Answer:
Option C. 4.03 g
Explanation:
Firstly we analyse data.
12 % by mass, is a sort of concentration. It indicates that in 100 g of SOLUTION, we have 12 g of SOLUTE.
Density is the data that indicates grams of solution in volume of solution.
We need to determine, the volume of solution for the concentration
Density = mass / volume
1.05 g/mL = 100 g / volume
Volume = 100 g / 1.05 g/mL → 95.24 mL
Therefore our 12 g of solute are contained in 95.24 mL
Let's finish this by a rule of three.
95.24 mL contain 12 g of sucrose
Our sample of 32 mL may contain ( 32 . 12) / 95.24 = 4.03 g
Percent yield is very important in terms of money. The higher the percent yield, the more of a product you can make. If you are working for a drug company and your theoretical yield is 120 kg, but you actually made 105 kg, what is your percent yield?
A. 8.75%
B. 114%
C. 87.50%
D. 15.00%
Answer:
87.5 %
Explanation:
Step 1: Given data
Theoretical yield: 120 kgReal yield: 105 kgStep 2: Calculate the percent yield
When working with chemical reactions, we can determine the efficience in obtaining a product measuring the percent yield. The theoretical yield is the maximum amount of product that we could obtain according to the stoichiometry, whereas the real yield is the amount of product that we actually obtain when we carry out the process. We can calculate the percent yield usign the following expression.
%yield = real yield / theoretical yield × 100%
%yield = 105 kg / 120 kg × 100%
%yield = 87.5 %
Which is the correctly balanced equation?
A) Cl2 + 2NaI = 2NaCl + I2
B) NaOH +HCl = NaCl + H2O2
C) 2HgO = Hg + O2
D) 2Li + H2O = 2LiOH + H2
PLS HURRY, TAKING TEST, NEED HELP NOW
Answer:
A) Cl2 + 2NaI = 2NaCl + I2
Help me please this is due today
What do you have to do to break a molecule?
Answer:
Heat the molecule
Explanation:
Since most bonds require energy to form, they also give off energy when they are broken. But before most bonds break, the molecule has to be heated. Then the atoms start to move, and when they move too much, the bond breaks. Molecules that require less energy to break than they give off when broken are called fuels.
What is required to cause change in matter
Answer:
Adding or removing energy from matter causes a physical change as matter moves from one state to another. For example, adding thermal energy (heat) to liquid water causes it to become steam or vapor (a gas). And removing energy from liquid water causes it to become ice (a solid). ... Most liquids contract as they freeze.
Explanation:
have a nice day
Which set of terms best defines what affects kinetic energy and potential energy, respecrively
8)
C(diamond) → C(graphite)
delta G° = -2.9 kJ/molrxn
Which of the following best explains why the reaction represented above is not observed to occur at
room temperature?
(A) The rate of the reaction is extremely slow because of the relatively small value of AGº for
the reaction.
(B) The entropy of the system decreases because the carbon atoms in graphite are less ordered
than those in diamond.
(C) The reaction has an extremely large activation energy due to strong three-dimensional
bonding among carbon atoms in diamond.
(D) The reaction does not occur because it is not thermodynamically favorable.
Answer: its b hope this helps.
Explanation:
What is electron affinity?
Answer:
The ability of an atom to accept an electron.
Explanation:
Electron affinity is measured by observing the energy change of a substance when an electron is added to it in its neutral gas form. For example, elements that are on the far right of the periodic table (excluding noble gases) are more likely to accept electrons rather than give them up. This is why Fluorine has the highest electron affinity of all atoms on the periodic table.
What is a solute?
A material that is dissolved in another material.
O A material in which another material is dissolved.
An area of space surrounding the nucleus.
O Chemical formulas on the left side of an equation.
Decide which element probably has a boiling point most and least similar to the boiling point of aluminum.
Comparing boiling point:
gallium rubidium magnesium oxygen
most similar to aluminum
least similar to aluminum
Answer:
The boiling point of gallium would be most similar to aluminum, and the boiling point of oxygen would be least similar to aluminum.
Explanation:
The atomic number of aluminum is 13, in the periodic table, magnesium lies in a similar period as Aluminum and Gallium is also present in a similar group. Thus, it can be expected that both magnesium and gallium exhibits similar boiling points with aluminum. However, gallium is a poor non-metal just like aluminum, while magnesium is a metal. Thus, it can be said that the boiling point of aluminum is more similar to gallium.
Now of the given elements, oxygen is a gas, thus, the boiling point of oxygen would be least similar to aluminum.
Electron transfer between redox centers in proteins is controlled by quantum tunneling. We can model the region between two redox centers as an energy barrier which the electron must cross. If the distance between the redox centers is 0.681 nm and the energy of the electron is 0.5540.554eV lower than the height of the barrier, what is the probability that the electron will successfully cross to the next redox center
Answer:
5.61 e⁻³
Explanation:
Given that:
The barrier length = 0.681 nm = 6.81 × 10⁻¹⁰
The difference between the height of the barrier & the energy of the electron is;
[tex]V - E = 0.554 \ eV (1.6 \times 10^{-19} )[/tex]
= 8.864 × 10⁻²⁰ V
where;
m = 9.1 × 10⁻³¹ kg
The probability[tex]P = e^{-2 \ kd}[/tex]
[tex]k = 2 \pi \sqrt{\dfrac{2m (V-E)}{h^2} }[/tex]
[tex]k = 2 \pi \times \dfrac{\sqrt{2 \times 9.1 \times 10^{-31} \times 8.864 \times 10^{-20}}}{6.63 \times 10^{-34}}[/tex]
k = 3.806 × 10⁹
[tex]P = e^{-2 \ kd}[/tex]
[tex]P = e^{2 \times 3.806 \times 10^9 \times 6.81 \times 10^{-10}}[/tex]
P = 0.005606
P = 5.61 × 10⁻³
P = 5.61 e⁻³
its snowing RIGHT NOW yay santa!!!!
Answer:
Yay
Explanation:
could i have a heart and branliest plss
Which is stronger, the strong force (SF) or the electromagnetic force (EMF)? Describe how they battle each other in the nucleus. What would happen if their strengths were reversed?
Answer:uclear Force that holds together the nucleus of an atom. electromagnetic force. ... They are unstable because the Strong Force that would hold them together if the protons and neutrons were closer is weakened because the protons and neutrons get too far apart.
Explanation:
15 points! Answer only if you can please!
1. Have you ever grabbed the handle of a hot metal pan? Why did it feel hot to you?
2. What would happen if a person who is wearing a heavy winter jacket were to place a thermometer inside the jacket next to his or her skin? What would happen if we took the same jacket, after it had been hanging in a closet, and placed a thermometer inside?
3. How do you think the transfer of thermal energy causes unpopped popcorn kernels to pop?
Answer:
1. Yes
2. it would be the same i guess
3. because it travels to popcorn kernels with its heat and makes it pop'
did i get it right?
Explanation:
Explain how atoms organize to create larger structures?
Answer:
First of all they are super tiny particles of neutrons, electrons and protons. Then they come together to organize a structure of atom. Atoms come together to form a molecule and smaller molecules work together to form macromolecules. Thus, how they organize and form building blocks of a substance.
Hope it helps!<3
A metal is found that has a mass of 27g and will displace 6mL of water. Calculate its density and identify the metal.
The density of metal = 4.5 g/ml, and the metal = Titanium
Further explanationDensity is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:
[tex]\large {\boxed {\bold {\rho ~ = ~ \frac {m} {V}}}}[/tex]
ρ = density
m = mass
v = volume
mass of metal=27 g
volume = 6 ml
The density :
[tex]\tt \rho=\dfrac{27}{6}\\\\\rho=4.5~g/ml[/tex]
The metal with a density of 4.5 g/ml is Titanium
The red outlined elements have what major characteristics in common?
1 point
Metals, Nonmetals, and Metalloids
One major characteristic they have in common is they are metals.
What's the electron configuration of an N-3 ion?
Question 17 options:
A)
[Ne]
B)
[Ar]
C)
[H]
D)
[He]
Answer:
A. since Nitrogen has 7 electrons and when it gains 3 electrons it will have 10 electrons. using short hand rule it is [Ne]
WILL BE MARKED BRAINLIEST IF U ANSWER CORRECT
PLUS 30 PT
Why does DNA dissolve in water?
Why is salt added to solution of DNA and water?
How does ethanol help the precipitate form?
After a pellet is formed, is the DNA in the pellet or the supernate?
Explanation:
Because of this, DNA and RNA can easily dissolve in water. ... Adding ethanol helps the Na+ and PO3- ions come together, because ions travel easier in ethanol than water. The supernate is removed and new ethanol is added in the second washing. This removes any residual salt that remained on the pelleted DNA.
Answer:
DNA is polar due to its highly charged phosphate backbone. Its polarity makes it water-soluble (water is polar) according to the principle "like dissolves like". ... This fact makes water a very good solvent for charged compounds like salts.
Your DNA's sugar phosphate backbone is charged. By adding salt, we help neutralize the DNA charge and make the molecule less hydrophilic, meaning it becomes less soluble in water. The salt also helps to remove proteins that are bound to the DNA and to keep the proteins dissolved in the water.
It is well known that Ethanol has a lower dielectric constant than water, making it to promote ionic bond formations between the Na+ (from the salt) and the PO3- (from the DNA backbone), further, causing the DNA to precipitate.
Explanation:
Ideally DNA needs to be precipitated with pellet and should not remain in supernatant. DNA is acidic in nature and therefore, needs optimum salt concentration in the buffer to be pelleted from a solution. At very low salt concentration or without salt DNA would remain in supernatant.
At what temperature is water a gas
Answer:
212 degrees Fahrenheit
Explanation:
When liquid water reaches a low enough temperature, it freezes and becomes a solid—ice. When solid water is exposed to enough heat, it will melt and return to a liquid. As that liquid water is further heated, it evaporates and becomes a gas—water vapor.
What is the molarity of a NaOH solution if 28.2 mL of a 0.355 M H2SO4 solution is required to neutralize a 25.0-mL sample of the NaOH solution?A) 0.801B) 0.315C) 0.629D) 125E) 0.400
Answer:
A) 0.801
Explanation:
The reaction that takes place is:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂OFirst we calculate the H₂SO₄ moles that reacted:
0.355 M * 28.2 mL = 10.011 mmol H₂SO₄Now we convert H₂SO₄ moles to NaOH moles:
10.011 mmol H₂SO₄ * [tex]\frac{2mmolNaOH}{1mmolH_2SO_4}[/tex] = 20.022 mmol NaOHFinally we calculate the molarity of the NaOH solution:
20.022 mmol NaOH / 25.0 mL = 0.801 MSo the answer is option A.
The molarity of the NaOH solution used in the neutralization reaction has been 0.801 [tex]\rm \times\;10^-^3[/tex] M. Thus, option A is correct.
The neutralization reaction has resulted in the formation of the salt and water on reacting an acid with a base. In the neutralization reaction, the strength of acid and base can be given as:
[tex]\rm 2\;NaOH\;+\;H_2SO_4\;\rightarrow\;Na_2SO_4\;+\;H_2O[/tex]
For the neutralization of 1 mole of sulfuric acid, 2 moles of NaOH has been required.
The moles of sulfuric acid can be given as:
Moles = Molarity × Volume
Given, the molarity of acid ([tex]\rm H_2SO_4[/tex]) = 0.355 M
Volume of acid = 28.2 ml = 0.0282 L
Volume of base (NaOH) = 25 ml = 0.025 L
Moles of [tex]\rm H_2SO_4[/tex] = 0.355 × 0.0282 mol
Moles of [tex]\rm H_2SO_4[/tex] = 10.011 mol.
Since, 1 mole [tex]\rm H_2SO_4[/tex] = 2 moles NaOH
10.011 moles [tex]\rm H_2SO_4[/tex] = 10.011 × 2 moles NaOH
10.011 moles [tex]\rm H_2SO_4[/tex] = 20.022 moles NaOH.
The neutralization of 0.355 M [tex]\rm H_2SO_4[/tex] requires 20.022 moles NaOH. The strength of the NaOH solution will be:
Molarity = [tex]\rm \dfrac{Moles}{Volume\;(L)}[/tex]
Molarity of NaOH = [tex]\rm \dfrac{20.022}{0.025}[/tex]
Molarity of NaOH = 0.801 [tex]\rm \times\;10^-^3[/tex] M.
The molarity of the NaOH solution used in the neutralization reaction has been 0.801 [tex]\rm \times\;10^-^3[/tex] M. Thus, option A is correct.
For more information about the neutralization reaction, refer to the link:
https://brainly.com/question/4612545
Based on the activity series provided, which reactants will form products? F > Cl > Br > I CuI2 + Br2 Right arrow. Cl2 + AlF3 Right arrow. Br2 + NaCl Right arrow. CuF2 + I2 Right arrow.
Answer: Cul2 + Br2 ->
Explanation:
Answer:
i believe the answer is a
Explanation:
GIVE 6 GIVING AWAY 100 IN A ROW HOPE YALL ENJOY MAKE SURE TO TELL PEOPLE ABOUT MY GOOD WORK TY
Answer:
YOURE AMAZING THANK YOU THANK YOU THANK YOU
Explanation:
4. Look at the equation below and determine what fitsI in the empty box.
14 C --> 4 N+
?
re
c. en TH
What belongs in the empty box?
A.
В.
e
D.
Answer:
Beta particles
Explanation:
A beta emission is said to occur when a neutron is converted into a proton. When a beta emission takes place, the daughter nucleus increases it's atomic number by 1. A neutrino is also produced.
Since the mass number remain the same but the daughter nucleus has it's atomic number increased by 1, then the particle is a beta particle.
How high of a Frequency would a photon have to be for it to have an energy of 4 joules
The frequency of photon=6.03 x 10³³ /s
Further explanationRadiation energy is absorbed by photons
The energy in one photon can be formulated as
[tex]\large{\boxed{\bold{E\:=\:h\:.\:f}}}[/tex]
Where
h = Planck's constant (6,626.10⁻³⁴ Js)
f = Frequency of electromagnetic waves
Energy of photon = 4 J
So the frequency :
[tex]\tt f=\dfrac{E}{h}\\\\f=\dfrac{4}{6.626.10^{-34}}\\\\f=6.03.10^{33}/s[/tex]
A compound is an example of pure substance
True
False
What is the electron configuration for N (nitrogen)?
A. 1s22s23s23p1
B. 1s21p5
C. 1s22s22p3
D. 1s22s22p23s1
Explanation:
₇N = 1s² 2s² 2p³
Group = 15period = 2atomic mass = 14Hydride of Nitrogen = Ammoniavalency = 3Therefore,
Option C is correct ✔
What is the degree of oxidation of a simple substance
Answer:
The oxidation state of a free element (uncombined element) is zero. For a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion. For example, Cl– has an oxidation state of -1. When present in most compounds, hydrogen has an oxidation state of +1 and oxygen an oxidation state of -2
The combustion of ethyne, shown below unbalance, produces heat which can be used to weld metals:
C2H2 (g) +502 (g) →2CO: (g) +H20 (g) AH reaction= -1544kJ
How much ethyne gas (in g) would you need to react with excess oxygen according to this reaction in order to raise the temperature of 325 g of high carbon steel from 165'C to its melting point, 1540 C? The heat capacity of high carbon steel is 0.490 J/g'C. (Assume a complete reaction and that all heat is transferred from the reaction to the metal with no loss.)
a. 7.37g
b. 1.84 g
c. 4.13 g
d 3.69 g
Answer:
3.69 g
Explanation:
Given that:
The mass m = 325 g
The change in temperature ΔT = ( 1540 - 165)° C
= 1375 ° C
Heat capacity [tex]c_p[/tex] = 0.490 J/g°C
The amount of heat required:
q = mcΔT
q = 325 × 0.490 × 1375
q = 218968.75 J
q = 218.97 kJ
The equation for the reaction is expressed as:
[tex]C_2H_{2(g)} + 5O_{2(g)} \to 2CO_{2(g)} + H_2O_{(g)} \ \ \ \ \ \Delta H^o_{reaction} = -1544 \ kJ[/tex]
Then,
1 mole of the ethyne is equal to 26 g of ethyne required for 1544 kJ heat.
Thus, for 218.97 kJ, the amount of ethyne gas required will be:
[tex]= \dfrac{26 \ g}{1544 \ kJ} \times 218.97 \ kJ[/tex]
= 3.69 g
what is protein denaturation
Answer:
Denaturation is a process in which proteins or nucleic acids lose the quaternary structure, tertiary structure, and secondary structure which is present in their native state, by application of some
Explanation: