torque will be "4.535 N.m".
Given:
Mass of ladder,
m = 7.98 kgLength of ladder,
L = 4.15 m
The moment of inertia will be:
→ [tex]I = \frac{mL^2}{12}[/tex]
[tex]= \frac{7.98\times (4.15)^2}{12}[/tex]
[tex]= \frac{7.98\times 17.2225}{12}[/tex]
[tex]= 11.45 \ kg.m^2[/tex]
hence,
The torque will be:
→ [tex]\tau = 11.453\times 0.395[/tex]
[tex]= 4.535 \ N/m[/tex]
Thus the above approach is correct.
Learn more about torque here:
https://brainly.com/question/19247046
a 1220 kg automobile travels at 75 m/s. what net work would be required to bring it to a stop
Answer:
W = - 3431250 [N]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the initial mechanical energy of a body plus the work done on this body must be equal to the final mechanical energy of the body. We must remember that the mechanical energy of a body is equal to the sum of kinetic energies plus potential energy plus elastic energy.
In this problem, we only have kinetic energy.
[tex]E_{1}+W_{1-2}=E_{2}\\where:\\E_{1}=E_{pot}+E_{kine}+E_{elas}\\E_{pot} = 0\\E_{elas}=0\\E_{kine}=\frac{1}{2} *m*v^{2}[/tex]
And we have:
m = mass = 1220 [kg]
v = velocity = 75 [m/s]
As the carriage stops the final kinetic energy is zero.
Now replacing:
[tex]\frac{1}{2} *1220*(75)^{2} +W_{1-2}=0\\W_{1-2}= - 3431250[N][/tex]
Note: The negative force means that the force has to be carried out by the carriage. That is, no external force acts on the car to stop it.
if a certain car, going with speed v1, rounds a level curve with a radius r1, it is just on the verge of skidding. if its speed is now doubled, the radius of the tightest curve on the same road that it can round without skidding is:
Answer:
The correct answer is 4R1
Explanation:
According to the given scenario ,the radius of the tightest curve on the same road without skidding is as follows:
As we know that
Centeripetal Acceleration is
= v^2 ÷ r
In the case when velocity becomes 2 times so the r would be 4 times
So, the radius of the tightest curve on the same road without skidding is 4R1
Thomas the Tank Engine (a train) is going 80 m/s and slows down to 30 m/s over a period of 30s. What is his deceleration? Acceleration= (final velocity-initial velocity)/ time A. -1.67 m/s/s B. 0.67 m/s/s C. -50 m/s/s D. 50 m/s/s
Answer: D
Explanation:
Shelley is in an elevator that is traveling downward and slowing down at a rate of
0.950 m/s2. If Shelley has a mass of 73.2 kg, what is her apparent weight during this
period?
Answer:
N = 648.55[N]
Explanation:
To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
∑F = Forces applied [N]
m = mass = 73.2 [kg]
a = acceleration = 0.950 [m/s²]
Let's assume the direction of the upward forces as positive, just as if the movement of the box is upward the acceleration will be positive.
By performing a summation of forces on the vertical axis we obtain all the required forces and other magnitudes to be determined.
[tex]-m*g + N = -m*a\\[/tex]
where:
g = gravity acceleration = 9.81 [m/s²]
N = normal force (or weight) measured by the scale = 83.4 [N]
Now replacing:
[tex]-(73.2*9.81)+N=-73.2*0.950\\-718.092+N=-69.54\\N = -69.54+718.092\\N = 648.55[N][/tex]
The acceleration has a negative sign, this means that the elevator is descending at that very moment.
What causes the magnetic field around the wire?
Magnetic field
O A. An electric current
O B. An electric field
PREVIOUS
An electric current causes the magnetic field around the wire. The correct answer is A.
The magnetic field around a wire is caused by the flow of electric current through the wire. When an electric current passes through a wire, it generates a magnetic field that forms circular lines of magnetic flux around the wire. This phenomenon is described by Ampere's law, which states that a magnetic field is produced by an electric current and its strength is directly proportional to the magnitude of the current.
The relationship between the electric current and the magnetic field can be understood using the right-hand rule. If you wrap your right hand around the wire with your thumb pointing in the direction of the current, the curled fingers indicate the direction of the magnetic field lines.
Therefore, an electric field is generated by an electric charge, not by an electric current. While an electric field can exist around a wire if there is a potential difference (voltage) applied across it, it is the flow of electric current that primarily generates the magnetic field.
To learn more about the electric field click:
brainly.com/question/8971780
#SPJ1
if an atom has two protons and three electrons than the atom is
Answer:
negative 1 charge
Explanation:
one electron is extra so there will be -1 chargw
If an atom has two protons and three electrons than the atom is negatively charged.
What is an atom?An atom is a matter particle that defines a chemical element uniquely. An atom is made up of a central nucleus and one or more negatively charged electrons.
The nucleus is positively charged and contains one or more protons and neutrons, which are relatively heavy particles.
It is made up of protons, which have a positive charge, and neutrons, which do not have any charge. Protons, neutrons, and the electrons that surround them are long-lived particles found in all natural atoms.
The modern atomic hypothesis was founded by John Dalton, a great chemist. His atom, on the other hand, was like a solid billiard ball.
An atom is negatively charged if it has two protons and three electrons.
Thus, the given atom bears negative charge.
For more details regarding atoms, visit:
https://brainly.com/question/1566330
#SPJ2
A diffraction pattern is formed on a screen 150 cm away from a 0.500-mm-wide slit. Monochromatic 546.1-nm light is used. Calculate the fractional intensity I/Imax at a point on the screen 4.10 mm from the center of the principal maximum.
Solution :
The expression for the intensity of light is given by :
[tex]$I=I_{max}\left(\frac{\sin \frac{\pi a \sin \theta}{\lambda}}{\frac{\pi a \sin \theta}{\lambda} }\right)^2$[/tex]
For a small angle, θ
sin θ = tan θ
[tex]$=\frac{y}{L}$[/tex]
Therefore the above equation becomes,
[tex]$I=I_{max}\left(\frac{\sin \frac{\pi a y}{\lambda L}}{\frac{\pi a y}{\lambda L} }\right)^2 $[/tex]
The given data is
λ = 546.1 nm
L = distance between the slit and the screen = 140 cm
= 1.40 m
a = width of the slit
= [tex]$0.50 \times 10^{-3} \ m$[/tex]
Therefore,
[tex]$I=I_{max}\left(\frac{\sin \frac{\pi \times 0.50 \times 10^{-3} \times 4.10 \times 10^{-3}}{546.1 \times 10^{-9} \times 1.20}}{\frac{\pi \times 0.50 \times 10^{-3} \times 4.10 \times 10^{-3}}{546.1 \times 10^{-9} \times 1.20} }\right)^2 $[/tex]
[tex]$=\left(\frac{0.170}{9.82}\right)^2$[/tex]
[tex]$= 2.89 \times 10^{-4} \ I_{max}$[/tex]
Therefore the fractional intensity is [tex]$\frac{I}{I_{max}}= 2.89 \times 10^{-4} $[/tex]
A wire is carrying current vertically downward. What is the direction of the force due to Earth's magnetic field on the wire?
A wire is carrying current vertically downward.
What is the direction of the force due to Earth's magnetic field on the wire?
a) horizontally towards the east
b) horizontally towards the west
c) horizontally towards the south
d) horizontally towards the north vertically upward
Answer: The correct option is A ( horizontally towards the east)
Explanation:
Magnetic field is a region around a magnet or a current- carrying conductor, where a magnetic force is experienced. The magnetic effect of electric current was first discovered in the early 1820 by Oersted. Using a wire that had current flowing through it and a pivoted magnetic needle, he discovered that the direction of deflection depended on the direction of the current and whether the wire was above or below the needle.
From the way the needle turns when current when current carrying wire is held parallel to it, he therefore concluded that:
--> a current has magnetic field all round it,
--> the magnetic field is in a direction perpendicular to the current.
The above discovery was now modified in Fleming's left hand rule which states that when conductor carrying current is placed in a magnetic field, the conductor will experience a force perpendicular to both the field and the flow of current.
Therefore from the question, a vertical wire carrying current in DOWNWARD direction is placed in a HORIZONTAL magnetic field directed to the NORTH. The direction of the force on the wire is to the EAST.
How does light move?
Answer:
Light travels as a wave. But unlike sound waves or water waves, it does not need any matter or material to carry its energy along. This means that light can travel through a vacuum—a completely airless space. It speeds through the vacuum of space at 186,400 miles (300,000 km) per second.
Explanation:
Hope this helps :))
what is the object's position at 6s?
Answer:
6sec and 8 postion
Explanation:
Plz help
Fill in the blank with the correct observation from the simulation.
As the days go on, the distance that the moon is from the sun in the night sky
A. Stays the same
B. Decreases
C. Increases
Starting at New Moon, The visual distance increases for about 2 weeks, then decreases for about the next 2weeks, until the next New Moon.
On the average, it changes by about 12° per day.
A contact lens is made of plastic with an index of refraction of 1.60. The lens has an outer radius of curvature of 2.08 cm and an inner radius of curvature of 2.48 cm. What is the focal length of the lens?
Answer:
The value [tex]f = 21.49 \ cm[/tex]
Explanation:
From the question we are told that
The index of refraction is [tex]n = 1.60[/tex]
The outer radius of curvature is [tex]R = 2.08 \ cm = 0.0208 \ m[/tex]
The inner radius is [tex]r = 2.48 \ cm = 0.0248 \ m[/tex]
Generally from Maker's equation we have that
[tex]\frac{1}{f} = [n - 1 ][\frac{1}{(R)} - \frac{1}{r} ][/tex]
=> [tex]\frac{1}{f} = [1.60 - 1 ][\frac{1}{( 0.0208 )} - \frac{1}{0.0248} ][/tex]
=> [tex]\frac{1}{f} = 4.65[/tex]
=> [tex]f = 0.2149 \ m[/tex]
=> [tex]f = 21.49 \ cm[/tex]
A swimmer speeds up from 1.1 m/s to 3.2 m/s during the last 13.0 seconds of the race. What is the acceleration of the swimmer?
Answer:
a = 0.16 [m/s²]
Explanation:
To solve this problem we must use the following equation of kinematics.
[tex]v_{f}=v_{o}+a*t\\[/tex]
where:
Vf = final velocity = 3.2 [m/s]
Vo = initial velocity = 1.1 [m/s]
t = time = 13 [s]
a = acceleration [m/s²]
Now replacing:
[tex]3.2=1.1+a*13\\2.1=13*a\\a=0.16[m/s^{2} ][/tex]
A student adds two vectors of magnitudes 48 m and 22 m. What are the maximum and minimum possible values for the resultant of these two vectors.
Answer:
Maximum=70 m
Minimum=26 m
Explanation:
Vector Addition
Since vectors have magnitude and direction, adding them takes into consideration not only the magnitudes but also their respective directions. Two vectors can be totally collaborative, i.e., point to the same direction, or be totally opposite. In the first case, the magnitude of the sum is at maximum. Otherwise, it's at a minimum.
Thus, the maximum magnitude of the sum is 48+22 = 70 m and the minimum magnitude of the sum is 48-22= 26 m
If 65 kW is to be transmitted over two 0.100 ohm lines, estimate how much power is saved if the voltage is stepped up from 120 V to 1200 V
Answer: 5.91kw
Explanation:
given data:
power = 65kw
voltage stepped up = 120v t0 1200
R 0.100
Solution:
when the it is stepped to 120v
[tex]P = VI \\65000/ 120I\\ I = 541.7A\\[/tex]
power loss
[tex](I^{2} )R*2\\= (541.7^{2})0.100*2\\= 58536.2w[/tex]
when it is stepped to 1200v
[tex]\frac{65000}{1200} \\ I = 54.17A\[/tex]
[tex](I^{2} )R*2\\= (54.17^{2})0.100*2\\= 586.9w[/tex]
total power saved
[tex]= 65kw - 58.5kw - 0.59kw\\= 5.91kw[/tex]
Energy stored because of an object's height above the Earth's surface is_____energy.
nuclear
gravitational
electrical or chemical
you pick up a 3.8 kg can of paint from the ground a lift it to a height of 1.4 m. you hold the can stationary for half a minute, waiting for a friend on a ladder to take it. how much work do you do duting this time (when the can of paint is stationary)?
Answer:
No work
Explanation:
During the time of holding the can stationary, no work is being done by the person carrying the can.
The can is simply at rest.
Work is done when a force is applied to move a body through a certain distance.Work done = force x distance
In the instance given in this problem, only when the paint was lifted up is work done.
When the paint is stationary and being supported by the person, no work is done.