9) Find the inverse of the function. f(x)=3x+2 f −1
(x)= 3
1

x− 3
2

f −1
(x)=5x+6
f −1
(x)=−3x−2
f −1
(x)=2x−3

10) Find the solution to the system of equations. (4,−2)
(−4,2)
(2,−4)
(−2,4)

11) Which is the standard form equation of the ellipse? 8x 2
+5y 2
−32x−20y=28 10
(x−2) 2

+ 16
(y−2) 2

=1 10
(x+2) 2

+ 16
(y+2) 2

=1
16
(x−2) 2

+ 10
(y−2) 2

=1

16
(x+2) 2

+ 10
(y+2) 2

=1

Answers

Answer 1

9) Finding the inverse of a function is quite simple, and it involves swapping the input with the output in the function equation. Here's how the process is carried out;f(x)=3x+2Replace f(x) with y y=3x+2 Swap x and y x=3y+2 Isolate y 3y=x−2 Divide by 3 y=x−23 Solve for y y=13(x−3)Therefore  f −1(x)= 3
1

x− 3
2

The inverse of a function is a new function that maps the output of the original function to its input. The inverse function is a reflection of the original function across the line y = x.

The graph of a function and its inverse are reflections of each other over the line y = x. To find the inverse of a function, swap the x and y variables, then solve for y in terms of x.10) The system of equations given is(4, −2)(−4, 2)We have to find the solution to the given system of equations. The solution to a system of two equations in two variables is an ordered pair (x, y) that satisfies both equations.

One of the methods of solving a system of equations is to plot the equations on a graph and find the point of intersection of the two lines. This is where both lines cross each other. The intersection point is the solution of the system of equations. From the given system of equations, it is clear that the two equations represent perpendicular lines. This is because the product of their slopes is -1.

The lines have opposite slopes which are reciprocals of each other. Thus, the only solution to the given system of equations is (4, −2).11) The equation of an ellipse is generally given as;((x - h)2/a2) + ((y - k)2/b2) = 1The ellipse has its center at (h, k), and the major axis lies along the x-axis, and the minor axis lies along the y-axis.

The standard form equation of an ellipse is given as;(x2/a2) + (y2/b2) = 1where a and b are the length of major and minor axis respectively.8x2 + 5y2 − 32x − 20y = 28This equation can be rewritten as;8(x2 - 4x) + 5(y2 - 4y) = -4Now we complete the square in x and y to get the equation in standard form.8(x2 - 4x + 4) + 5(y2 - 4y + 4) = -4 + 32 + 20This can be simplified as follows;8(x - 2)2 + 5(y - 2)2 = 48Divide by 48 on both sides, we have;(x - 2)2/6 + (y - 2)2/9.6 = 1Thus, the standard form equation of the ellipse is 16(x - 2)2 + 10(y - 2)2 = 96.

To know more about intersection point :

brainly.com/question/14217061

#SPJ11


Related Questions

Writing Equations Parallel and Perpendicular Lines.
1. Find an equation of the line which passes through the point
(4,3), parallel x=0

Answers

The equation of the line parallel to x = 0 and passing through the point (4,3) is x = 4. This equation represents a vertical line passing through the point (4,3), which is parallel to the y-axis and has a constant x-coordinate of 4.

The equation of a line parallel to the y-axis (vertical line) is of the form x = c, where c is a constant. In this case, we are given that the line is parallel to x = 0, which is the y-axis.

Since the line is parallel to the y-axis, it means that the x-coordinate of every point on the line remains constant. We are also given a point (4,3) through which the line passes.

Therefore, the equation of the line parallel to x = 0 and passing through the point (4,3) is x = 4. This equation represents a vertical line passing through the point (4,3), which is parallel to the y-axis and has a constant x-coordinate of 4.

Learn more about coordinate here:

brainly.com/question/32836021

#SPJ11

derivative of abs(x-8)consider the following function. f(x) = |x − 8|

Answers

The derivative of abs(x-8) is equal to 1 if x is greater than or equal to 8, and -1 if x is less than 8.

The absolute value function is defined as |x| = x if x is greater than or equal to 0, and |x| = -x if x is less than 0. The derivative of a function is a measure of how much the function changes as its input changes. In this case, the input to the function is x, and the output is the absolute value of x.

If x is greater than or equal to 8, then the absolute value of x is equal to x. The derivative of x is 1, so the derivative of the absolute value of x is also 1.

If x is less than 8, then the absolute value of x is equal to -x. The derivative of -x is -1, so the derivative of the absolute value of x is also -1.

Therefore, the derivative of abs(x-8) is equal to 1 if x is greater than or equal to 8, and -1 if x is less than 8.

Learn more about absolute value function here:

brainly.com/question/28478005

#SPJ11

5. Find the equation of the slant asymptote. Do not sketch the curve. \[ y=\frac{x^{3}-4 x-8}{x^{2}+2} \]

Answers

The equation of the slant asymptote is y = x - 2.

The given function is y = (x³ - 4x - 8)/(x² + 2). When we divide the given function using long division, we get:

y = x - 2 + (-2x - 8)/(x² + 2)

To find the slant asymptote, we divide the numerator by the denominator using long division. The quotient obtained represents the slant asymptote. The remainder, which is the expression (-2x - 8)/(x² + 2), approaches zero as x tends to infinity or negative infinity. This indicates that the slant asymptote is y = x - 2.

Thus, the equation of the slant asymptote of the function is y = x - 2.

To know more about asymptote, click here

https://brainly.com/question/32038756

#SPJ11

A sample of 100 IUPUI night school students' ages was obtained in order to estimate the mean age of all night school students. The sample mean was 25.2 years, with a sample variance of 16.4.
a. Give the point estimate for µ, the population mean, along with the margin of error.
b. Calculate the 99% confidence interval for µ

Answers

The point estimate for µ is 25.2 years, with a margin of error to be determined. The 99% confidence interval for µ is (24.06, 26.34) years.

a. The point estimate for µ, the population mean, is obtained from the sample mean, which is 25.2 years. The margin of error represents the range within which the true population mean is likely to fall. To determine the margin of error, we need to consider the sample variance, which is 16.4, and the sample size, which is 100. Using the formula for the margin of error in a t-distribution, we can calculate the value.

b. To calculate the 99% confidence interval for µ, we need to consider the point estimate (25.2 years) along with the margin of error. Using the t-distribution and the sample size of 100, we can determine the critical value corresponding to a 99% confidence level. Multiplying the critical value by the margin of error and adding/subtracting it from the point estimate, we can establish the lower and upper bounds of the confidence interval.

The resulting 99% confidence interval for µ is (24.06, 26.34) years. This means that we can be 99% confident that the true population mean falls within this range based on the sample data.

To learn more about “confidence interval” refer to the https://brainly.com/question/15712887

#SPJ11

Use the key features listed below to sketch the graph. x-intercept: (−2,0) and (2,0) y-intercept: (0,−1) Linearity: nonlinear Continuity: continuous Symmetry: symmetric about the line x=0 Positive: for values x<−2 and x>2 Negative: for values of −20 Decreasing: for all values of x<0 Extrema: minimum at (0,−1) End Behavior: As x⟶−[infinity],f(x)⟶[infinity] and as x⟶[infinity]

Answers

In order to sketch the graph of a function, it is important to be familiar with the key features of a function. Some of the key features include x-intercepts, y-intercepts, symmetry, linearity, continuity, positive, negative, increasing, decreasing, extrema, and end behavior of the function.

The positivity and negativity of the function tell us where the graph lies above the x-axis or below the x-axis. If the function is positive, then the graph is above the x-axis, and if the function is negative, then the graph is below the x-axis.

According to the given information, the function is positive for values [tex]x<−2[/tex] and [tex]x>2[/tex], and the function is negative for values of [tex]−2< x<2.[/tex]

Therefore, we can shade the part of the graph below the x-axis for[tex]-2< x<2[/tex] and above the x-axis for x<−2 and x>2.

According to the given information, as[tex]x⟶−[infinity],f(x)⟶[infinity] and as x⟶[infinity], f(x)⟶[infinity].[/tex] It means that both ends of the graph are going to infinity.

Therefore, the sketch of the graph of the function.

To know more about symmetry visit:-

https://brainly.com/question/1597409

#SPJ11

Realize the systems below by canonic direct, series, and parallel forms. b) H(s) = s^3/(s+1)(s²+4s+13)

Answers

The transfer function H(s) = s^3/(s+1)(s^2+4s+13) can be realized in the canonic direct, series, and parallel forms.

To realize the given transfer function H(s) = s^3/(s+1)(s^2+4s+13) in the canonic direct, series, and parallel forms, we need to factorize the denominator and express it as a product of first-order and second-order terms.

The denominator (s+1)(s^2+4s+13) is already factored, with a first-order term s+1 and a second-order term s^2+4s+13.

1. Canonic Direct Form:

In the canonic direct form, each term in the factored form is implemented as a separate block. Therefore, we have three blocks for the three terms: s, s+1, and s^2+4s+13. The output of the first block (s) is connected to the input of the second block (s+1), and the output of the second block is connected to the input of the third block (s^2+4s+13). The output of the third block gives the overall output of the system.

2. Series Form:

In the series form, the numerator and denominator are expressed as a series of first-order transfer functions. The numerator s^3 can be decomposed into three first-order terms: s * s * s. The denominator (s+1)(s^2+4s+13) remains as it is. Therefore, we have three cascaded blocks, each representing a first-order transfer function with a pole or zero. The first block has a pole at s = 0, the second block has a pole at s = -1, and the third block has poles at the roots of the quadratic equation s^2+4s+13 = 0.

3. Parallel Form:

In the parallel form, each term in the factored form is implemented as a separate block, similar to the canonic direct form. However, instead of connecting the blocks in series, they are connected in parallel. Therefore, we have three parallel blocks, each representing a separate term: s, s+1, and s^2+4s+13. The outputs of these blocks are summed together to give the overall output of the system.

These are the realizations of the given transfer function H(s) = s^3/(s+1)(s^2+4s+13) in the canonic direct, series, and parallel forms. The choice of which form to use depends on the specific requirements and constraints of the system.

Learn more about quadratic equation

brainly.com/question/30098550

#SPJ11

A manufacturer of yeast finds that the culture grows exponentially at the rate of 13% per hour . a) if the initial mass is 3.7 , what mass will be present after: 7 hours and then 2 days

Answers

After 7 hours, the mass of yeast will be approximately 9.718 grams. After 2 days (48 hours), the mass of yeast will be approximately 128.041 grams.

To calculate the mass of yeast after a certain time using exponential growth, we can use the formula:

[tex]M = M_0 * e^{(rt)}[/tex]

Where:

M is the final mass

M0 is the initial mass

e is the base of the natural logarithm (approximately 2.71828)

r is the growth rate (expressed as a decimal)

t is the time in hours

Let's calculate the mass of yeast after 7 hours:

M = 3.7 (initial mass)

r = 13% per hour

= 0.13

t = 7 hours

[tex]M = 3.7 * e^{(0.13 * 7)}[/tex]

Using a calculator, we can find that [tex]e^{(0.13 * 7)[/tex] is approximately 2.628.

M ≈ 3.7 * 2.628

≈ 9.718 grams

Now, let's calculate the mass of yeast after 2 days (48 hours):

M = 3.7 (initial mass)

r = 13% per hour

= 0.13

t = 48 hours

[tex]M = 3.7 * e^{(0.13 * 48)][/tex]

Using a calculator, we can find that [tex]e^{(0.13 * 48)}[/tex] is approximately 34.630.

M ≈ 3.7 * 34.630

≈ 128.041 grams

To know more about mass,

https://brainly.com/question/28053578

#SPJ11

a) After 7 hours, the mass will be approximately 7.8272.

b) After 2 days, the mass will be approximately 69.1614.

The growth of the yeast culture is exponential at a rate of 13% per hour.

To find the mass present after a certain time, we can use the formula for exponential growth:

Final mass = Initial mass × [tex](1 + growth ~rate)^{(number~ of~ hours)}[/tex]

a) After 7 hours:

Final mass = 3.7 ×[tex](1 + 0.13)^7[/tex]

To calculate this, we can plug in the values into a calculator or use the exponent rules:

Final mass = 3.7 × [tex](1.13)^{7}[/tex] ≈ 7.8272

Therefore, the mass present after 7 hours will be approximately 7.8272.

b) After 2 days:

Since there are 24 hours in a day, 2 days will be equivalent to 2 × 24 = 48 hours.

Final mass = 3.7 × [tex](1 + 0.13)^{48}[/tex]

Again, we can use a calculator or simplify using the exponent rules:

Final mass = 3.7 ×[tex](1.13)^{48}[/tex] ≈ 69.1614

Therefore, the mass present after 2 days will be approximately 69.1614.

Learn more about growth of the yeast

https://brainly.com/question/12000335

#SPJ11

Q3. Solve the system of equations using 3 iterations of Gauss Seidel method. Start with x= 0.8,=y=0.4,z=−0.45 6x+y+z=6
x+8y+2z=4
3x+2y+10z=−1

Answers

The solution to the given system of equations using 3 iterations of the Gauss Seidel method starting with x = 0.8, y = 0.4, and z = -0.45 is x = 1, y = 2, and z = -3.

The Gauss Seidel method is an iterative method used to solve systems of linear equations. In each iteration, the method updates the values of the variables based on the previous iteration until convergence is reached.

Starting with the initial values x = 0.8, y = 0.4, and z = -0.45, we substitute these values into the given equations:

6x + y + z = 6

x + 8y + 2z = 4

3x + 2y + 10z = -1

Using the Gauss Seidel iteration process, we update the values of x, y, and z based on the previous iteration. After three iterations, we find that x = 1, y = 2, and z = -3 satisfy the given system of equations.

Therefore, the solution to the system of equations using 3 iterations of the Gauss Seidel method starting with x = 0.8, y = 0.4, and z = -0.45 is x = 1, y = 2, and z = -3.

You can learn more about Gauss Seidel method  at

https://brainly.com/question/13567892

#SPJ11

Find the real zeros of f. Use the real zeros to factor f. f(x)=x 3
+6x 2
−9x−14 The real zero(s) of f is/are (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) Use the real zero(s) to factor f. f(x)= (Factor completely. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)

Answers

The real zeros of f are -7, 2, and -1.

To find the real zeros of f(x) = x³ + 6x² - 9x - 14. We can use Rational Root Theorem to solve this problem.

The Rational Root Theorem states that if the polynomial function has any rational zeros, then it will be in the form of p/q, where p is a factor of the constant term and q is a factor of the leading coefficient. The constant term of the given function is -14 and the leading coefficient is 1. The possible factors of p are ±1, ±2, ±7, and ±14. The possible factors of q are ±1. The possible rational zeros of the function are: ±1, ±2, ±7, ±14

We can try these values in the given function and see which one satisfies it.

On trying these values we get, f(-7) = 0

Hence, -7 is a zero of the function f(x).

To find the other zeros, we can divide the function f(x) by x + 7 using synthetic division.

-7| 1  6  -9  -14  | 0      |-7 -7   1  -14  | 0        1  -1  -14 | 0

Therefore, x³ + 6x² - 9x - 14 = (x + 7)(x² - x - 2)

We can factor the quadratic expression x² - x - 2 as (x - 2)(x + 1).

Therefore, f(x) = x³ + 6x² - 9x - 14 = (x + 7)(x - 2)(x + 1)

The real zeros of f are -7, 2, and -1 and the factored form of f is f(x) = (x + 7)(x - 2)(x + 1).

Learn more about Rational root theorem:

brainly.com/question/25191660

#SPJ11

An object was launched from the top of a building with an upward vertical velocity of 80 feet per second. The height of the object can be modeled by the function h(t)=−16t 2
+80t+96, where t represents the number of seconds after the object was launched. Assume the object landed on the ground and at sea level. Use technology to determine: | a) What is the height of the building? b) How long does it take the object to reach the maximum height? c) What is that maximum height? d) How long does it take for the object to fly and get back to the ground?

Answers

a) The height of the building is 96 feet.

b) It takes 2.5 seconds for the object to reach the maximum height.

c) The maximum height of the object is 176 feet.

d) It takes 6 seconds for the object to fly and get back to the ground.

a) To determine the height of the building, we need to find the initial height of the object when it was launched. In the given function h(t) = -16t^2 + 80t + 96, the constant term 96 represents the initial height of the object. Therefore, the height of the building is 96 feet.

b) The object reaches the maximum height when its vertical velocity becomes zero. To find the time it takes for this to occur, we need to determine the vertex of the quadratic function. The vertex can be found using the formula t = -b / (2a), where a = -16 and b = 80 in this case. Plugging in these values, we get t = -80 / (2*(-16)) = -80 / -32 = 2.5 seconds.

c) To find the maximum height, we substitute the time value obtained in part (b) back into the function h(t). Therefore, h(2.5) = -16(2.5)^2 + 80(2.5) + 96 = -100 + 200 + 96 = 176 feet.

d) The total time it takes for the object to fly and get back to the ground can be determined by finding the roots of the quadratic equation. We set h(t) = 0 and solve for t. By factoring or using the quadratic formula, we find t = 0 and t = 6 as the roots. Since the object starts at t = 0 and lands on the ground at t = 6, the total time it takes is 6 seconds.

In summary, the height of the building is 96 feet, it takes 2.5 seconds for the object to reach the maximum height of 176 feet, and it takes 6 seconds for the object to fly and return to the ground.

Learn more about quadratic formula here:

https://brainly.com/question/22364785

#SPJ11

Determine whether the following equation defines y as a function of x. xy+6y=8 Does the equation xy+6y=8 define y as a function of x ? Yes No

Answers

The equation xy + 6y = 8 defines y as a function of x, except when x = -6, ensuring a unique value of y for each x value.

To determine if the equation xy + 6y = 8 defines y as a function of x, we need to check if for each value of x there exists a unique corresponding value of y.

Let's rearrange the equation to isolate y:

xy + 6y = 8

We can factor out y:

y(x + 6) = 8

Now, if x + 6 is equal to 0, then we would have a division by zero, which is not allowed. So we need to make sure x + 6 ≠ 0.

Assuming x + 6 ≠ 0, we can divide both sides of the equation by (x + 6):

y = 8 / (x + 6)

Now, we can see that for each value of x (except x = -6), there exists a unique corresponding value of y.

Therefore, the equation xy + 6y = 8 defines y as a function of x

To learn more about function visit:

https://brainly.com/question/16550963

#SPJ11

Find the arc length function for the graph of \( f(x)=2 x^{3 / 2} \) using \( (0,0) \) as the starting point. What is the length of the curve from \( (0,0) \) to \( (4,16) \) ? Find the arc length fun

Answers

The arc length function for the graph of [tex]\( f(x) = 2x^{3/2} \)[/tex] can be found by integrating the square root of [tex]\( 1 + (f'(x))^2 \)[/tex] with respect to [tex]\( x \)[/tex], where [tex]\( f'(x) \)[/tex] is the derivative of [tex]\( f(x) \)[/tex]. To find the length of the curve from [tex]\( (0,0) \) to \( (4,16) \)[/tex], we evaluate the arc length function at [tex]\( x = 4 \)[/tex] and subtract the value at [tex]\( x = 0 \)[/tex].

The derivative of [tex]\( f(x) = 2x^{3/2} \) is \( f'(x) = 3\sqrt{x} \)[/tex]. To find the arc length function, we integrate the square root of [tex]\( 1 + (f'(x))^2 \)[/tex] with respect to [tex]\( x \)[/tex] over the given interval.

The arc length function for the graph of [tex]\( f(x) = 2x^{3/2} \) from \( x = 0 \) to \( x = t \)[/tex] is given by the integral:

[tex]\[ L(t) = \int_0^t \sqrt{1 + (f'(x))^2} \, dx \][/tex]

To find the length of the curve from[tex]\( (0,0) \) to \( (4,16) \)[/tex], we evaluate [tex]\( L(t) \) at \( t = 4 \)[/tex] and subtract the value at [tex]\( t = 0 \)[/tex]:

[tex]\[ \text{Length} = L(4) - L(0) \][/tex]

By evaluating the integral and subtracting the values, we can find the length of the curve from [tex]\( (0,0) \) to \( (4,16) \)[/tex].

Learn more about derivative here:

https://brainly.com/question/25324584

#SPJ11

question 6
Find all real solutions of the equation by completing the square. (Enter your ariswers as a comma-3eparated litt.) \[ x^{2}-6 x-15=0 \]

Answers

The real solutions to the equation x^2 - 6x - 15 = 0 are x = 3 + 2√6 and x = 3 - 2√6, obtained by completing the square.

To solve the equation x^2 - 6x - 15 = 0 by completing the square, we can follow these steps:

Move the constant term (-15) to the right side of the equation:

x^2 - 6x = 15

To complete the square, take half of the coefficient of x (-6/2 = -3) and square it (-3^2 = 9). Add this value to both sides of the equation:

x^2 - 6x + 9 = 15 + 9

x^2 - 6x + 9 = 24

Simplify the left side of the equation by factoring it as a perfect square:

(x - 3)^2 = 24

Take the square root of both sides, considering both positive and negative square roots:

x - 3 = ±√24

Simplify the right side by finding the square root of 24, which can be written as √(4 * 6) = 2√6:

x - 3 = ±2√6

Add 3 to both sides of the equation to isolate x:

x = 3 ± 2√6

Therefore, the real solutions of the equation x^2 - 6x - 15 = 0 are x = 3 + 2√6 and x = 3 - 2√6.

To learn more about perfect square visit:

https://brainly.com/question/1538726

#SPJ11

Find the volume of the solid created by revolving y=x 2
around the x-axis from x=0 to x=1. Show all work, doing all integration by hand. Give your final answer in fraction form (not a decimal).

Answers

The volume of the solid created by revolving $y = x^2$ around the x-axis from $x = 0$ to $x = 1$ is $\frac{\pi}{5}$.

Given, we have to find the volume of the solid created by revolving y = x² around the x-axis from x = 0 to x = 1.

To find the volume of the solid, we can use the Disk/Washer method.

The volume of a solid generated by revolving about the x-axis the region bounded by the graph of the continuous function $f(x) \ge 0$, the x-axis, and the vertical lines $x = a$ and $x = b$ is given by $\int_a^b \pi[f(x)]^2dx$.

The disk/washer method states that the volume of a solid generated by revolving about the x-axis the region bounded by the graph of the continuous function $f(x) \ge 0$, the x-axis, and the vertical lines $x = a$ and $x = b$ is given by $\int_a^b \pi[f(x)]^2dx$.Given $y = x^2$ is rotated about the x-axis from $x = 0$ to $x = 1$. So we have $f(x) = x^2$ and the limits of integration are $a = 0$ and $b = 1$.

Therefore, the volume of the solid is:$$\begin{aligned}V &= \pi \int_{0}^{1} (x^2)^2 dx \\&= \pi \int_{0}^{1} x^4 dx \\&= \pi \left[\frac{x^5}{5}\right]_{0}^{1} \\&= \pi \cdot \frac{1}{5} \\&= \boxed{\frac{\pi}{5}}\end{aligned}$$

Therefore, the volume of the solid created by revolving $y = x^2$ around the x-axis from $x = 0$ to $x = 1$ is $\frac{\pi}{5}$.

To know more about volume visit:
brainly.com/question/32944329

#SPJ11

Please please please help asapp
question: in the movie lincoln lincoln says "euclid's first common notion is this: things which are equal to the same things are equal to each other. that's a rule of mathematical reasoning and it's true because it works - has done
and always will do. in his book euclid says this is self-evident. you see there it is even in that 2000 year old book of mechanical law it is the self-evident truth that things which are equal to the same things are equal to each other."
explain how this common notion is an example of a postulate or a theorem

Answers

The statement made by Lincoln in the movie "Lincoln" refers to a mathematical principle known as Euclid's first common notion. This notion can be seen as an example of both a postulate and a theorem.

In the statement, Lincoln says, "Things which are equal to the same things are equal to each other." This is a fundamental idea in mathematics that is often referred to as the transitive property of equality. The transitive property states that if a = b and b = c, then a = c. In other words, if two things are both equal to a third thing, then they must be equal to each other.

In terms of Euclid's first common notion being a postulate, a postulate is a statement that is accepted without proof. It is a basic assumption or starting point from which other mathematical truths can be derived. Euclid's first common notion is considered a postulate because it is not proven or derived from any other statements or principles. It is simply accepted as true. So, in summary, Euclid's first common notion, as stated by Lincoln in the movie, can be seen as both a postulate and a theorem. It serves as a fundamental assumption in mathematics, and it can also be proven using other accepted principles.

To know more about mathematical visit :

https://brainly.com/question/27235369

#SPJ11

Suppose angles 1 and 2 are supplementary and ∠1=47∘ . Then what is the measure (in degrees) of ∠2 ?

Answers

The measure of ∠2 is 133 degrees.

If angles 1 and 2 are supplementary, it means that their measures add up to 180 degrees.

Supplementary angles are those that total 180 degrees. Angles 130° and 50°, for example, are supplementary angles since the sum of 130° and 50° equals 180°. Complementary angles, on the other hand, add up to 90 degrees. When the two additional angles are brought together, they form a straight line and an angle.

Given that ∠1 = 47 degrees, we can find the measure of ∠2 by subtracting ∠1 from 180 degrees:

∠2 = 180° - ∠1

∠2 = 180° - 47°

∠2 = 133°

Therefore, the measure of ∠2 is 133 degrees.

To learn about angle measure here:

https://brainly.com/question/25770607

#SPJ11

1. The function \( f(x, y)=x^{2}+y^{2}-10 x-8 y+1 \) has one critical point. Find it, and determine if it is a local minimum, a local maximum, or a saddle point.

Answers

The critical point \((5, 4)\) is a local minimum for the function f(x, y) = x² + y² - 10x - 8y + 1.

To find the critical point(s) of the function f(x, y) = x² + y² - 10x - 8y + 1, we need to calculate the partial derivatives with respect to both (x) and (y) and set them equal to zero.

Taking the partial derivative with respect to \(x\), we have:

[tex]\(\frac{\partial f}{\partial x} = 2x - 10\)[/tex]

Taking the partial derivative with respect to \(y\), we have:

[tex]\(\frac{\partial f}{\partial y} = 2y - 8\)[/tex]

Setting both of these partial derivatives equal to zero, we can solve for(x) and (y):

[tex]\(2x - 10 = 0 \Rightarrow x = 5\)\(2y - 8 = 0 \Rightarrow y = 4\)[/tex]

So, the critical point of the function is (5, 4).

To determine if it is a local minimum, a local maximum, or a saddle point, we need to examine the second-order partial derivatives. Let's calculate them:

Taking the second partial derivative with respect to (x), we have:

[tex]\(\frac{{\partial}^2 f}{{\partial x}^2} = 2\)[/tex]

Taking the second partial derivative with respect to (y), we have:

[tex]\(\frac{{\partial}^2 f}{{\partial y}^2} = 2\)[/tex]

Taking the mixed partial derivative with respect to (x) and (y), we have:

[tex]\(\frac{{\partial}^2 f}{{\partial x \partial y}} = 0\)[/tex]

To analyze the critical point (5, 4), we can use the second derivative test. If the second partial derivatives satisfy the conditions below, we can determine the nature of the critical point:

1. [tex]If \(\frac{{\partial}^2 f}{{\partial x}^2}\) and \(\frac{{\partial}^2 f}{{\partial y}^2}\) are both positive and \(\left(\frac{{\partial}^2 f}{{\partial x}^2}\right) \left(\frac{{\partial}^2 f}{{\partial y}^2}\right) - \left(\frac{{\partial}^2 f}{{\partial x \partial y}}\right)^2 > 0\), then the critical point is a local minimum.[/tex]

2. [tex]If \(\frac{{\partial}^2 f}{{\partial x}^2}\) and \(\frac{{\partial}^2 f}{{\partial y}^2}\) are both negative and \(\left(\frac{{\partial}^2 f}{{\partial x}^2}\right) \left(\frac{{\partial}^2 f}{{\partial y}^2}\right) - \left(\frac{{\partial}^2 f}{{\partial x \partial y}}\right)^2 > 0\), then the critical point is a local maximum.[/tex]

3. [tex]If \(\left(\frac{{\partial}² f}{{\partial x}²}\right) \left(\frac{{\partial}² f}{{\partial y}²}\right) - \left(\frac{{\partial}² f}{{\partial x \partial y}}\right)² < 0\), then the critical point is a saddle point.[/tex]

In this case, we have:

[tex]\(\frac{{\partial}² f}{{\partial x}²} = 2 > 0\)\(\frac{{\partial}² f}{{\partial y}²} = 2 > 0\)\(\left(\frac{{\partial}² f}{{\partial x}²}\right) \left(\frac{{\partial}² f}{{\partial y}²}\right) - \left(\frac{{\partial}² f}{{\partial x \partial y}}\right)² = 2 \cdot 2 - 0² = 4 > 0\)[/tex]

Since all the conditions are met, we can conclude that the critical point (5, 4) is a local minimum for the function f(x, y) = x² + y² - 10x - 8y + 1.

Learn more about local minimum here:

https://brainly.com/question/29184828

#SPJ11

The domain of function f is (-∞,6) U (6,∞). The value of the function approaches -∞ as x approaches -∞, and the value of the function approaches ∞ as x approaches ∞. Which function could be function f? A. f(x)=x^2-36/x-6 B. f(x)=x-6/x^2-36 C. f(x)=x-6/x+6 D. f(x)=x-6/x+6

Answers

Function D, f(x) = (x - 6)/(x + 6), could be function f based on the provided information.The function that could be function f, based on the given information, is D. f(x) = (x - 6)/(x + 6).

To determine this, let's analyze the options provided:A. f(x) = x^2 - 36 / (x - 6): This function does not have the desired behavior as x approaches -∞ and ∞.

B. f(x) = x - 6 / x^2 - 36: This function does not have the correct domain, as it is defined for all values except x = ±6.

C. f(x) = x - 6 / x + 6: This function has the correct domain and the correct behavior as x approaches -∞ and ∞, but the value of the function does not approach ∞ as x approaches ∞.

D. f(x) = x - 6 / x + 6: This function has the correct domain, the value of the function approaches -∞ as x approaches -∞, and the value of the function approaches ∞ as x approaches ∞, satisfying all the given conditions.

For more such questions on Function

https://brainly.com/question/25638609

#SPJ8

g again consider a little league team that has 15 players on its roster. a. how many ways are there to select 9 players for the starting lineup?

Answers

The number of combinations is calculated using the formula C(n, k) = n! / (k!(n-k)!), where n is the total number of players and k is the number of players to be selected for the lineup. In this case, n = 15 and k = 9. By substituting these values into the formula, there are 5005 ways to select 9 players for the starting lineup from a roster of 15 players.



Using the formula for combinations, C(n, k) = n! / (k!(n-k)!), we substitute n = 15 and k = 9 into the formula:

C(15, 9) = 15! / (9!(15-9)!) = 15! / (9!6!).

Here, the exclamation mark represents the factorial operation, which means multiplying a number by all positive integers less than itself. For example, 9! = 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1.

Calculating the factorials and simplifying the expression, we have:

15! / (9!6!) = (15 * 14 * 13 * 12 * 11 * 10 * 9!) / (9! * 6!) = 15 * 14 * 13 * 12 * 11 * 10 / (6 * 5 * 4 * 3 * 2 * 1) = 5005.

Therefore, there are 5005 ways to select 9 players for the starting lineup from a roster of 15 players.

Learn more about formula here : brainly.com/question/15183694

#SPJ11

an emergency room nurse believes the number of upper respiratory infections is on the rise. the emergency room nurse would like to test the claim that the average number of cases of upper respiratory infections per day at the hospital is over 21 cases. using the computed test statistic of 2.50 and the critical value of 2.33, is there enough evidence for the emergency room nurse to reject the null hypothesis?

Answers

To determine whether there is enough evidence to reject the null hypothesis, we need to compare the computed test statistic to the critical value.

In this case, the computed test statistic is 2.50 and the critical value is 2.33. If the computed test statistic falls in the rejection region beyond the critical value, we can reject the null hypothesis. Conversely, if the computed test statistic falls within the non-rejection region, we fail to reject the null hypothesis.In this scenario, since the computed test statistic (2.50) is greater than the critical value (2.33), it falls in the rejection region. This means that the observed data is unlikely to occur if the null hypothesis were true.

Therefore, based on the given information, there is enough evidence for the emergency room nurse to reject the null hypothesis. This suggests that there is sufficient evidence to support the claim that the average number of cases of upper respiratory infections per day at the hospital is over 21 cases.

Learn more about statistic here

https://brainly.com/question/15525560

#SPJ11

Final answer:

There is enough evidence to reject the null hypothesis in this case because the computed test statistic (2.50) is higher than the critical value (2.33). This suggests the average number of daily respiratory infections exceeds 21, providing substantial evidence against the null hypothesis.

Explanation:

Yes, there is enough evidence for the emergency room nurse to reject the null hypothesis. The null hypothesis is typically a claim of no difference or no effect. In this case, the null hypothesis would be an average of 21 upper respiratory infections per day. The test statistic computed (2.50) exceeds the critical value (2.33). This suggests that the average daily cases indeed exceed 21, hence providing enough evidence to reject the null hypothesis.

It's crucial to understand that when the test statistic is larger than the critical value, we reject the null hypothesis because the observed sample is inconsistent with the null hypothesis. The statistical test indicated a significant difference, upheld by the test statistic value of 2.50. The significance level (alpha) of 0.05 is a commonly used threshold for significance in scientific studies. In this context, the finding suggests that the increase in respiratory infection cases is statistically significant, and the null hypothesis can be rejected.

Learn more about the Null Hypothesis here:

https://brainly.com/question/32386318

#SPJ11

Determine how many zeros the polynomial function has. \[ P(x)=x^{44}-3 \]

Answers

The number of zeros in the polynomial function is 2

How to determine the number of zeros in the polynomial function

from the question, we have the following parameters that can be used in our computation:

P(x) = x⁴⁴ - 3

Set the equation to 0

So, we have

x⁴⁴ - 3 = 0

This gives

x⁴⁴ = 3

Take the 44-th root of both sides

x = -1.025 and x = 1.025

This means that there are 2 zeros in the polynomial

Read more about polynomial at

https://brainly.com/question/30833611

#SPJ4

An article states that false-positives in polygraph tests (i.e., tests in which an individual fails even though he or she is telling the truth) are relatively common and occur about 15% of the time. Suppose that such a test is given to 10 trustworthy individuals. (Round all answers to four decimal places.)
(a) What is the probability that all 10 pass?
P(X = 10) =
(b) What is the probability that more than 2 fail, even though all are trustworthy?
P (more than 2 fail, even though all are trustworthy) =
(c) The article indicated that 400 FBI agents were required to take a polygraph test. Consider the random variable x = number of the 400 tested who fail. If all 400 agents tested are trustworthy, what are the mean and standard deviation of x?
Mean = 3
Standard deviation = 4

Answers

(a) To find the probability that all 10 trustworthy individuals pass the polygraph test,

we can use the binomial probability formula:

P(X = 10) = C(10, 10) * (0.15)^10 * (1 - 0.15)^(10 - 10)

Calculating the values:

C(10, 10) = 1 (since choosing all 10 out of 10 is only one possibility)

(0.15)^10 ≈ 0.0000000778

(1 - 0.15)^(10 - 10) = 1 (anything raised to the power of 0 is 1)

P(X = 10) ≈ 1 * 0.0000000778 * 1 ≈ 0.0000000778

The probability that all 10 trustworthy individuals pass the polygraph test is approximately 0.0000000778.

(b) To find the probability that more than 2 trustworthy individuals fail the test, we need to calculate the probability of exactly 0, 1, and 2 individuals failing and subtract it from 1 (to find the complementary probability).

P(more than 2 fail, even though all are trustworthy) = 1 - P(X = 0) - P(X = 1) - P(X = 2)

Using the binomial probability formula:

P(X = 0) = C(10, 0) * (0.15)^0 * (1 - 0.15)^(10 - 0)

P(X = 1) = C(10, 1) * (0.15)^1 * (1 - 0.15)^(10 - 1)

P(X = 2) = C(10, 2) * (0.15)^2 * (1 - 0.15)^(10 - 2)

Calculating the values:

C(10, 0) = 1

C(10, 1) = 10

C(10, 2) = 45

(0.15)^0 = 1

(0.15)^1 = 0.15

(0.15)^2 ≈ 0.0225

(1 - 0.15)^(10 - 0) = 0.85^10 ≈ 0.1967

(1 - 0.15)^(10 - 1) = 0.85^9 ≈ 0.2209

(1 - 0.15)^(10 - 2) = 0.85^8 ≈ 0.2476

P(more than 2 fail, even though all are trustworthy) = 1 - 1 * 0.1967 - 10 * 0.15 * 0.2209 - 45 * 0.0225 * 0.2476 ≈ 0.0004

The probability that more than 2 trustworthy individuals fail the polygraph test, even though all are trustworthy, is approximately 0.0004.

(c) The mean (expected value) of a binomial distribution is given by μ = np, where n is the number of trials (400 agents tested) and p is the probability of success (the probability of failing for a trustworthy agent, which is 0.15).

Mean = μ = np = 400 * 0.15 = 60

The standard deviation of a binomial distribution is given by σ = sqrt(np(1-p)).

Standard deviation = σ = sqrt(400 * 0.15 * (1 - 0.15)) ≈ 4

To know more about polygraph refer here:

https://brainly.com/question/14204600#

#SPJ11

Let k(x)= f(x)g(x) / h(x) . If f(x)=4x,g(x)=x+1, and h(x)=4x 2+x−3, what is k ′ (x) ? Simplify your answer. Provide your answer below: Find the absolute maximum value of p(x)=x 2 −x+2 over [0,3].

Answers

To find the derivative of k(x), we are given f(x) = 4x, g(x) = x + 1, and h(x) = 4x^2 + x - 3. We need to simplify the expression and determine k'(x).

To find the derivative of k(x), we can use the quotient rule. The quotient rule states that if we have a function of the form f(x)/g(x), the derivative is given by [f'(x)g(x) - f(x)g'(x)] / [g(x)]^2.

Using the given values, we have f'(x) = 4, g'(x) = 1, and h'(x) = 8x + 1. Plugging these values into the quotient rule formula, we can simplify the expression and determine k'(x).

k'(x) = [(4)(x+1)(4x^2 + x - 3) - (4x)(x + 1)(8x + 1)] / [(4x^2 + x - 3)^2]

Simplifying the expression will require expanding and combining like terms, and then possibly factoring or simplifying further. However, since the specific expression for k(x) is not provided, it's not possible to provide a simplified answer without additional calculations.

For the second part of the problem, finding the absolute maximum value of p(x) = x^2 - x + 2 over the interval [0,3], we can use calculus. We need to find the critical points of p(x) by taking its derivative and setting it equal to zero. Then, we evaluate p(x) at the critical points as well as the endpoints of the interval to determine the maximum value of p(x) over the given interval.

For more information on maximum value visit: brainly.com/question/33152773

#SPJ11

14. Find the Taylor series about the indicated center, and determine the interval of convergence. \[ f(x)=\frac{1}{x+5}, c=0 \]

Answers

The Taylor series expansion of \( f(x) = \frac{1}{x+5} \) about \( c = 0 \) is found to be \( 1 - x + x^2 - x^3 + x^4 - \ldots \). The interval of convergence is \( -1 < x < 1 \).



To find the Taylor series expansion of \( f(x) \) about \( c = 0 \), we need to compute the derivatives of \( f(x) \) and evaluate them at \( x = 0 \).

The first few derivatives of \( f(x) \) are:
\( f'(x) = \frac{-1}{(x+5)^2} \),
\( f''(x) = \frac{2}{(x+5)^3} \),
\( f'''(x) = \frac{-6}{(x+5)^4} \),
\( f''''(x) = \frac{24}{(x+5)^5} \),
...

The Taylor series expansion is given by:
\( f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f''''(0)}{4!}x^4 + \ldots \).

Substituting the derivatives evaluated at \( x = 0 \), we have:
\( f(x) = 1 - x + x^2 - x^3 + x^4 - \ldots \).

The interval of convergence can be determined by applying the ratio test. By evaluating the ratio \( \frac{a_{n+1}}{a_n} \), where \( a_n \) represents the coefficients of the series, we find that the series converges for \( -1 < x < 1 \).

Learn more about Taylor series click here :brainly.com/question/17031394

#SPJ11

Solve the given equation by the zero-factor property. \[ 49 x^{2}-14 x+1=0 \]

Answers

To solve the equation 49[tex]x^2[/tex] - 14x + 1 = 0 using the zero-factor property, we factorize the quadratic equation and set each factor equal to zero. Applying the zero-factor property, we find the solution x = 1/7.

The given equation is a quadratic equation in the form a[tex]x^2[/tex] + bx + c = 0, where a = 49, b = -14, and c = 1.

First, let's factorize the equation:

49[tex]x^2[/tex] - 14x + 1 = 0

(7x - 1)(7x - 1) = 0

[tex](7x - 1)^2[/tex] = 0

Now, we can set each factor equal to zero:

7x - 1 = 0

Solving this linear equation, we isolate x:

7x = 1

x = 1/7

Therefore, the solution to the equation 49[tex]x^2[/tex] - 14x + 1 = 0 is x = 1/7.

In summary, the equation is solved by factoring it into [tex](7x - 1)^2[/tex] = 0, and applying the zero-factor property, we find the solution x = 1/7.

Learn more about zero-factor property here:

https://brainly.com/question/30339318

#SPJ11

Find the area of the surface of the part of the plane with vector equation r(u,v)=⟨u+v,2−3u,1+u−v⟩ that is bounded by 0≤u≤2 and −1≤v≤1

Answers

The area of the surface can be found using the formula for the magnitude of the cross product of the partial derivatives of r with respect to u and v.

To find the area of the surface bounded by the given bounds for u and v, we can use the formula for the magnitude of the cross product of the partial derivatives of r with respect to u and v. This expression is given by

|∂r/∂u x ∂r/∂v|

where ∂r/∂u and ∂r/∂v are the partial derivatives of r with respect to u and v, respectively. Evaluating these partial derivatives and taking their cross product, we get

|⟨1,-3,1⟩ x ⟨1,-1,-1⟩| = |⟨-2,-2,-2⟩| = 2√3

Integrating this expression over the given bounds for u and v, we get

∫0^2 ∫-1^1 2√3 du dv = 4√3

Therefore, the area of the surface bounded by the given bounds for u and v is 4√3.

Learn more about Integrating

brainly.com/question/30900582

#SPJ11

A bank asks customers to evaluate its drive-through service as good, average, or poor. Which level of measurement is this classification?
Multiple Choice
Nominal
Ordinal
Interval
Ratio

Answers

A bank asks customers to evaluate its drive-through service as good, average, or poor. The answer to the given question is ordinal. The level of measurement in which the data is categorized and ranked with respect to each other is called the ordinal level of measurement.

The nominal level of measurement is used to categorize data, but this level of measurement does not have an inherent order to the categories. The interval level of measurement is used to measure the distance between two different variables but does not have an inherent zero point. The ratio level of measurement, on the other hand, is used to measure the distance between two different variables and has an inherent zero point.

The customers are asked to rate the drive-through service as either good, average, or poor. This is an example of the ordinal level of measurement because the data is categorized and ranked with respect to each other. While the categories have an order to them, they do not have an inherent distance between each other.The ordinal level of measurement is useful in many different fields. customer satisfaction surveys often use ordinal data to gather information on how satisfied customers are with the service they received. Additionally, academic researchers may use ordinal data to rank different study participants based on their performance on a given task. Overall, the ordinal level of measurement is a valuable tool for researchers and others who need to categorize and rank data.

To more about evaluate visit:

https://brainly.com/question/28748629

#SPJ11

Determine whether the vectors u =(2,−1,0,3), v =(1,2,5,−1) and w=(7,−1,5,8) form a linearly dependent set or a linearly independent set. If dependent, find a linear relation among them.

Answers

The vectors u = (2, -1, 0, 3), v = (1, 2, 5, -1), and w = (7, -1, 5, 8) form a linearly independent set.

To determine if the vectors u, v, and w are linearly dependent or independent, we need to check if there exists a non-trivial linear combination of these vectors that equals the zero vector (0, 0, 0, 0).

Let's assume that there exist scalars a, b, and c such that a*u + b*v + c*w = 0. This equation can be expressed as:

a*(2, -1, 0, 3) + b*(1, 2, 5, -1) + c*(7, -1, 5, 8) = (0, 0, 0, 0).

Expanding this equation gives us:

(2a + b + 7c, -a + 2b - c, 5b + 5c, 3a - b + 8c) = (0, 0, 0, 0).

From this system of equations, we can see that each component must be equal to zero individually:

2a + b + 7c = 0,

-a + 2b - c = 0,

5b + 5c = 0,

3a - b + 8c = 0.

Solving this system of equations, we find that a = 0, b = 0, and c = 0. This means that the only way for the linear combination to equal the zero vector is when all the scalars are zero.

Since there is no non-trivial solution to the equation, the vectors u, v, and w form a linearly independent set. In other words, none of the vectors can be expressed as a linear combination of the others.

Learn more about scalars

brainly.com/question/12934919

#SPJ11

A fishing boat leaves a marina and follows a course of S62 degree W at 6 knots for 20 min. Then the boat changes to a new course of S30 degree W at 4 knots for 1.5 hr. How far is the boat from the marina? What course should the boat follow for its return trip to the marina?

Answers

We may use vector addition to calculate the distance between the boat and the marina. We'll divide the boat's motion into north-south and east-west components.

For the first leg of the journey:

Course: S62°W

Speed: 6 knots

Time: 20 minutes (or [tex]\frac{20}{60} = \frac{1}{3}[/tex] hours)

The north-south component of the boat's movement is:

-6 knots * sin(62°) * 1.5 hours = -0.81 nautical miles

The east-west component of the boat's movement is:

-6 knots * cos(62°) * 1.5 hours = -3.13 nautical miles

For the second leg of the journey:

Course: S30°W

Speed: 4 knots

Time: 1.5 hours

The north-south component of the boat's movement is:

-4 knots * sin(30°) * 1.5 hours = -3 nautical miles

The east-west component of the boat's movement is:

-4 knots * cos(30°) * 1.5 hours = -6 nautical miles

To find the total north-south and east-west displacement, we add up the components:

Total north-south displacement = -0.81 - 3 = -3.81 nautical miles

Total east-west displacement = -3.13 - 6 = -9.13 nautical miles

Using the Pythagorean theorem, the distance from the marina is:

[tex]\sqrt{ ((-3.81)^2 + (-9.13)^2) }=9.98[/tex]

≈ 9.98 nautical miles

The direction or course the boat should follow for its return trip to the marina is the opposite of its initial course. Therefore, the return course would be N62°E.

Learn more about Boats:

https://brainly.com/question/30253319

#SPJ11

Alamina occupies the part of the disk x 2
+y 2
≤4 in the first cuadrant and the density at each point is given by the function rho(x,y)=3(x 2
+y 2
). A. What is the total mass? B. What is the moment about the x-axis? C. What is the morment about the y raxis? D. Where is the center of mass? ? E. What is the moment of inertia about the origin?

Answers

The total mass can be found by integrating the density function over the given region. By integrating 3(x^2 + y^2) over the region x^2 + y^2 ≤ 4 in the first quadrant, we can determine the total mass.

The moment about the x-axis can be calculated by integrating the product of the density function and the square of the distance from the x-axis over the given region.

Similarly, the moment about the y-axis can be found by integrating the product of the density function and the square of the distance from the y-axis.

The center of mass can be determined by finding the coordinates (x_c, y_c) that satisfy the equations for the moments about the x-axis and y-axis.

The moment of inertia about the origin can be calculated by integrating the product of the density function, the square of the distance from the origin, and the element of area over the region.

(a) To find the total mass, we integrate the density function rho(x, y) = 3(x^2 + y^2) over the given region x^2 + y^2 ≤ 4 in the first quadrant. By integrating this function over the region, we obtain the total mass.

(b) The moment about the x-axis can be calculated by integrating the product of the density function 3(x^2 + y^2) and the square of the distance from the x-axis. We integrate this product over the given region x^2 + y^2 ≤ 4 in the first quadrant.

(c) Similarly, the moment about the y-axis can be found by integrating the product of the density function 3(x^2 + y^2) and the square of the distance from the y-axis. Integration is performed over the given region x^2 + y^2 ≤ 4 in the first quadrant.

(d) The center of mass can be determined by finding the coordinates (x_c, y_c) that satisfy the equations for the moments about the x-axis and y-axis. These equations involve the integrals obtained in parts (b) and (c). Solving the equations simultaneously provides the coordinates of the center of mass.

(e) The moment of inertia about the origin can be calculated by integrating the product of the density function 3(x^2 + y^2), the square of the distance from the origin, and the element of area over the region x^2 + y^2 ≤ 4 in the first quadrant. Integration yields the moment of inertia about the origin.

Learn more about inertia here:

brainly.com/question/29259718

#SPJ11

Other Questions
Problem 3 For which values of \( h \) is the vector \[ \left[\begin{array}{r} 4 \\ h \\ -3 \\ 7 \end{array}\right] \text { in } \operatorname{Span}\left\{\left[\begin{array}{r} -3 \\ 2 \\ 4 \\ 6 \end{ A set of data with a mean of 39 and a standard deviation of 6.2 is normally distributed. Find each value, given its distance from the mean.+1 standard deviation Two point charges Q1=-6.7 nC and Q2=-12.3 nC are separated by 40 cm. Find the net electric field these two charges produce at point A, which is 12.6 cm from Q2. Leave your answer in 1 decimal place with no unit. Add your answer What signs should the Medical Assistant look for during theapplication process of the hot packs? Name two conditions to lookfor and define them in the summary. Topics 4 & 5: Thvenin's and Norton's principles for D.C. Linear Circuits 14. [20] Two rechargeable NiCad batteries are connected in parallel to supply a 1000 resistive load. Battery 'A' has an open circuit voltage of 7.2V and an internal resistance of 80m2, while Battery 'B' has an open circuit voltage of 6.0V and an internal resistance of 200m2. (a) [5] Sketch the circuit (b) [5] Determine the Thevenin parameters and sketch the Thevenin equivalent circuit of the parallel battery combination that does not include the load resistor. Answer: VTH = 6.857V, RTH = 0.0571 2 Franz Gall observed a soldier who had received a knife wound through his eye, damaging the frontal lobe on the left side of his brain. The man could no longer speak. After careful observation of the man's behavior, Gall described and analyzed the soldier's problem. Based on the study design, when used as evidence, Gall's research could not: Treating ptsd with ____ shows positive long-term effectiveness when compared to drugs Explain what happened to the captain of the Pharaon prior to its arrival in France. What effect does this have on Dantes WRITE ABOUT A THEME: ORGANIZATION Natural selection has led to changes in the architecture of plants that enable them to photosynthesize more efficiently in the ecological niches they occupy. In a short essay (100-150 words), explain how shoot architecture enhances photosynthesis. calculate the velocity and acceleration vectors and the speed at t = 4 for a particle whose position ~ at time t is given by ~r(t) = cost~ cos 2t~j cos 3t k. Since current normally flows into the emitter of a NPN, the emitter is usually drawn pointing up towards the positive power supply. Select one: O True O False Check what is the osmotic pressure of a 0.2 m nacl solution at 25 celsius? The rules for a race require that all runners start at $A$, touch any part of the 1200-meter wall, and stop at $B$. What is the number of meters in the minimum distance a participant must run Which relation is not a function? A. {(7,11),(0,5),(11,7),(7,13)} B. {(7,7),(11,11),(13,13),(0,0)} C. {(7,2),(3,11),(0,11),(13,11)} D. {(7,11),(11,13),(7,13),(13,11)} According to the no arbitrage condition, what must be the price of a 100 face value zero coupon bond that matures on nyu graduation day? ap gov unit 5 study guide quizlet explain how variations in types and resources of interest groups affects thier abiity to influence elections and polocy making Find the area bounded by the graphs of the indicated equations over the given interval (when stated). Compute answers to three decimal places: y=x 2+2;y=6x6;1x2 The area, calculated to three decimal places, is square units. a 35-year-old man hobbles into the office of a physician complaining of a debilitating illness that has robbed him of the use of her left leg and right arm. the physician finds no physical basis for her symptoms. the patient appears totally unaware that the cause of his symptoms may be psychological. the appropriate diagnosis in this case is: What does tl stand for? a. transportation logistics b. trucking life c. trucking line d. transportation lead time e. truckload (quantity) Visual accommodation contracts which extraocular eye muscle in the right eye? (do not use spaces