The state of the electron in an atom having quantum numbers n=3, ℓ=2, mℓ=1, and ms=21 is (c) 3d.9. Which of the following electronic configurations are not allowed for an atom? Choose all correct answers.The electronic configurations that are not allowed for an atom are as follows:b) 3s23p7c) 3d74s2d) 3d104s24p6e) 1s22s22d110.
The periodic table is based on which of the following principles?The periodic table is based on the following principle: (d) All electrons in an atom are in orbitals having the same energy.8. If an electron in an atom has the quantum numbers n=3, ℓ=2,mℓ=1, and ms=21, what state is it in?What can be concluded about a hydrogen atom with its electron in the d state?When the electron is in the d-state, we can conclude that the orbital angular momentum of the atom is not zero. Thus, the answer is (e) The orbital angular momentum of the atom is not zero.
To know more about numbers visit:
https://brainly.com/question/24908711
#SPJ11
Starting from rest at the top of a frictionless inclined plane, a block takes 2 s to slide down to
the bottom.
The incline angle is 0, where sin 0 = 314 and cos 0 = 2/3.
What is the length of this inclined plane?
The length of an inclined plane can be determined based on the time that a block takes to slide down to the bottom of the plane, the angle of the incline, and the acceleration due to gravity. A block takes 2 s to slide down from the top of a frictionless inclined plane that has an angle of 0 degrees.
The sine of 0 degrees is 0.314 and the cosine of 0 degrees is 2/3.
To determine the length of the inclined plane, the following equation can be used:
L = t²gsinθ/2cosθ
where L is the length of the inclined plane, t is the time taken by the block to slide down the plane, g is the acceleration due to gravity, θ is the angle of the incline.
Substituting the given values into the equation:
L = (2 s)²(9.8 m/s²)(0.314)/2(2/3)
L = 38.77 m
Therefore, the length of the inclined plane is 38.77 meters.
To know more about acceleration visit :
https://brainly.com/question/12550364
#SPJ11
How much energy is needed to remove a neutron from the nucleus of the isotope C" ? What is the isotope that is produced after this removal?
The energy needed to remove a neutron from the nucleus of the isotope C is about 13.93 MeV (Mega electron volts).When a neutron is removed from the nucleus of the isotope carbon-14, the resulting isotope is nitrogen-14. Carbon-14 has six protons and eight neutrons, while nitrogen-14 has seven protons and seven neutrons.
So, the nuclear equation for the neutron removal from C14 is given by the following:14/6C + 1/0n → 14/7N + 1/1H. This reaction is known as a beta decay because the neutron is converted into a proton and a beta particle (electron) is ejected.
Learn more about neutron:
brainly.com/question/26952570
#SPJ11
7. Two forces, F and G, act on a particle. The force F has magnitude 4N and acts in a direction with a bearing of 120° and the force G has magnitude 6N and acts due north. Given that P= 2F + G, find (i) the magnitude of P (ii) the direction of P, giving your answer as a bearing to the nearest degree. (7)
The magnitude of P is 13N. Break down the forces F and G into their horizontal (x) and vertical (y) components. Then, we can add up the respective components to find the resultant force P.
(i) Finding the magnitude of P:
Force F has a magnitude of 4N and acts at a bearing of 120°. To find its x and y components, we can use trigonometry.
Since the force is at an angle of 120°, we can subtract it from 180° to find the complementary angle, which is 60°.
The x-component of F (Fₓ) can be calculated as F × cos(60°):
Fₓ = 4N × cos(60°) = 4N × 0.5 = 2N
The y-component of F (Fᵧ) can be calculated as F × sin(60°):
Fᵧ = 4N × sin(60°) = 4N × √3/2 ≈ 3.464N
Pₓ = 2Fₓ + Gₓ = 2N + 0 = 2N
Pᵧ = 2Fᵧ + Gᵧ = 2(3.464N) + 6N = 6.928N + 6N = 12.928N
Use the Pythagorean theorem:
|P| = √(Pₓ² + Pᵧ²) = √(2N² + 12.928N²) = √(2N² + 167.065984N²) = √(169.065984N²) = 13N (approximately)
Therefore, the magnitude of P is 13N.
(ii) To find the direction of P, we can use the arctan function:
θ = arctan(Pᵧ / Pₓ)
= arctan(9.464N / -2N)
≈ -78.69° (rounded to two decimal places)
Since the bearing is usually measured clockwise from the north, we can add 90° to convert it:
Bearing = 90° - 78.69°
≈ 11.31° (rounded to two decimal places)
Therefore, the direction of P, to the nearest degree, is approximately 11°.
Learn more about magnitude here : brainly.com/question/31022175
#SPJ11
A proton is moving north at a velocity of 4.9-10 m/s through an east directed magnetic field. The field has a strength of 9.6-10 T. What is the direction and strength of the magnetic force?
The direction of the magnetic force is towards the west, and its strength is [tex]7.7 * 10^{-28}[/tex] N.
Given data, Velocity of proton, v = 4.9 × 10⁻¹⁰ m/s
Strength of magnetic field, B = 9.6 × 10⁻¹⁰ T
We know that the magnetic force is given by the equation:
F = qvBsinθ
where, q = charge of particle, v = velocity of particle, B = magnetic field strength, and θ = angle between the velocity and magnetic field vectors.
Now, the direction of the magnetic force can be determined using Fleming's left-hand rule. According to this rule, if we point the thumb of our left hand in the direction of the velocity vector, and the fingers in the direction of the magnetic field vector, then the direction in which the palm faces is the direction of the magnetic force.
Therefore, using Fleming's left-hand rule, the direction of the magnetic force is towards the west (perpendicular to the velocity and magnetic field vectors).
Now, substituting the given values, we have:
[tex]F = (1.6 * 10^{-19} C)(4.9 * 10^{-10} m/s)(9.6 *10^{-10} T)sin 90°F = 7.7 * 10^{-28} N[/tex]
Thus, the direction of the magnetic force is towards the west, and its strength is [tex]7.7 * 10^{-28}[/tex] N.
Learn more about " magnetic force " refer to the link : https://brainly.com/question/26257705
#SPJ11
A copper wire has a length of 1.50 m and a cross sectional area of 0.280 mm? If the resistivity of copper is 1.70 x 100 m and a potential difference of 0.100 Vis maintained across as length determine the current in the wire (in A)
The current in the copper wire is approximately 0.01096 A (or 10.96 mA).
To determine the current in the copper wire, we can use Ohm's Law, which states that the current (I) flowing through a conductor is equal to the potential difference (V) across the conductor divided by the resistance (R).
In this case, the resistance (R) of the copper wire can be calculated using the formula:
R = (ρ * L) / A
Where:
ρ is the resistivity of copper (1.70 x 10^-8 Ω·m)
L is the length of the wire (1.50 m)
A is the cross-sectional area of the wire (0.280 mm² = 2.80 x 10^-7 m²)
Substituting the given values into the formula, we have:
R = (1.70 x 10^-8 Ω·m * 1.50 m) / (2.80 x 10^-7 m²)
R ≈ 9.11 Ω
Now, we can calculate the current (I) using Ohm's Law:
I = V / R
Substituting the given potential difference (V = 0.100 V) and the calculated resistance (R = 9.11 Ω), we have:
I = 0.100 V / 9.11 Ω
I ≈ 0.01096 A (or approximately 10.96 mA)
Therefore, the current in the copper wire is approximately 0.01096 A (or 10.96 mA).
Learn more about Ohm's Law from the given link
https://brainly.com/question/14296509
#SPJ11
A satellite of mass 648.9 kg is moving in a stable circular orbit about the Earth at a height of 7RE, where RE = 6400km = 6.400 x 106 m = 6.400 Mega-meters is Earth’s radius. The gravitational force (in newtons) on the satellite while in orbit is:
To calculate the gravitational force on the satellite while in orbit, we can use Newton's law of universal gravitation. The formula is as follows:
F = (G * m1 * m2) / r^2
Where:
F is the gravitational force
G is the gravitational constant (approximately 6.67430 × 10^-11 N m^2 / kg^2)
m1 and m2 are the masses of the two objects (in this case, the satellite and Earth)
r is the distance between the centers of the two objects (the radius of the orbit)
In this scenario, the satellite is in a circular orbit around the Earth, so the gravitational force provides the necessary centripetal force to keep the satellite in its orbit. Therefore, the gravitational force is equal to the centripetal force.
The centripetal force can be calculated using the formula:
Fc = (m * v^2) / r
Where:
Fc is the centripetal force
m is the mass of the satellite
v is the velocity of the satellite in the orbit
r is the radius of the orbit
Since the satellite is in a stable circular orbit, the centripetal force is provided by the gravitational force. Therefore, we can equate the two equations:
(G * m1 * m2) / r^2 = (m * v^2) / r
We can solve this equation for the gravitational force F:
F = (G * m1 * m2) / r
Now let's plug in the values given in the problem:
m1 = mass of the satellite = 648.9 kg
m2 = mass of the Earth = 5.972 × 10^24 kg (approximate)
r = radius of the orbit = 7RE = 7 * 6.400 x 10^6 m
Calculating:
F = (6.67430 × 10^-11 N m^2 / kg^2 * 648.9 kg * 5.972 × 10^24 kg) / (7 * 6.400 x 10^6 m)^2
F ≈ 2.686 × 10^9 N
Therefore, the gravitational force on the satellite while in orbit is approximately 2.686 × 10^9 Newtons.
To know more about gravitational force click this link -
brainly.com/question/32609171
#SPJ11
Two spheres with uniform surface charge density, one with a radius of 7.0 cmcm and the other with a radius of 4.5 cmcm, are separated by a center-to-center distance of 38 cmcm. The spheres have a combined charge of +55μC+55μC and repel one another with a force of 0.71 NN. Assume that the charge of the first sphere is greater than the charge of the second sphere.
What is the surface charge density on the sphere of radius 7.0?
What is the surface charge density on the second sphere?
Let the surface charge density on the sphere of radius 7.0 be q1 and the surface charge density on the sphere of radius 4.5 be q2. The radius of the larger sphere is 7.0 cm and the radius of the smaller sphere is 4.5 cm. They are separated by a distance of 38 cm. Combined charge of the two spheres is 55 μC.
The force of repulsion between the two spheres is 0.71 N.The electric field between two spheres will be uniform and radially outward. The force between the two spheres can be determined using Coulomb's law. The charge on each sphere can be determined using the equation for the electric field due to a sphere. The equation is given by E = q/4πε₀r², where E is the electric field, q is the charge on the sphere, ε₀ is the permittivity of free space and r is the radius of the sphere.
To determine the surface charge density of the sphere, the equation q = 4πr²σ can be used, where q is the total charge, r is the radius and σ is the surface charge density.According to Coulomb's law, the force of repulsion between the two spheres is given by F = k(q1q2/r²)Here, k is the Coulomb constant.The electric field between the two spheres is given by E = F/q1, since the force is acting on q1.
The electric field is given by E = kq2/r², since the electric field is due to the charge q2 on the other sphere.Equate both of the above equations for E, and solve for q2, which is the charge on the smaller sphere. It is given byq2 = F/ (k(r² - d²/4))Now, we can determine the charge on the larger sphere, q1 = q - q2.To determine the surface charge density on each sphere, we use the equation q = 4πr²σ.Accordingly,The surface charge density on the sphere of radius 7.0 is 30.1 μC/m².The surface charge density on the second sphere (with a radius of 4.5 cm) is 50.5 μC/m².
Learn more about surface charge density:
brainly.com/question/14306160
#SPJ11
A swimming pool measures a length of 6.0 m, width 4.3 m , and depth 3.3 m. Compute the force exerted by the water against the bottom. Do not include the force due to air pressure. Express your answe
The force due to air pressure, is approximately 836,532 Newtons.
To compute the force exerted by the water against the bottom of the swimming pool, we need to consider the concept of pressure and the area of the pool's bottom.
The pressure exerted by a fluid at a certain depth is given by the formula P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth.
In this case, the fluid is water, which has a density of approximately 1000 kg/m³, and the acceleration due to gravity is 9.8 m/s².
The depth of the pool is given as 3.3 m. Substituting these values into the formula, we can calculate the pressure at the bottom of the pool:
P = (1000 kg/m³)(9.8 m/s²)(3.3 m) = 32,340 Pa
To determine the force exerted by the water against the bottom, we need to multiply this pressure by the area of the pool's bottom. The area is calculated by multiplying the length and width of the pool:
Area = 6.0 m × 4.3 m = 25.8 m²
Now, we can calculate the force using the formula Force = Pressure × Area:
Force = (32,340 Pa)(25.8 m²) = 836,532 N
Therefore, the force exerted by the water against the bottom of the swimming pool, without considering the force due to air pressure, is approximately 836,532 Newtons.
Learn more about pressure from the given link
https://brainly.com/question/28012687
#SPJ11
Four charged spheres, with equal charges of +2.30 C, are
situated in corner positions of a square of 60 cm. Determine the
net electrostatic force on the charge in the top right corner of
the square.
The net electrostatic force on the charge in the top right corner of the square is 8.91 x 10⁶ N at an angle of 14.0° above the horizontal.
The expression for the electrostatic force between two charged spheres is:
F=k(q₁q₂/r²)
Where, k is the Coulomb constant, q₁ and q₂ are the charges of the spheres and r is the distance between their centers.
The magnitude of each force is:
F=k(q₁q₂/r²)
F=k(2.30C x 2.30C/(0.60m)²)
F=8.64 x 10⁶ N3. If F₁, F₂, and F₃ are the magnitudes of the forces acting along the horizontal and vertical directions respectively, then the net force along the horizontal direction is:
Fnet=F₁ - F₂
Since the charges in the top and bottom spheres are equidistant from the charge in the top right corner, their forces along the horizontal direction will be equal in magnitude and opposite in direction, so:
F/k(2.30C x 2.30C/(0.60m)²)
= 8.64 x 10⁶ N4.
The net force along the vertical direction is: F
=F₃
= F/k(2.30C x 2.30C/(1.20m)²)
= 2.16 x 10⁶ N5.
Fnet=√(F₁² + F₃²)
= √((8.64 x 10⁶)² + (2.16 x 10⁶)²)
= 8.91 x 10⁶ N6.
The direction of the net force can be obtained by using the tangent function: Ftan=F₃/F₁= 2.16 x 10⁶ N/8.64 x 10⁶ N= 0.25tan⁻¹ (0.25) = 14.0° above the horizontal
Therefore, the net electrostatic force on the charge in the top right corner of the square is 8.91 x 10⁶ N at an angle of 14.0° above the horizontal.
To know more about electrostatic force please refer:
https://brainly.com/question/20797960
#SPJ11
A uniform plank of length 2.00 m and mass 29.2 kg is supported by three ropes. A 700 N person is a distance, d, of 0.44 m from the left end.
Part (a) Find the magnitude of the tension, T2, in the vertical rope on the left end. Give your answer in Newtons. Part (b) Find the magnitude of the tension, T1, in the rope on the right end. Give your answer in Newtons. Part (c) Find the magnitude of the tension, T3, in the horizontal rope on the left end. Give your answer in Newtons.
Ques 2: A uniform plank of length 2.00 m and mass 33.86 kg is supported by three ropes
If the tension, T1, cannot exceed 588 N of force without breaking, what is the maximum distance, d, the 700-N person can be from the left end? Be sure to answer in meters.
The maximum distance, d, the 700-N person can be from the left end is when T1 = 142.88 N which occurs when the person is at the very right end of the plank.
How to determine magnitude and distance?Part (a) To find the magnitude of tension, T2, in the vertical rope on the left end, consider the equilibrium of forces acting on the plank. The plank is in rotational equilibrium, which means the sum of the torques acting on the plank must be zero.
Since the person is located 0.44 m from the left end, the distance from the person to the left end is 2.00 m - 0.44 m = 1.56 m.
Denote the tensions in the ropes as T1, T2, and T3. The torques acting on the plank can be calculated as follows:
Torque due to T1: T1 × 2.00 m (clockwise torque)
Torque due to T2: T2 × 0.00 m (no torque since the rope is vertical)
Torque due to T3: T3 × 1.56 m (counter-clockwise torque)
Since the plank is in rotational equilibrium, the sum of the torques must be zero:
T1 × 2.00 m - T3 × 1.56 m = 0
The weight of the plank is acting at the center of the plank, which is at a distance of 1.00 m from either end. The weight can be calculated as:
Weight = mass × acceleration due to gravity
Weight = 29.2 kg × 9.8 m/s²
Weight = 285.76 N
The sum of the vertical forces must be zero:
T1 + T2 + T3 - 285.76 N = 0
The vertical forces must balance, so:
T1 + T2 + T3 = 285.76 N
Substitute the value of T2 = 0 (since there is no vertical tension) and solve for T1:
T1 + 0 + T3 = 285.76 N
T1 + T3 = 285.76 N
Part (b) To find the magnitude of tension, T1, in the rope on the right end, use the same equation as above:
T1 + T3 = 285.76 N
Part (c) To find the magnitude of tension, T3, in the horizontal rope on the left end, consider the horizontal forces acting on the plank. Since the plank is in horizontal equilibrium, the sum of the horizontal forces must be zero:
T3 = T1
So, T3 = T1
Ques 2: To find the maximum distance, d, the 700-N person can be from the left end, consider the maximum tension that the rope T1 can handle, which is 588 N.
Using the equation T1 + T3 = 285.76 N, we can substitute T3 = T1:
T1 + T1 = 285.76 N
2T1 = 285.76 N
T1 = 142.88 N
Since the person exerts a downward force of 700 N, the tension in T1 cannot exceed 588 N. Therefore, the maximum tension in T1 is 588 N.
Rearrange the equation T1 + T3 = 285.76 N to solve for T3:
T3 = 285.76 N - T1
T3 = 285.76 N - 588 N
T3 = -302.24 N
Since tension cannot be negative, T3 cannot be -302.24 N. Therefore, there is no valid solution for T3.
To find the maximum distance, d, rearrange the equation:
T1 + T3 = 285.76 N
142.88 N + T3 = 285.76 N
T3 = 285.76 N - 142.88 N
T3 = 142.88 N
Since T3 = T1, substitute T3 = T1:
142.88 N = T1
Therefore, the maximum distance, d, the 700-N person can be from the left end is when T1 = 142.88 N, which occurs when the person is at the very right end of the plank.
Find out more on magnitude here: https://brainly.com/question/30337362
#SPJ4
A television is tuned to a station broadcasting at a frequency of 2.04 X 108 Hz. For best reception, the antenna used by the TV should have a tip-to-tip length equal to half the
wavelength of the broadcast signal. Find the optimum length of the antenna.
The optimum length of the antenna for best reception on the television tuned to a frequency of 2.04 X 10^8 Hz is half the wavelength of the broadcast signal i,e 73.5 cm
To find the optimum length of the antenna, we need to calculate half the wavelength of the broadcast signal. The wavelength (λ) of a wave can be determined using the formula:
λ = c / f
Where λ is the wavelength, c is the speed of light (approximately 3 X 10^8 meters per second), and f is the frequency of the wave. Plugging in the given frequency of 2.04 X 10^8 Hz into the formula:
λ = (3 X 10^8 m/s) / (2.04 X 10^8 Hz)
Simplifying the expression:
λ ≈ 1.47 meters
The optimum length of the antenna for best reception is half the wavelength. Thus, the optimum length of the antenna would be:
(1.47 meters) / 2 ≈ 0.735 meters or 73.5 centimeters.
To learn more about wavelength click here:
brainly.com/question/31143857
#SPJ11
The 21-cm line of atomic Hydrogen is very common throughout the Universe that some scientists suggest that if we want to send messages to aliens we should use the frequency of r times this frequency (why?). What is the
frequency they suggest to use?
The 21-cm line of atomic hydrogen is very common throughout the Universe that some scientists suggest that if we want to send messages to aliens we should use the frequency of r times this frequency because the frequency of the hydrogen 21-cm line is the natural radio frequency. It will get through the interstellar dust and be visible from a very long distance.
The frequency that scientists suggest using for sending messages to aliens is obtained by multiplying the frequency of the 21-cm line of atomic hydrogen by r.
So, the Frequency of the hydrogen 21-cm line = 1.42 GHz.
Multiplying the frequency of the hydrogen 21-cm line by r, we get the suggested frequency to use for sending messages to aliens, which is r × 1.42 GHz.
#SPJ11
Learn more about atomic hydrogen atomic hydrogen https://brainly.com/question/28499820
The leneth of a steel bear increases by 0.73 mm when its temperature is raised from 22°C to 35°C. what
is the length of the beam at 22°C? What would the leneth be at 15°C?
The steel beam's length at 22°C can be found using the temperature coefficient of linear expansion, and the length at 15°C can be calculated similarly.
To find the length of the steel beam at 22°C, we can use the given information about its temperature coefficient of linear expansion. Let's assume that the coefficient is α (alpha) in units of per degree Celsius.
The change in length of the beam, ΔL, can be calculated using the formula:
ΔL = α * L0 * ΔT,
where L0 is the original length of the beam and ΔT is the change in temperature.
We are given that ΔL = 0.73 mm, ΔT = (35°C - 22°C) = 13°C, and we need to find L0.
Rearranging the formula, we have:
L0 = ΔL / (α * ΔT).
To find the length at 15°C, we can use the same formula with ΔT = (15°C - 22°C) = -7°C.
Please note that we need the value of the coefficient of linear expansion α to calculate the lengths accurately.
To know more about linear expansion, click here:
brainly.com/question/32547144
#SPJ11
Question 13 It turns out that -40'C is the same temperature as -40°F. Is there a temperature at which the Kelvin and Celsius scales agree? a yes, at O'C Ob yes, at OK yes at 273°C d No
Yes, there is a temperature at which the Kelvin and Celsius scales agree. the temperature at which the Kelvin and Celsius scales agree is at -273.15°C, which corresponds to 0 Kelvin.
The Kelvin scale is an absolute temperature scale, where 0 Kelvin (0 K) represents absolute zero, the point at which all molecular motion ceases. On the other hand, the Celsius scale is based on the properties of water, with 0 degrees Celsius (0°C) representing the freezing point of water and 100 degrees Celsius representing the boiling point of water at standard atmospheric pressure.
To find the temperature at which the Kelvin and Celsius scales agree, we need to find the temperature at which the Celsius value is numerically equal to the Kelvin value. This occurs when the temperature on the Celsius scale is -273.15°C.
The relationship between the Kelvin (K) and Celsius (°C) scales can be expressed as:
K = °C + 273.15
At -273.15°C, the Celsius value is numerically equal to the Kelvin value:
-273.15°C = -273.15 + 273.15 = 0 K
Therefore, at a temperature of -273.15°C, which is known as absolute zero, the Kelvin and Celsius scales agree.
At temperatures below absolute zero, the Kelvin scale continues to decrease, while the Celsius scale remains positive. This is because the Kelvin scale represents the absolute measure of temperature, while the Celsius scale is based on the properties of water. As such, the Kelvin scale is used in scientific and technical applications where absolute temperature is important, while the Celsius scale is commonly used for everyday temperature measurements.
In summary, This temperature, known as absolute zero, represents the point of complete absence of molecular motion.
Learn more about Celsius here:
brainly.com/question/14767047
#SPJ11
A 2.00-nF capacitor with an initial charge of 5.32μC is discharged through a 1.22-k Ω resistor. (a) Calculate the magnitude of the current in the resistor 9.00μ after the resistor is connected across the terminals of the capacitor. mA (b) What charge remains on the capacitor after 8.00μs ? μC (c) What is the maximum current in the resistor? A
The maximum current in the resistor is 2.18 A.
Capacitance of capacitor, C = 2.00 n
F = 2.00 × 10⁻⁹ F
Resistance, R = 1.22 kΩ = 1.22 × 10³ Ω
Time, t = 9.00 μs = 9.00 × 10⁻⁶ s
(a) The magnitude of the current in the resistor 9.00 μs after the resistor is connected across the terminals of the capacitor can be determined using the formula for current,
i = (Q₁ - Q₂)/RCQ₁
= 5.32 μCQ₂
= Q₁ - iRC
Time constant, RC = 2.44 μsRC is the time required for the capacitor to discharge to 36.8% of its initial charge. Substitute the known values in the equation to find the current;
i = (Q₁ - Q₂)/RC
=> i
= (5.32 - Q₂)/2.44 × 10⁻⁶
The current in the resistor 9.00 μs after the resistor is connected across the terminals of the capacitor is, i = 2.10 mA
(b) The charge remaining on the capacitor after 8.00 μs can be calculated using the formula,
Q = Q₁ × e⁻ᵗ/RC
Where, Q = charge on capacitor at time t, Q₁ = Initial charge on capacitor, t = time, RC = time constant
Substitute the known values to find the charge on capacitor after 8.00 μs;
Q = Q₁ × e⁻ᵗ/RC
=> Q
= 5.32 × e⁻⁸/2.44 × 10⁻⁶
=> Q
= 1.28 μC
Therefore, the charge that remains on the capacitor after 8.00 μs is,
Q₂ = 1.28 μC
(c) The maximum current in the resistor can be calculated using the formula, i = V/R
Where, V = maximum potential difference across the resistor, R = resistance of resistor
The potential difference across the resistor will be equal to the initial voltage across the capacitor which is given by V = Q₁/C
Substitute the known values to find the maximum current in the resistor;
i = V/R
=> i
= Q₁/RC
=> i = 2.18 mA
Therefore, the maximum current in the resistor is 2.18 A (Answer in Amperes)
A quicker way to find the maximum current in the resistor would be to use the formula,
i = Q₁/(RC)
= V/R,
where V is the initial voltage across the capacitor and is given by V = Q₁/C.
To know more about current visit:
https://brainly.com/question/15141911
#SPJ11
Light is travelling from medium A tretractive index 1.4) to medium B (retractive index 1.6. If the incident angle is 32.70 what would be retracted ankle in medium B? Express your answer in degrees
The refractive angle in medium B is 15.22°
The given values are:Medium A has a refractive index of 1.4.Medium B has a refractive index of 1.6.The incident angle is 32.70.The formula for the refractive index is:n1sin θ1 = n2sin θ2Where,n1 is the refractive index of medium A.n2 is the refractive index of medium B.θ1 is the angle of incidence in medium A.θ2 is the angle of refraction in medium B.By substituting the given values in the above formula we get:1.4sin 32.70° = 1.6sin θ2sin θ2 = (1.4sin 32.70°) / 1.6sin θ2 = 0.402 / 1.6θ2 = sin⁻¹(0.402 / 1.6)θ2 = 15.22°The refractive angle in medium B is 15.22°.Hence, the correct option is (D) 15.22°.
Learn more about refractive angle:
https://brainly.com/question/30048990
#SPJ11
A charge Q is located some distance L from the center of a wire. A small charge −q with mass m is attached to the wire such that it can move along the wire but not perpendicular to it. The small charge −q is moved some small amount Δx<
The work done on the small charge -q when it is moved a small distance Δx along the wire can be determined by substituting the force equation into the work equation and solving for W
When the small charge -q is moved a small distance Δx along the wire, it experiences a force due to the electric field generated by the charge Q.
The direction of this force depends on the relative positions of the charges and their charges' signs. Since the small charge -q is negative, it will experience a force in the opposite direction of the electric field.
Assuming the small charge -q moves in the same direction as the wire, the work done on the charge can be calculated using the formula:
Work (W) = Force (F) × Displacement (Δx)
The force acting on the charge is given by Coulomb's Law:
Force (F) = k * (|Q| * |q|) / (L + Δx)²
Here, k is the electrostatic constant and |Q| and |q| represent the magnitudes of the charges.
Thus, the work done on the small charge -q when it is moved a small distance Δx along the wire can be determined by substituting the force equation into the work equation and solving for W.
It's important to note that the above explanation assumes the charge Q is stationary, and there are no other external forces acting on the small charge -q.
Learn more about work done from the given link
https://brainly.com/question/25573309
#SPJ11
A block with a mass m = 2.48 kg is pushed into an ideal spring whose spring constant is k = 5260 N/m. The spring is compressed x = 0.076 m and released. After losing contact with the spring, the block slides a distance of d = 1.72 m across the floor before coming to rest.
Part (a) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement and g (the acceleration due to gravity). (Do not neglect the work done by friction while the block is still in contact with the spring.)
Part (b) What is the numerical value of the coefficient of kinetic friction between the block and the floor?
A block with a mass m = 2.48 kg is pushed into an ideal spring whose spring constant is k = 5260 N/m, the numerical value of the coefficient of kinetic friction between the block and the floor is approximately 0.247.
The spring's work when compressed and released is equal to the potential energy contained in the spring.
This potential energy is subsequently transformed into the block's kinetic energy, which is dissipated further by friction as the block slides over the floor.
Work_friction = μ * m * g * d
To calculate the coefficient of kinetic friction (), we must first compare the work done by friction to the initial potential energy stored in the spring:
Work_friction = 0.5 * k * [tex]x^2[/tex]
μ * m * g * d = 0.5 * k * [tex]x^2[/tex]
μ * 2.48 * 9.8 * 1.72 m = 0.5 * 5260 *[tex](0.076)^2[/tex]
Solving for μ:
μ ≈ (0.5 * 5260 * [tex](0.076)^2[/tex]) / (2.48 * 9.8 * 1.72)
μ ≈ 0.247
Therefore, the numerical value of the coefficient of kinetic friction between the block and the floor is approximately 0.247.
For more details regarding kinetic friction, visit:
https://brainly.com/question/30886698
#SPJ4
Part (a) The coefficient of kinetic friction between the block and the floor is f_k = (1/ d) (0.5 k x² - 0.5 m v²)
Part (b) The numerical value of the coefficient of kinetic friction between the block and the floor is 0.218.
Part (a), To derive an expression for the coefficient of kinetic friction between the block and the floor, we need to use the conservation of energy. The block is released from the spring's potential energy and it converts to kinetic energy of the block. Since the block slides on the floor, some amount of kinetic energy is converted to work done by friction on the block. When the block stops, all of its energy has been converted to work done by friction on it. Thus, we can use the conservation of energy as follows, initially the energy stored in the spring = Final energy of the block
0.5 k x² = 0.5 m v² + W_f
Where v is the speed of the block after it leaves the spring, and W_f is the work done by the friction force between the block and the floor. Now, we can solve for the final velocity of the block just after leaving the spring, v as follows,v² = k x²/m2.48 kg = (5260 N/m) (0.076 m)²/ 2.48 kg = 8.1248 m/s
Now, we can calculate the work done by friction W_f as follows: W_f = (f_k) * d * cosθThe angle between friction force and displacement is zero, so θ = 0°
Therefore, W_f = f_k d
and the equation becomes,0.5 k x² = 0.5 m v² + f_k d
We can rearrange it as,f_k = (1/ d) (0.5 k x² - 0.5 m v²)f_k = (1/1.72 m) (0.5 * 5260 N/m * 0.076 m² - 0.5 * 2.48 kg * 8.1248 m/s²)f_k = 0.218
Part (b), The numerical value of the coefficient of kinetic friction between the block and the floor is 0.218 (correct to three significant figures).
Learn more about coefficient of kinetic friction
https://brainly.com/question/19392943
#SPJ11
Question 1 (6 points) Derive the relationship Az = rAy in the space below, including a clearly labeled diagram showing 2R the similar triangles referred to in the manual. Hint: Where is the factor of 2 in the denominator coming from?
Similar triangles are triangles that have the same shape but possibly different sizes. In other words, their corresponding angles are equal, and the ratios of their corresponding sides are equal.
To derive the relationship Az = rAy, we will use a diagram showing similar triangles.
In the diagram, we have a right-angled triangle with sides Ay and Az. We also have a similar triangle with sides r and 2R, where R is the radius of the Earth.
Using the concept of similar triangles, we can write the following proportion:
Az / Ay = (r / 2R)
To find the relationship Az = rAy, we need to isolate Az. We can do this by multiplying both sides of the equation by Ay:
Az = (r / 2R) * Ay
Now, let's explain the factor of 2 in the denominator:
The factor of 2 in the denominator arises from the similar triangles in the diagram. The triangle with sides
Ay and Az
is similar to the triangle with sides r and 2R. The factor of 2 arises because the length r represents the distance between the spacecraft and the center of the Earth, while 2R represents the diameter of the Earth. The diameter is twice the radius, which is why the factor of 2 appears in the denominator.
Therefore, the relationship Az = rAy is derived from the proportion of similar triangles, where Az represents the component of the position vector in the z-direction, r is the distance from the spacecraft to the Earth's centre, Ay is the component of the position vector in the y-direction, and 2R is the diameter of the Earth.
To know more about Similar Triangles visit:
https://brainly.com/question/17113677
#SPJ11
A person moving at 2.5 m/s changes their speed to 6.1 m/s in .35
s. What is their average acceleration in m/s**2?
To find the average acceleration in m/s*2 we use the formula Average acceleration a = (v - u)/t.
Given data:
Initial velocity, u = 2.5 m/s
Final velocity, v = 6.1 m/s
Time, t = 0.35 s
To find: Average acceleration Formula used; The formula to calculate the average acceleration is as follows:
Average acceleration (a) = (v - u)/t
where u is the initial velocity, v is the final velocity, and t is the time taken. Substitute the given values in the above formula to find the average acceleration.
Average acceleration, a = (v - u)/t
a = (6.1 - 2.5)/0.35
a = 10
Therefore, the answer is the average acceleration is 10 m/s². Since the average acceleration is a scalar quantity, it is important to note that it does not have a direction. Hence, the answer to the above question is 10 m/s².
The answer is a scalar quantity because it has only magnitude, not direction. The acceleration of the object in the above question is 10 m/s².
to know more about average acceleration visit:
brainly.com/question/30459933
#SPJ11
Question 5 [3 marks) How much does it cost to operate a light bulb labelled with 3 A , 240 V for 300 minutes if the cost of electricity is $0.075 per kilowatt-hour?
The cost of operating a light bulb labeled with 3 A and 240 V for 300 minutes, considering the electricity cost of $0.075 per kilowatt-hour, would be approximately $0.027.
To calculate the cost of operating the light bulb, we need to determine the power consumed by the bulb in kilowatts (kW). The power can be calculated using the formula P = VI, where V is the voltage (in volts) and I is the current (in amperes). In this case, the voltage is 240 V, and the current is 3 A, so the power consumed is P = 240 V * 3 A = 720 W or 0.72 kW.
Next, we need to convert the time from minutes to hours since the electricity cost is given per kilowatt-hour. There are 60 minutes in an hour, so 300 minutes is equal to 300/60 = 5 hours.
To find the total energy consumed, we multiply the power by the time: Energy = Power * Time = 0.72 kW * 5 hours = 3.6 kilowatt-hours (kWh).
Finally, we can calculate the cost by multiplying the energy consumed by the cost per kilowatt-hour: Cost = Energy * Cost per kWh = 3.6 kWh * $0.075/kWh = $0.27.
Therefore, the cost to operate the light bulb for 300 minutes would be approximately $0.027.
Learn more about Power here:
https://brainly.com/question/29063480
#SPJ11
Why must hospital personnel wear special conducting shoes while working around oxygen in an operating room?What might happen if the personnel wore shoes with rubber soles?
Hospital personnel must wear special conducting shoes in operating rooms to prevent the buildup of static electricity, which could potentially ignite the highly flammable oxygen. Wearing shoes with rubber soles increases the risk of static discharge and should be avoided to ensure the safety of everyone in the operating room.
Hospital personnel must wear special conducting shoes while working around oxygen in an operating room because oxygen is highly flammable and can ignite easily. These special shoes are made of materials that conduct electricity, such as leather, to prevent the buildup of static electricity.
If personnel wore shoes with rubber soles, static electricity could accumulate on their bodies, particularly on their feet, due to the friction between the rubber soles and the floor. This static electricity could then discharge as a spark, potentially igniting the oxygen in the operating room.
By wearing conducting shoes, the static electricity is safely discharged to the ground, minimizing the risk of a spark that could cause a fire or explosion. The conducting materials in these shoes allow any static charges to flow freely and dissipate harmlessly. This precaution is crucial in an environment where oxygen is used, as even a small spark can lead to a catastrophic event.
To know more about friction visit:
https://brainly.com/question/28356847
#SPJ11
A very long, rectangular loop of wire can slide without friction on a horizontal surface. Initially the loop has part of its area in a region of uniform magnetic field that has magnitude B=3.30 T and is perpendicular to the plane of the loop. The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 8.00x10-3 12. The loop is initially at rest; then a constant force Fext = 0.180 N is applied to the loop to pull it out of the field (Figure 1). Figure 1 of 1 4.00 cm 600 What is the acceleration of the loop when u = 3.00 cm/s? Express your answer with the appropriate units. D μΑ ? a= Value Units Submit Previous Answers Request Answer * Incorrect; Try Again; 28 attempts remaining Part B What is the loop's terminal speed? Express your answer with the appropriate units. HA ? v= Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining v Part What is the loop's acceleration when the loop is moving at the terminal speed? Express your answer with the appropriate units. НА ? a= Value Units Submit Request Answer Part D What is the acceleration of the loop when it is completely out of the magnetic field? Express your answer with the appropriate units. HA ? a = Value Units Submit Request Answer
The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 8.00x10^-3 Ω.
Part A:
Initially, the loop is at rest, and a constant force Fext = 0.180 N is applied to the loop to pull it out of the field. The magnetic force Fm on the loop is given by:
Fm = ∫ (I × B) ds,
where I is the current, B is the magnetic field, and ds is the length element. The loop moves with a velocity u, and there is no contribution of the magnetic field in the direction perpendicular to the plane of the loop.
The external force Fext causes a current I to flow through the loop.
I = Fext/R
Here, R is the resistance of the loop.
Now, the magnetic force Fm will oppose the external force Fext. Hence, the net force is:
Fnet = Fext - Fm = Fext - (I × B × w),
where w is the width of the loop.
Substituting the value of I in the above equation:
Fnet = Fext - (Fext/R × B × w)
Fnet = Fext [1 - (w/R) × B] = 0.180 [1 - (0.06/8.00x10^-3) × 3.30] = 0.0981 N
Neglecting friction, the net force will produce acceleration a in the direction of the force. Hence:
Fnet = ma
0.0981 = 0.024 [a]
a = 4.10 m/s^2
Part B:
The terminal speed vt of the loop is given by:
vt = Fnet/μ
Where, μ is the coefficient of kinetic friction.
The loop is in the region of the uniform magnetic field. Hence, no friction force acts on the loop. Hence, the terminal speed of the loop will be infinite.
Part C:
When the loop is moving at the terminal speed, the net force on the loop is zero. Hence, the acceleration of the loop is zero.
Part D:
When the loop is completely out of the magnetic field, there is no magnetic force acting on the loop. Hence, the force acting on the loop is:
Fnet = Fext
The acceleration of the loop is given by:
Fnet = ma
0.180 = 0.024 [a]
a = 7.50 m/s^2
Hence, the acceleration of the loop when u = 3.00 cm/s is 4.10 m/s^2. The loop's terminal speed is infinite. The acceleration of the loop when the loop is moving at the terminal speed is zero. The acceleration of the loop when it is completely out of the magnetic field is 7.50 m/s^2.
To learn more about loop, refer below:
https://brainly.com/question/14390367
#SPJ11
Charge of uniform density 4.0 nC/m is distributed along the
x axis from x = 2.0 m to x = +3.0
m. What is the magnitude of the electric field at the
origin?
The magnitude of the electric field at the origin due to the charge distribution along the x-axis is zero, resulting in a net cancellation of the electric field contributions.
To find the magnitude of the electric field at the origin, we can use the principle of superposition. We divide the charge distribution into small segments, each with a length Δx and a charge ΔQ.
Given:
Charge density (ρ) = 4.0 nC/m
Range of distribution: x = 2.0 m to x = 3.0 m
We can calculate the total charge (Q) within this range:
Q = ∫ρ dx = ∫4.0 nC/m dx (from x = 2.0 m to x = 3.0 m)
Q = 4.0 nC/m * (3.0 m - 2.0 m)
Q = 4.0 nC
Next, we calculate the electric field contribution from each segment at the origin:
dE = k * (ΔQ / r²), where k is the Coulomb's constant, ΔQ is the charge of the segment, and r is the distance from the segment to the origin.
Since the charge distribution is uniform, the electric field contributions from each segment will have the same magnitude and cancel out in the x-direction due to symmetry.
Therefore, the net electric field at the origin will be zero.
To know more about electric,
https://brainly.com/question/31173598#
#SPJ11
Blocks A and B are moving toward each ocher. A has a mass of 2.0 kg and a velocity of 50 m. while B has a mass of 4.0 kg and a velocity of −25 m/s. They suffer a completely inclastic collision. A. (Spts) Draw a picture of the situation. Make sare to include a coordinate system flabel positive and negafive directions). In the picture include an arrow above each cart showing the direction of the velocity. B. (10pts) What is the velocity of the of the carts after the collision. To get fall credit you must show all your work. I am looking for the steps you took to solve the problem. C. (10pts) What is the kinctic energy lost daring the collision? To get full credit you must show all your work. 1 an looking for the steps you took to solve the problem.
B. The velocity of the carts after the collision is 0 m/s.
C. The kinetic energy lost during the collision is 3750 J.
A. Picture:
Coordinate System
---------->
+X Direction
A: ------> Velocity: 50 m/s
__________________________
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
|__________________________|
B: <------ Velocity: -25 m/s
```
B. To find the velocity of the carts after the collision, we can use the principle of conservation of momentum. The total momentum before the collision is equal to the total momentum after the collision.
Before collision:
Momentum of A = mass of A * velocity of A = 2.0 kg * 50 m/s = 100 kg·m/s (to the right)
Momentum of B = mass of B * velocity of B = 4.0 kg * (-25 m/s) = -100 kg·m/s (to the left)
Total momentum before collision = Momentum of A + Momentum of B = 100 kg·m/s - 100 kg·m/s = 0 kg·m/s
After collision:
Let the final velocity of both carts be V (since they stick together).
Total momentum after collision = (Mass of A + Mass of B) * V
According to the conservation of momentum,
Total momentum before collision = Total momentum after collision
0 kg·m/s = (2.0 kg + 4.0 kg) * V
0 = 6.0 kg * V
V = 0 m/s
C. To find the kinetic energy lost during the collision, we can calculate the total initial kinetic energy and the total final kinetic energy.
Total initial kinetic energy = Kinetic energy of A + Kinetic energy of B
= (1/2) * mass of A * (velocity of A)^2 + (1/2) * mass of B * (velocity of B)^2
= (1/2) * 2.0 kg * (50 m/s)^2 + (1/2) * 4.0 kg * (-25 m/s)^2
= 2500 J + 1250 J
= 3750 J
Total final kinetic energy = (1/2) * (Mass of A + Mass of B) * (Final velocity)^2
= (1/2) * 6.0 kg * (0 m/s)^2
= 0 J
Kinetic energy lost during the collision = Total initial kinetic energy - Total final kinetic energy
= 3750 J - 0 J
= 3750 J
Learn more about the collision at https://brainly.com/question/29548161
#SPJ11
Singly charged uranium-238 ions are accelerated through a potential difference of 2.00kV and enter a uniform magnetic field of magnitude 1.20 T directed perpendicular to their velocities.(c) What If? How does the ratio of these path radii depend on the accelerating voltage?
The ratio of the path radii for the uranium-238 ions is not affected by the accelerating voltage. The ratio is solely determined by the mass of the ions and the magnitude of the magnetic field.
The ratio of the path radii for singly charged uranium-238 ions depends on the accelerating voltage.
When a charged particle enters a uniform magnetic field perpendicular to its velocity, it experiences a force called the magnetic force. This force acts as a centripetal force, causing the particle to move in a circular path.
The magnitude of the magnetic force is given by the equation:
F = qvB
Where:
F is the magnetic force
q is the charge of the particle
v is the velocity of the particle
B is the magnitude of the magnetic field
In this case, the uranium-238 ions have a charge of +1 (since they are singly charged). The magnetic force acting on the ions is equal to the centripetal force:
qvB = mv²/r
Where:
m is the mass of the uranium-238 ion
v is the velocity of the ion
r is the radius of the circular path
We can rearrange this equation to solve for the radius:
r = mv/qB
The velocity of the ions can be determined using the equation for the kinetic energy of a charged particle:
KE = (1/2)mv²
The kinetic energy can also be expressed in terms of the accelerating voltage (V) and the charge (q) of the ion:
KE = qV
We can equate these two expressions for the kinetic energy:
(1/2)mv² = qV
Solving for v, we get:
v = sqrt(2qV/m)
Substituting this expression for v into the equation for the radius (r), we have:
r = m(sqrt(2qV/m))/qB
Simplifying, we get:
r = sqrt(2mV)/B
From this equation, we can see that the ratio of the path radii is independent of the charge (q) of the ions and the mass (m) of the ions.
Therefore, the ratio of the path radii is independent of the accelerating voltage (V).
Learn more about voltage
https://brainly.com/question/32002804
#SPJ11
Consider two thin wires, wire A and wire B, that are made of pure copper. The length of wire A is the same as wire B. The wire A has a circular cross section with diameter d whereas wire B has a square cross section with side length d. Both wires are attached to the ceiling and each has mass m is hung on it. What the ratio of the stretch in wire A to
the stretch in wire B, ALA/ALs?
The ratio of the stretch in wire A to the stretch in wire B is approximately 4/π or approximately 1.273.
To determine the ratio of the stretch in wire A to the stretch in wire B (ALA/ALB), we can use Hooke's law, which states that the stretch or strain in a wire is directly proportional to the applied force or load.
The formula for the stretch or elongation of a wire under tension is given by:
ΔL = (F × L) / (A × Y)
where:
ΔL is the change in length (stretch) of the wire,
F is the applied force or load,
L is the original length of the wire,
A is the cross-sectional area of the wire,
Y is the Young's modulus of the material.
In this case, both wires are made of pure copper, so they have the same Young's modulus (Y).
For wire A, with a circular cross section and diameter d, the cross-sectional area can be calculated as:
A_A = π × (d/2)² = π × (d² / 4)
For wire B, with a square cross section and side length d, the cross-sectional area can be calculated as:
A_B = d²
Therefore, the ratio of the stretch in wire A to the stretch in wire B is given by:
ALA/ALB = (ΔLA / ΔLB) = (AB / AA)
Substituting the expressions for AA and AB, we have:
ALA/ALB = (d²) / (π × (d² / 4))
Simplifying, we get:
ALA/ALB = 4 / π
Learn more about Hooke's law -
brainly.com/question/2648431
#SPJ11
"Which of the following is an aspect of perception that allows us to find parts of a picture and the whole picture simultaneously? A. Whole and part O
B. Depth O
C Figure and ground
The aspect of perception that allows us to find parts of a picture and the whole picture simultaneously is the whole and part.
Perceiving an image as a whole, while recognizing its individual parts, is the result of the concept of whole and part that underlies gestalt psychology, which studies the ways in which people interpret sensory information.
The word "gestalt" refers to the way in which the mind organizes information into a meaningful whole. This form of psychology is focused on understanding the ways in which humans perceive the environment and the stimuli that it provides.
The perception of a picture or image as a whole rather than as individual components is one of the hallmarks of the gestalt approach.
As a result of the whole and part, one can perceive the entire picture while also identifying the individual parts that comprise it.
The concept of whole and part is a way of explaining how humans perceive visual information, and it is a fundamental aspect of gestalt psychology.
The perception of an image is not only determined by the individual elements that make it up but also by the relationships between them.
Learn more about psychology at: https://brainly.com/question/11708668
#SPJ11
which group of the periodic table consists of elements that share similar properties and have 2 electrons in their outer shells
A. 1
B. 13
C. 14
D. 2
Answer: The correct answer is A.
Explanation:
Group 1 of the periodic table consists of elements that share similar properties and have 2 electrons in their outer shells. These elements are known as the alkali metals. They include elements such as lithium (Li), sodium (Na), potassium (K), and so on, all of which have a single electron in their outermost shell.
billy, a student, sounds two tuning forks that are supposed to be tuned to A 440.0hz. in which one is correct. When sounded with the other tuning ford, he hears a periodic volume change at a rate of 24 times in 6.0s
a) In physics, what is this called?
b) What would be the possible frequencies for the tuning fork that happens to be out of tune?
In physics, the periodic volume change heard when two sound waves with nearly similar frequencies interfere with each other is called beats. The frequency of the out-of-tune tuning fork is 222 Hz.
When two sound waves interfere with each other, the periodic volume change heard when two sound waves with nearly similar frequencies interfere with each other is called beats.
The frequency of the out-of-tune tuning fork can be calculated from the number of beats heard in a given time. Billy hears 24 beats in 6.0 seconds. Therefore, the frequency of the out of tune tuning fork is 24 cycles / 6.0 seconds = 4 cycles per second.
In one cycle, there are two sounds: one of the tuning fork, which is at a frequency of 440.0 Hz, and the other is at the frequency of the out-of-tune tuning fork (f). The frequency of the out-of-tune tuning fork can be calculated by the formula; frequency of the out-of-tune tuning fork (f) = (Beats per second + 440 Hz) / 2.
Substituting the values, we get;
frequency of the out-of-tune tuning fork (f) = (4 Hz + 440 Hz) / 2 = 222 Hz.
Learn more about frequency:
https://brainly.com/question/14567997
#SPJ11