Problem 4. (5 points) The side (s) of a cube was measured as 2.6 + 0.01 cm. If the volume of the cube is given by V = s3 and the nominal value for the volume is calculated as 17.58 cm", what is the uncertainty in the volume of the cube expressed in cm3?

Answers

Answer 1

the uncertainty in the volume of the cube expressed in cm³ is 0.20219 cm³.

Given that the length of the side of a cube, s = 2.6 + 0.01 cm

Nominal value for the volume of the cube = V = s³ = (2.6 + 0.01)³ cm³= (2.61)³ cm³ = 17.579481 cm³

The absolute uncertainty in the measurement of the side of a cube is given as

Δs = ±0.01 cm

Using the formula for calculating the absolute uncertainty in a cube,

ΔV/V = 3(Δs/s)ΔV/V = 3 × (0.01/2.6)ΔV/V

= 0.03/2.6ΔV/V = 0.01154

The uncertainty in the volume of the cube expressed in cm³ is 0.01154 × 17.58 = 0.20219 cm³ (rounded off to four significant figures)

Therefore, the uncertainty in the volume of the cube expressed in cm³ is 0.20219 cm³.

learn more about uncertainty here

https://brainly.com/question/30847661

#SPJ11


Related Questions

Review. A window washer pulls a rubber squeegee down a very tall vertical window. The squeegee has mass 160 g and is mounted on the end of a light rod. The coefficient of kinetic friction between the squeegee and the dry glass is 0.900. The window washer presses it against the window with a force having a horizontal component of 4.00N .(a) If she pulls the squeegee down the window at constant velocity, what vertical force component must she exert?

Answers

The squeegee's acceleration in this situation is 3.05 m/s^2.

To find the squeegee's acceleration in this situation, we need to consider the forces acting on it.

First, let's calculate the normal force (N) exerted by the window on the squeegee. Since the squeegee is pressed against the window, the normal force is equal to its weight.

The mass of the squeegee is given as 160 g, which is equivalent to 0.16 kg. Therefore, N = mg = 0.16 kg * 9.8 m/s^2 = 1.568 N.

Next, let's determine the force of friction (F_friction) opposing the squeegee's motion.

The coefficient of kinetic friction (μ) is provided as 0.900. The force of friction can be calculated as F_friction = μN = 0.900 * 1.568 N = 1.4112 N.

The horizontal component of the force applied by the window washer is given as 4.00 N. Since the squeegee is pulled down the window, this horizontal force doesn't affect the squeegee's vertical motion.

The net force (F_net) acting on the squeegee in the vertical direction is the difference between the downward force component (F_downward) and the force of friction. F_downward is increased by 25%, so F_downward = 1.25 * N = 1.25 * 1.568 N = 1.96 N.

Now, we can calculate the squeegee's acceleration (a) using Newton's second law, F_net = ma, where m is the mass of the squeegee. Rearranging the equation, a = F_net / m. Plugging in the values, a = (1.96 N - 1.4112 N) / 0.16 kg = 3.05 m/s^2.

Therefore, the squeegee's acceleration in this situation is 3.05 m/s^2.

Note: It's important to double-check the given values, units, and calculations for accuracy.

to learn more about acceleration

https://brainly.com/question/2303856

#SPJ11

Given that d=4.3 meters and L=3.5 meters, determine the magnitude of the field at point P in N/C. Assume that P is at the midpoint between the spherical charge and the left edge of the rod.

Answers

The magnitude of the electric field at point P is 63 N/C.

The charge of the spherical charge (q_sphere) is 2 μC (2 x 10⁻⁶ C).

The charge of the rod (q_rod) is 5 μC (5 x 10⁻⁶ C).

The distance between the spherical charge and the rod (d) is 2 meters.

Step 1: Calculate the electric field contribution from the spherical charge.

Using the formula:

E_sphere = k * (q_sphere / r²)

Assuming the distance from the spherical charge to point P is r = d/2 = 1 meter:

E_sphere = (9 x 10⁹ N m²/C²) * (2 x 10⁻⁶ C) / (1² m²)

E_sphere = (9 x 10⁹ N m²/C²) * (2 x 10⁻⁶ C) / (1 m²)

E_sphere = 18 N/C

Step 2: Calculate the electric field contribution from the rod.

Using the formula:

E_rod = k * (q_rod / L)

Assuming the length of the rod is L = d/2 = 1 meter:

E_rod = (9 x 10⁹ N m²/C²) * (5 x 10⁻⁶ C) / (1 m)

E_rod = 45 N/C

Step 3: Sum up the contributions from the spherical charge and the rod.

E_total = E_sphere + E_rod

E_total = 18 N/C + 45 N/C

E_total = 63 N/C

So, the magnitude of the electric field at point P would be 63 N/C.

To know more about the Magnitude, here

https://brainly.com/question/28556854

#SPJ4

Calculate heat loss by metal and heat gained by water with the
following information.
Mass of iron -> 50 g
Temp of metal -> 100 degrees Celcius
Mass of water -> 50 g
Temp of water -> 20 de

Answers

The heat loss by metal and heat gained by water with the given information the heat gained by the metal is -16720 J.

We can use the following calculation to determine the heat loss by the metal and the heat gained by the water:

Q = m * c * ΔT

Here, it is given:

m1 = 50 g

T1 = 100 °C

c1 = 0.45 J/g°C

m2 = 50 g

T2 = 20 °C

c2 = 4.18 J/g°C

Now, the heat loss:

ΔT1 = T1 - T2

ΔT1 = 100 °C - 20 °C = 80 °C

Q1 = m1 * c1 * ΔT1

Q1 = 50 g * 0.45 J/g°C * 80 °C

Now, heat gain,

ΔT2 = T2 - T1

ΔT2 = 20 °C - 100 °C = -80 °C

Q2 = m2 * c2 * ΔT2

Q2 = 50 g * 4.18 J/g°C * (-80 °C)

Q1 = 50 g * 0.45 J/g°C * 80 °C

Q1 = 1800 J

Q2 = 50 g * 4.18 J/g°C * (-80 °C)

Q2 = -16720 J

Thus, as Q2 has a negative value, the water is losing heat.

For more details regarding heat gain, visit:

https://brainly.com/question/29698863

#SPJ4

Part B What is the current through the 3.00 2 resistor? | ΑΣφ I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part C What is the current through the 6.00 2 resistor? V] ΑΣφ ? I = A Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining Part D What is the current through the 12.00 resistor? | ΑΣΦ I = A < 1 of 1 Submit Request Answer E = 60.0 V, r = 0 + Part E 3.00 12 12.0 12 Ω What is the current through the 4.00 resistor? ХМУ | ΑΣΦ 6.00 12 4.00 12 I = А

Answers

We are given a circuit with resistors of different values and are asked to determine the currents passing through each resistor.

Specifically, we need to find the current through a 3.00 Ω resistor, a 6.00 Ω resistor, a 12.00 Ω resistor, and a 4.00 Ω resistor. The previous answers were incorrect, and we have four attempts remaining to find the correct values.

To find the currents through the resistors, we need to apply Ohm's Law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Let's go through each resistor individually:

Part B: For the 3.00 Ω resistor, we need to know the voltage across it in order to calculate the current. Unfortunately, the voltage information is missing, so we cannot determine the current at this point.

Part C: Similarly, for the 6.00 Ω resistor, we require the voltage across it to find the current. Since the voltage information is not provided, we cannot calculate the current through this resistor.

Part D: The current through the 12.00 Ω resistor can be determined if we have the voltage across it. However, the given information only mentions the resistance value, so we cannot find the current for this resistor.

Part E: Finally, we are given the necessary information for the 4.00 Ω resistor. We have the voltage (E = 60.0 V) and the resistance (R = 4.00 Ω). Applying Ohm's Law, the current (I) through the resistor is calculated as I = E/R = 60.0 V / 4.00 Ω = 15.0 A.

In summary, we were able to find the current through the 4.00 Ω resistor, which is 15.0 A. However, the currents through the 3.00 Ω, 6.00 Ω, and 12.00 Ω resistors cannot be determined with the given information.

Learn more about resistors here: brainly.com/question/30672175

#SPJ11

My brother places a straight conducting wire with mass 10.0 g and length 5.00 cm on a frictionless incline plane (45˚ from the horizontal). There is a uniform magnetic field of 2.0 T at all points on the plane, pointing straight up. To keep the wire from sliding down the incline, my brother applies an electric potential across the wire. When the right amount of current flows through the wire, the wire remains at rest.
Determine the magnitude of the current in the wire that will cause the wire to remain at rest.

Answers

To determine the magnitude of the current in the wire that will cause it to remain at rest on the inclined plane, we need to consider the forces acting on the wire and achieve equilibrium.

Gravity force (F_gravity):

The force due to gravity can be calculated using the formula: F_gravity = m × g, where m is the mass of the wire and g is the acceleration due to gravity. Substituting the given values, we have F_gravity = 10.0 g × 9.8 m/s².

Magnetic force (F_magnetic):

The magnetic force acting on the wire can be calculated using the formula: F_magnetic = I × L × B × sin(θ), where I is the current in the wire, L is the length of the wire, B is the magnetic field strength, and θ is the angle between the wire and the magnetic field.

In this case, θ is 45˚ and sin(45˚) = √2 / 2. Thus, the magnetic force becomes F_magnetic = I × L × B × (√2 / 2).

To achieve equilibrium, the magnetic force must balance the force due to gravity. Therefore, F_magnetic = F_gravity.

By equating the two forces, we have:

I × L × B × (√2 / 2) = 10.0 g × 9.8 m/s²

Solve for the current (I):

Rearranging the equation, we find:

I = (10.0 g × 9.8 m/s²) / (L × B × (√2 / 2))

Substituting the given values, we have:

I = (10.0 g × 9.8 m/s²) / (5.00 cm × 2.0 T × (√2 / 2))

Converting 5.00 cm to meters and simplifying, we have:

I = (10.0 g × 9.8 m/s²) / (0.050 m × 2.0 T)

Calculate the current (I):

Evaluating the expression, we find that the current required to keep the wire at rest on the incline is approximately 196 A.

Therefore, the magnitude of the current in the wire that will cause it to remain at rest is approximately 196 A.

Learn more about magnitude here,

https://brainly.com/question/30337362

#SPJ11

Calculate the wavelength and the frequency f of the photons that have an energy of Ephoton = 1.72 x 10-18 J. Use c = 3.00 x 108 m/s for the speed of light in a vacuum. λ = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 663 MeV. λ = m λ = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 4.61 keV. m λ = m f = Calculate the wavelength and the frequency of the photons that have an energy of Ephoton = 8.20 eV.

Answers

The wavelength of the photon is 1.52 x 10⁻⁷ m and the frequency of the photon is 1.98 x 10¹⁵ Hz.

The formula to calculate the wavelength of the photon is given by:λ = c / f where c is the speed of light and f is the frequency of the photon. The formula to calculate the frequency of the photon is given by:

f = E / h where E is the energy of the photon and h is Planck's constant which is equal to 6.626 x 10⁻³⁴ J s.1. Energy of the photon is Ephoton = 1.72 x 10⁻¹⁸ J

The speed of light in a vacuum is given by c = 3.00 x 10⁸ m/s.The frequency of the photon is:

f = E / h

= (1.72 x 10⁻¹⁸) / (6.626 x 10⁻³⁴)

= 2.59 x 10¹⁵ Hz

Wavelength of the photon is:

λ = c / f

= (3.00 x 10⁸) / (2.59 x 10¹⁵)

= 1.16 x 10⁻⁷ m

Therefore, the wavelength of the photon is 1.16 x 10⁻⁷ m and the frequency of the photon is 2.59 x 10¹⁵ Hz.2. Energy of the photon is Ephoton = 663 MeV.1 MeV = 10⁶ eVThus, energy in Joules is:

Ephoton = 663 x 10⁶ eV

= 663 x 10⁶ x 1.6 x 10⁻¹⁹ J

= 1.06 x 10⁻¹¹ J

The frequency of the photon is:

f = E / h

= (1.06 x 10⁻¹¹) / (6.626 x 10⁻³⁴)

= 1.60 x 10²² Hz

The mass of photon can be calculated using Einstein's equation:

E = mc²where m is the mass of the photon.

c = speed of light

= 3 x 10⁸ m/s

λ = h / mc

where h is Planck's constant. Substituting the values in this equation, we get:

λ = h / mc

= (6.626 x 10⁻³⁴) / (1.06 x 10⁻¹¹ x (3 x 10⁸)²)

= 3.72 x 10⁻¹⁴ m

Therefore, the wavelength of the photon is 3.72 x 10⁻¹⁴ m and the frequency of the photon is 1.60 x 10²² Hz.3. Energy of the photon is Ephoton = 4.61 keV.Thus, energy in Joules is:

Ephoton = 4.61 x 10³ eV

= 4.61 x 10³ x 1.6 x 10⁻¹⁹ J

= 7.38 x 10⁻¹⁶ J

The frequency of the photon is:

f = E / h

= (7.38 x 10⁻¹⁶) / (6.626 x 10⁻³⁴)

= 1.11 x 10¹⁸ Hz

Wavelength of the photon is:

λ = c / f

= (3.00 x 10⁸) / (1.11 x 10¹⁸)

= 2.70 x 10⁻¹¹ m

Therefore, the wavelength of the photon is 2.70 x 10⁻¹¹ m and the frequency of the photon is 1.11 x 10¹⁸ Hz.4. Energy of the photon is Ephoton = 8.20 eV.

Thus, energy in Joules is:

Ephoton = 8.20 x 1.6 x 10⁻¹⁹ J

= 1.31 x 10⁻¹⁸ J

The frequency of the photon is:

f = E / h

= (1.31 x 10⁻¹⁸) / (6.626 x 10⁻³⁴)

= 1.98 x 10¹⁵ Hz

Wavelength of the photon is:

λ = c / f= (3.00 x 10⁸) / (1.98 x 10¹⁵)

= 1.52 x 10⁻⁷ m

Therefore, the wavelength of the photon is 1.52 x 10⁻⁷ m and the frequency of the photon is 1.98 x 10¹⁵ Hz.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

Ephoton is the energy of the photon, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light in a vacuum (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.

To calculate the wavelength (λ) and frequency (f) of photons with given energies, we can use the equations:

Ephoton = h * f

c = λ * f

where Ephoton is the energy of the photon, h is the Planck's constant (6.626 x 10^-34 J·s), c is the speed of light in a vacuum (3.00 x 10^8 m/s), λ is the wavelength, and f is the frequency.

Let's calculate the values for each given energy:

Ephoton = 1.72 x 10^-18 J:

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (1.72 x 10^-18 J) / (6.626 x 10^-34 J·s) ≈ 2.60 x 10^15 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (2.60 x 10^15 Hz) ≈ 1.15 x 10^-7 m.

Ephoton = 663 MeV:

First, we need to convert the energy from MeV to Joules:

Ephoton = 663 MeV = 663 x 10^6 eV = 663 x 10^6 x 1.6 x 10^-19 J = 1.061 x 10^-10 J.

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (1.061 x 10^-10 J) / (6.626 x 10^-34 J·s) ≈ 1.60 x 10^23 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.60 x 10^23 Hz) ≈ 1.87 x 10^-15 m.

Ephoton = 4.61 keV:

First, we need to convert the energy from keV to Joules:

Ephoton = 4.61 keV = 4.61 x 10^3 eV = 4.61 x 10^3 x 1.6 x 10^-19 J = 7.376 x 10^-16 J.

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (7.376 x 10^-16 J) / (6.626 x 10^-34 J·s) ≈ 1.11 x 10^18 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.11 x 10^18 Hz) ≈ 2.70 x 10^-10 m.

Ephoton = 8.20 eV:

Using Ephoton = h * f, we can solve for f:

f = Ephoton / h = (8.20 eV) / (6.626 x 10^-34 J·s) ≈ 1.24 x 10^15 Hz.

Now, using c = λ * f, we can solve for λ:

λ = c / f = (3.00 x 10^8 m/s) / (1.24 x 10^15 Hz) ≈ 2.42 x 10^-7 m.

To know more about wavelength, visit:

https://brainly.com/question/31143857

#SPJ11

Destructive interference of two superimposed waves requires the waves to travel in opposite directions. Select one: True False

Answers

The given statement, "Destructive interference of two superimposed waves requires the waves to travel in opposite directions" is false because destructive interference of two superimposed waves requires the waves to be traveling in the same direction and having a phase difference of π or an odd multiple of π.

In destructive interference, the two waves will have a phase difference of either an odd multiple of π or an odd multiple of 180 degrees. When the phase difference is an odd multiple of π, it results in a complete cancellation of the two waves in the region where they are superimposed and the resultant wave has zero amplitude. In constructive interference, the two waves will have a phase difference of either an even multiple of π or an even multiple of 180 degrees. When the phase difference is an even multiple of π, it results in a reinforcement of the two waves in the region where they are superimposed and the resultant wave has maximum amplitude.

Learn more about Destructive interference at https://brainly.com/question/23594941

#SPJ11

Required information A scuba diver is in fresh water has an air tank with a volume of 0.0100 m3. The air in the tank is initially at a pressure of 100 * 107 Pa. Assume that the diver breathes 0.500 l/s of air. Density of fresh water is 100 102 kg/m3 How long will the tank last at depths of 5.70 m² min

Answers

In order to calculate the time the tank will last, we need to consider the consumption rate of the diver and the change in pressure with depth.

As the diver descends to greater depths, the pressure on the tank increases, leading to a faster rate of air consumption. The pressure increases by 1 atm (approximately 1 * 10^5 Pa) for every 10 meters of depth. Therefore, the change in pressure due to the depth of 5.70 m²/min can be calculated as (5.70 m²/min) * (1 atm/10 m) * (1 * 10^5 Pa/atm).

To find the time the tank will last, we can divide the initial volume of the tank by the rate of air consumption, taking into account the change in pressure. However, we need to convert the rate of air consumption to cubic meters per second to match the units of the tank volume. Since 1 L is equal to 0.001 m³, the rate of air consumption becomes 0.500 * 10^-3 m³/s.

Finally, we can calculate the time the tank will last by dividing the initial volume of the tank by the adjusted rate of air consumption. The formula is: time = (0.0100 m³) / ((0.500 * 10^-3) m³/s + change in pressure). By plugging in the values for the initial pressure and the change in pressure, we can calculate the time in seconds or convert it to minutes by dividing by 60.

In the scuba diver's air tank with a volume of 0.0100 m³ and an initial pressure of 100 * 10^7 Pa will last a certain amount of time at depths of 5.70 m²/min. By considering the rate of air consumption and the change in pressure with depth, we can calculate the time it will last. The time can be found by dividing the initial tank volume by the adjusted rate of air consumption, taking into account the change in pressure due to the depth.

learn more about scuba diver here:

brainly.com/question/20530297

#SPJ11

Two convex thin lenses with focal lengths 12 cm and 18.0 cm aro aligned on a common avis, running left to right, the 12-сm lens being on the left. A distance of 360 сm separates the lenses. An object is located at a distance of 15.0 cm to the left of the 12-сm lens. A Make a sketch of the system of lenses as described above B. Where will the final image appear as measured from the 18-cm bens? Give answer in cm, and use appropriate sign conventions Is the final image real or virtual? D. is the famae upright or inverted? E What is the magnification of the final image?

Answers

The magnification is given by: M = v2/v1 = (54 cm)/(60 cm) = 0.9

This means that the image is smaller than the object, by a factor of 0.9.

A. Diagram B. Using the lens formula:

1/f = 1/v - 1/u

For the first lens, with u = -15 cm, f = +12 cm, and v1 is unknown.

Thus,1/12 = 1/v1 + 1/15v1 = 60 cm

For the second lens, with u = 360 cm - 60 cm = +300 cm, f = +18 cm, and v2 is unknown.

Thus,1/18 = 1/v2 - 1/300v2 = 54 cm

Thus, the image is formed at a distance of 54 cm to the right of the second lens, measured from its center, which makes it 54 - 18 = 36 cm to the right of the second lens measured from its right-hand side.

The image is real, as it appears on the opposite side of the lens from the object. It is inverted, since the object is located between the two lenses.

To know more about magnification  visit:-

https://brainly.com/question/2648016

#SPJ11

State and derive all the components of field tensor in Electrodynamics with 16 components for each component and derive Biot-Savart law by only considering electrostatics and Relativity as fundamental effects?

Answers

This is the vector potential equation in electrostatics. Solving this equation yields the vector potential A, which can then be used to calculate the magnetic field B using the Biot-Savart law:     B = ∇ × A

In electrodynamics, the field tensor, also known as the electromagnetic tensor or the Faraday tensor, is a mathematical construct that combines the electric and magnetic fields into a single entity. The field tensor is a 4x4 matrix with 16 components.

The components of the field tensor are typically denoted by Fᵘᵛ, where ᵘ and ᵛ represent the indices ranging from 0 to 3. The indices 0 to 3 correspond to the components of spacetime: 0 for the time component and 1, 2, 3 for the spatial components.

The field tensor components are derived from the electric and magnetic fields as follows:

Fᵘᵛ = ∂ᵘAᵛ - ∂ᵛAᵘ

where Aᵘ is the electromagnetic 4-potential, which combines the scalar potential (φ) and the vector potential (A) as Aᵘ = (φ/c, A).

Deriving the Biot-Savart law by considering only electrostatics and relativity as fundamental effects:

The Biot-Savart law describes the magnetic field produced by a steady current in the absence of time-varying electric fields. It can be derived by considering electrostatics and relativity as fundamental effects.

In electrostatics, we have the equation ∇²φ = -ρ/ε₀, where φ is the electric potential, ρ is the charge density, and ε₀ is the permittivity of free space.

Relativistically, we know that the electric field (E) and the magnetic field (B) are part of the electromagnetic field tensor (Fᵘᵛ). In the absence of time-varying electric fields, we can ignore the time component (F⁰ᵢ = 0) and only consider the spatial components (Fⁱʲ).

Using the field tensor components, we can write the equations:

∂²φ/∂xⁱ∂xⁱ = -ρ/ε₀

Fⁱʲ = ∂ⁱAʲ - ∂ʲAⁱ

By considering the electrostatic potential as A⁰ = φ/c and setting the time component F⁰ᵢ to 0, we have:

F⁰ʲ = ∂⁰Aʲ - ∂ʲA⁰ = 0

Using the Lorentz gauge condition (∂ᵤAᵘ = 0), we can simplify the equation to:

∂ⁱAʲ - ∂ʲAⁱ = 0

From this equation, we find that the spatial components of the electromagnetic 4-potential are related to the vector potential A by:

Aʲ = ∂ʲΦ

Substituting this expression into the original equation, we have:

∂ⁱ(∂ʲΦ) - ∂ʲ(∂ⁱΦ) = 0

This equation simplifies to:

∂ⁱ∂ʲΦ - ∂ʲ∂ⁱΦ = 0

Taking the curl of both sides of this equation, we obtain:

∇ × (∇ × A) = 0

Applying the vector identity ∇ × (∇ × A) = ∇(∇ ⋅ A) - ∇²A, we have:

∇²A - ∇(∇ ⋅ A) = 0

Since the divergence of A is zero (∇ ⋅ A = 0) for electrostatics, the equation

reduces to:

∇²A = 0

This is the vector potential equation in electrostatics. Solving this equation yields the vector potential A, which can then be used to calculate the magnetic field B using the Biot-Savart law:

B = ∇ × A

Therefore, by considering electrostatics and relativity as fundamental effects, we can derive the Biot-Savart law for the magnetic field produced by steady currents.

To know more about electrostatics refer here:

https://brainly.com/question/16489391#

#SPJ11

25 A plank AB 3.0 m long weighing 20 kg and with its centre of gravity 2.0 m from the end A carries a load of mass 10 kg at the end A. It rests on two supports at C and D as shown in fig. 4.48. R₁ A A C 50 cm 10 kg Fig. 4.49 (i) 2.0 m R₂ D 50 cm B 10 Fi 28 Compute the values of the reaction 29 forces R₁ and R₂ at C and D.​

Answers

(1) R1 = 294 N, R2 = 588 N.

(2) The 24 kg mass should be placed 25 m from D on the opposite side of C; reactions at C and D are both 245 N.

(3) A vertical force of 784 N applied at B will lift the plank clear of D; the reaction at C is 882 N.

To solve this problem, we need to apply the principles of equilibrium. Let's address each part of the problem step by step:

(1) To calculate the reaction forces R1 and R2 at supports C and D, we need to consider the rotational equilibrium and vertical equilibrium of the system. Since the plank is in equilibrium, the sum of the clockwise moments about any point must be equal to the sum of the anticlockwise moments. Taking moments about point C, we have:

Clockwise moments: (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m)

Anticlockwise moments: R2 × 3.0 m

Setting the moments equal, we can solve for R2:

(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = R2 × 3.0 m

Solving this equation, we find R2 = 588 N.

Now, to find R1, we can use vertical equilibrium:

R1 + R2 = 20 kg × 9.8 m/s² + 10 kg × 9.8 m/s²

Substituting the value of R2, we get R1 = 294 N.

Therefore, R1 = 294 N and R2 = 588 N.

(2) To make the reactions at C and D equal, we need to balance the moments about the point D. Let x be the distance from D to the 24 kg mass. The clockwise moments are (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m), and the anticlockwise moments are 24 kg × 9.8 m/s² × x. Setting the moments equal, we can solve for x:

(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = 24 kg × 9.8 m/s² × x

Solving this equation, we find x = 25 m. The mass of 24 kg should be placed 25 m from D on the opposite side of C.

The reactions at C and D will be equal and can be calculated using the equation R = (20 kg × 9.8 m/s² + 10 kg × 9.8 m/s²) / 2. Substituting the values, we get R = 245 N.

(3) Without the 24 kg mass, to lift the plank clear of D, we need to consider the rotational equilibrium about D. The clockwise moments will be (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m), and the anticlockwise moments will be F × 3.0 m (where F is the vertical force applied at B). Setting the moments equal, we have:

(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = F × 3.0 m

Solving this equation, we find F = 784 N.

The reaction at C can be calculated using vertical equilibrium: R1 + R2 = 20 kg × 9.8 m/s² + 10 kg × 9.8 m/s². Substituting the values, we get R1 + R2 = 294 N + 588 N = 882 N.

In summary, (1) R1 = 294 N and R2 = 588 N. (2) The 24 kg mass should be placed 25 m from D on the opposite side of C, and the reactions at C and D will be equal to 245 N. (3) Without the 24 kg mass, a vertical force of 784 N applied at B will lift the plank clear of D, and the reaction at C will be 882 N.

The question was incomplete. find the full content below:

A plank ab 3.0 long weighing20kg and with its centre gravity 20m from the end a carries a load of mass 10kg at the end a.It rests on two supports at c and d.Calculate:

(1)compute the values of the reaction forces R1 and R2 at c and d

(2)how far from d and on which side of it must a mass of 24kg be placed on the plank so as to make the reactions equal?what are their values?

(3)without this 24kg,what vertical force applied at b will just lift the plank clear of d?what is then the reaction of c?

Know more about equilibrium here:

https://brainly.com/question/517289

#SPJ8

Calculate the energies of the first four rotational levels of1H127 I free to rotate in three dimensions,using for its moment of inertia I=μR2, with μ=mHmI/(mH+mI) and R = 160 pm

Answers

The energies of the first four rotational levels of 1H127I can be calculated using the formula:

E = B(J(J+1))

where B is the rotational constant, J is the rotational quantum number, and h and c are Planck's constant and the speed of light, respectively.

The rotational constant can be calculated using the moment of inertia formula I=μR^2 as follows:

B = h/(8π^2cI)

where h is Planck's constant, c is the speed of light, and I is the moment of inertia.

Substituting the given values we get:

μ = mHmI/(mH+mI) = (1.0078 amu * 126.9045 amu)/(1.0078 amu + 126.9045 amu) = 1.002 amu

I = μR^2 = (1.002 amu)(160 pm)^2 = 0.004921 kg m^2

B = h/(8π^2cI) = (6.626 x 10^-34 Js)/(8π^2 x 3 x 10^8 m/s x 0.004921 kg m^2) = 2.921 x 10^-23 J

Using the formula above, the energies of the first four rotational levels are:

E1 = B(1(1+1)) = 2B = 5.842 x 10^-23 J

E2 = B(2(2+1)) = 6B = 1.7526 x 10^-22 J

E3 = B(3(3+1)) = 12B = 3.5051 x 10^-22 J

E4 = B(4(4+1)) = 20B = 5.842 x 10^-22 J

Learn more about Plank's constant here:

brainly.com/question/2289138

#SPJ11

(14.9) Atom 1 of mass 38.5 u and atom 2 of mass 40.5 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 8.09 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.680 T. What is the distance Δx between the points where the ions strike the detector?

Answers

The distance Δx between the points where the ions strike the detector is 0.0971 meters. In a mass spectrometer, ions are accelerated by a potential difference and then move in a circular path due to the presence of a magnetic field.

To solve this problem, we can use the equation for the radius of the circular path:

r = (m*v) / (|q| * B)

where m is the mass of the ion, v is its velocity, |q| is the magnitude of the charge, and B is the magnetic field strength. Since the ions are accelerated from rest, we can use the equation for the kinetic energy to find their velocity:

KE = q * V

where KE is the kinetic energy, q is the charge, and V is the potential difference.

Once we have the radius, we can calculate the distance Δx between the two points where the ions strike the detector. Since the ions follow circular paths with the same radius, the distance between the two points is equal to the circumference of the circle, which is given by:

Δx = 2 * π * r

By substituting the given values into the equations and performing the calculations, we find that Δx is approximately 0.0971 meters.

To learn more about distance click here brainly.com/question/31713805

#SPJ11

A skydiver will reach a terminal velocity when the air drag equals their weight. For a skydiver with a mass of 95.0 kg and a surface area of 1.5 m 2
, what would their terminal velocity be? Take the drag force to be F D

=1/2rhoAv 2
and setting this equal to the person's weight, find the terminal speed.

Answers

The terminal velocity of the skydiver is approximately 35.77 m/s. This means that  the skydiver reaches this speed, the drag force exerted by the air will equal the person's weight, and they will no longer accelerate.

The terminal velocity of a skydiver with a mass of 95.0 kg and a surface area of 1.5 m^2 can be determined by setting the drag force equal to the person's weight. The drag force equation used is F_D = (1/2) * ρ * A * v^2, where ρ represents air density, A is the surface area, and v is the velocity. By equating the drag force to the weight, we can solve for the terminal velocity.

To find the terminal velocity, we need to set the drag force equal to the weight of the skydiver. The drag force equation is given as F_D = (1/2) * ρ * A * v^2, where ρ is the air density, A is the surface area, and v is the velocity. Since we want the drag force to equal the weight, we can write this as F_D = m * g, where m is the mass of the skydiver and g is the acceleration due to gravity.

By equating the drag force and the weight, we have:

(1/2) * ρ * A * v^2 = m * gWe can rearrange this equation to solve for the terminal velocity v:

v^2 = (2 * m * g) / (ρ * A)

m = 95.0 kg (mass of the skydiver)

A = 1.5 m^2 (surface area)

g = 9.8 m/s^2 (acceleration due to gravity)The air density ρ is not given, but it can be estimated to be around 1.2 kg/m^3.Substituting the values into the equation, we have:

v^2 = (2 * 95.0 kg * 9.8 m/s^2) / (1.2 kg/m^3 * 1.5 m^2)

v^2 = 1276.67Taking the square root of both sides, we get:

v ≈ 35.77 m/s Therefore, the terminal velocity of the skydiver is approximately 35.77 m/s. This means that  the skydiver reaches this speed, the drag force exerted by the air will equal the person's weight, and they will no longer accelerate.

Learn more about drag force Click here:

brainly.com/question/13258892

#SPJ11

Create a dictionary of physical terms and write by hand from a physics textbook (Baryakhtar) the definitions of the following concepts and some formulas:
Electric charge + [formula demonstrating the discreteness of electric charge]
Electrification
Electric field
Electric field lines of force
Law of conservation of electric charge
Coulomb's law + [Coulomb's law formula]
Electric current
Conductors
Dielectrics
Electrical diagram + [redraw the symbols of the main elements of the electrical circuit]
Amperage + [amperage formula]
Electric voltage + [voltage formula]
Electrical resistance + [resistance formula]
Volt-ampere characteristic of the conductor
Specific resistance of the substance + [formula of the specific resistance of the substance]
Rewrite the basic formulas for serial connection
Rewrite the basic formulas for parallel connection
Electric current power + [electric current power formula]
Joule-Lenz law + [formula for the Joule-Lenz law]
Electric current in metals
Electrolytic dissociation
Electric current in electrolytes
Electrolytes
Electrolysis
Faraday's first law + [Faraday's first law formula]
Galvanostegia
Ionization
Electric current in gases

Write SI units for charge, current, voltage, resistance, work, power.

Study the infographic on p. 218-219.

Solve problems:
Two resistors are connected in series in the circuit. The resistance of the first is 60 ohms; a current of 0.1 A flows through the second. What will be the resistance of the second resistor if the battery voltage is 9 V?
Two bulbs are connected in parallel. The voltage and current in the first bulb are 50 V and 0.5 A. What will be the total resistance of the circuit if the current in the second bulb is 2 A?
Calculate the current strength and the work it performs in 20 minutes, if during this time 1800 K of charge passes through the device at a voltage of 220 V.

Answers

This is a dictionary of physical terms and formulas related to electricity, including definitions and problem-solving examples on electric current, voltage, and resistance. The resistance of the 2nd resistor is 54 [tex]\Omega[/tex], the total resistance of the circuit is 25 [tex]\Omega[/tex] and the current strength is 1.5 A, and the work is 198000 J

A dictionary of physical terms comprises Electric charge, Electrification, Electric field, Electric field lines of force, Law of conservation of electric charge, Coulomb's law, Electric current, Conductors, Dielectrics, Electrical diagram, Amperage, Electric voltage, Electrical resistance, Volt-ampere characteristic of the conductor, Specific resistance of the substance, Rewriting of the basic formulas for serial connection, Rewriting of the basic formulas for parallel connection, Electric current power, Joule-Lenz law, Electric current in metals, Electrolytic dissociation, Electric current in electrolytes, Electrolytes, Electrolysis, Faraday's first law, Galvanostegia, Ionization, Electric current in gases, and SI units for a charge, current, voltage, resistance, work, and power. A battery voltage of 9 V flows through two resistors connected in a series in the circuit. The resistance of the first resistor is 60 ohms, and a current of 0.1 A flows through the second. The resistance of the second resistor will be 54 ohms. Two bulbs are connected in parallel, and the voltage and current in the first bulb are 50 V and 0.5 A. The total resistance of the circuit will be 25 ohms if the current in the second bulb is 2 A. If 1800 K of charge passes through the device at a voltage of 220 V in 20 minutes, the current strength and the work it performs can be calculated, and the current strength is 1.5 A, and the work is 198000 J (Joules). Hence, this is about a dictionary of physical terms along with some formulas and definitions along with problem-solving on electric current, electric voltage, and electrical resistance in a detailed manner.

For more questions on electric current

https://brainly.com/question/1100341

#SPJ8

What is the best possible coefficient of performance COPret for a refrigerator that cools an environment at -13.0°C and exhausts heat to another environment at 39.0°C? COPrel= How much work W would this ideal refrigerator do to transfer 3.125 x 10 J of heat from the cold environment? W = What would be the cost of doing this work if it costs 10.5¢ per 3.60 × 106 J (a kilowatt-hour)? cost of heat transfer: How many joules of heat Qu would be transferred into the warm environment?

Answers

The best possible coefficient of performance (COPret) for the given temperatures is approximately 5.0. The work done by the refrigerator is calculated to be 6.25 x 10 J. The cost of performing this work is approximately 0.0182¢. Finally, the amount of heat transferred into the warm environment is determined to be 9.375 x 10.

The coefficient of performance (COP) of a refrigerator is a measure of its efficiency and is defined as the ratio of the amount of heat transferred from the cold environment to the work done by the refrigerator. For an ideal refrigerator, the COP can be determined using the formula:

COPret = Qc / W

where Qc is the amount of heat transferred from the cold environment and W is the work done by the refrigerator.

To find the best possible COPret for the given temperatures, we need to use the Carnot refrigerator model, which assumes that the refrigerator operates in a reversible cycle. The Carnot COP (COPrel) can be calculated using the formula:

COPrel = Th / (Th - Tc)

where Th is the absolute temperature of the hot environment and Tc is the absolute temperature of the cold environment.

Converting the given temperatures to Kelvin, we have:

Th = 39.0°C + 273.15 = 312.15 K

Tc = -13.0°C + 273.15 = 260.15 K

Substituting these values into the equation, we can calculate the COPrel:

COPrel = 312.15 K / (312.15 K - 260.15 K) ≈ 5.0

Now, we can use the COPrel value to determine the work done by the refrigerator. Rearranging the COPret formula, we have:

W = Qc / COPret

Given that Qc = 3.125 x 10 J, we can calculate the work done:

W = (3.125 x 10 J) / 5.0 = 6.25 x 10 J

Next, we can calculate the cost of doing this work, considering the given cost of 10.5¢ per 3.60 × 10^6 J (a kilowatt-hour). First, we convert the work from joules to kilowatt-hours:

W_kWh = (6.25 x 10 J) / (3.60 × 10^6 J/kWh) ≈ 0.0017361 kWh

To calculate the cost, we use the conversion rate:

Cost = (0.0017361 kWh) × (10.5¢ / 1 kWh) ≈ 0.01823¢ ≈ 0.0182¢

Finally, we need to determine the amount of heat transferred into the warm environment (Qw). For an ideal refrigerator, the total heat transferred is the sum of the heat transferred to the cold environment and the work done:

Qw = Qc + W = (3.125 x 10 J) + (6.25 x 10 J) = 9.375 x 10 J

In summary, the best possible coefficient of performance (COPret) for the given temperatures is approximately 5.0. The work done by the refrigerator is calculated to be 6.25 x 10 J. The cost of performing this work is approximately 0.0182¢. Finally, the amount of heat transferred into the warm environment is determined to be 9.375 x 10.

Learn more about coefficient here,

https://brainly.com/question/1038771

#SPJ11

A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond?

Answers

The time it takes for light to travel across the diamond is approximately 8.07 x 10^(-11) seconds.

To calculate the time it takes for light to travel across the diamond, we can use the formula:

Time = Distance / Speed

The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). However, the speed of light in a medium, such as diamond, is slower due to the refractive index.

The refractive index of diamond is approximately 2.42.

The distance light needs to travel is the thickness of the diamond, which is 10.0 mm or 0.01 meters.

Using these values, we can calculate the time it takes for light to travel across the diamond:

Time = 0.01 meters / (299,792,458 m/s / 2.42)

Simplifying the expression:

Time = 0.01 meters / (123,933,056.2 m/s)

Time ≈ 8.07 x 10^(-11) seconds

Therefore, it will take approximately 8.07 x 10^(-11) seconds for light to travel across the diamond.

To learn more about refractive index, Visit:

https://brainly.com/question/83184

#SPJ11

Several experiments are performed with light. Which of the following observations is not consistent with the wave model of light? a) The light can travel through a vacuum. b) The speed of the light is less in water than in air. c) The light can exhibit interference patterns when travelling through small openings. d) The beam of light travels in a straight line. e) The light can be simultaneously reflected and transmitted at certain interfaces.

Answers

Light has been a matter of extensive research, and experiments have led to various hypotheses regarding the nature of light. The two most notable hypotheses are the wave model and the particle model of light.

These models explain the behavior of light concerning the properties of waves and particles, respectively. Here are the observations for each model:a) Wave model: The light can travel through a vacuum.b) Wave model: The speed of the light is less in water than in air.c) Wave model

e) Wave model: The light can be simultaneously reflected and transmitted at certain interfaces.None of the observations contradicts the wave model of light. In fact, all the above observations are consistent with the wave model of light.The correct answer is d) The beam of light travels in a straight line. This observation is consistent with the particle model of light.

To know more about extensive visit:

https://brainly.com/question/12937142

#SPJ11

Question 38 1 pts What caused Earth's lithosphere to fracture into plates? volcanism, which produced heavy volcanoes that bent and cracked the lithosphere tidal forces from the Moon and Sun internal temperature changes that caused the crust to expand and stretch impacts of asteroids and planetesimals convection of the underlying mantle

Answers

The lithosphere of the Earth fractured into plates as a result of the convection of the underlying mantle. The mantle convection is what is driving the movement of the lithospheric plates

The rigid outer shell of the Earth, composed of the crust and the uppermost part of the mantle, is known as the lithosphere. It is split into large, moving plates that ride atop the planet's more fluid upper mantle, the asthenosphere. The lithosphere fractured into plates as a result of the convection of the underlying mantle. As the mantle heats up and cools down, convection currents occur. Hot material is less dense and rises to the surface, while colder material sinks toward the core.

This convection of the mantle material causes the overlying lithospheric plates to move and break up over time.

Learn more about lithosphere visit:

brainly.com/question/454260

#SPJ11

A two-stage rocket moves in space at a constant velocity of +4010 m/s. The two stages are then separated by a small explosive charge placed between them. Immediately after the explosion the velocity of the 1390 kg upper stage is +5530 m/s. What is the velocity (magnitude and direction) of the 2370-kg lower stage immediately after the explosion?

Answers

The velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

Initially, the two-stage rocket is moving in space at a constant velocity of +4010 m/s.

When the explosive charge is detonated, the two stages separate.

The upper stage, with a mass of 1390 kg, acquires a new velocity of +5530 m/s.

To find the velocity of the lower stage, we can use the principle of conservation of momentum.

The total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of the upper stage after the explosion is given by the product of its mass and velocity: (1390 kg) * (+5530 m/s) = +7,685,700 kg·m/s.

Since the explosion only affects the separation between the two stages and not their masses, the total momentum before the explosion is the same as the momentum of the entire rocket: (1390 kg + 2370 kg) * (+4010 m/s) = +15,080,600 kg·m/s.

To find the momentum of the lower stage, we subtract the momentum of the upper stage from the total momentum of the rocket after the explosion: +15,080,600 kg·m/s - +7,685,700 kg·m/s = +7,394,900 kg·m/s.

Finally, we divide the momentum of the lower stage by its mass to find its velocity: (7,394,900 kg·m/s) / (2370 kg) = -3190 m/s.

Therefore, the velocity of the 2370-kg lower stage immediately after the explosion is -3190 m/s in the opposite direction.

To learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs. After the collision, both objects move together along the same line with speed v/2. What is the numerical value of the ratio m/m, of their masses?

Answers

`[(au + (v/2)]/[(u - (v/2))]`is the numerical value of the ratio m/m, of their masses .

Two objects, of masses my and ma, are moving with the same speed and in opposite directions along the same line. They collide and a totally inelastic collision occurs.

After the collision, both objects move together along the same line with speed v/2.

The numerical value of the ratio of the masses m1/m2 can be calculated by the following formula:-

                 Initial Momentum = Final Momentum

Initial momentum is given by the sum of the momentum of two masses before the collision. They are moving with the same speed but in opposite directions, so momentum will be given by myu - mau where u is the velocity of both masses.

`Initial momentum = myu - mau`

Final momentum is given by the mass of both masses multiplied by the final velocity they moved together after the collision.

So, `final momentum = (my + ma)(v/2)`According to the principle of conservation of momentum,

`Initial momentum = Final momentum

`Substituting the values in the above formula we get: `myu - mau = (my + ma)(v/2)

We need to find `my/ma`, so we will divide the whole equation by ma on both sides.`myu/ma - au = (my/ma + 1)(v/2)

`Now, solving for `my/ma` we get;`my/ma = [(au + (v/2)]/[(u - (v/2))]

`Hence, the numerical value of the ratio m1/m2, of their masses is: `[(au + (v/2)]/[(u - (v/2))

Therefore, the answer is given by `[(au + (v/2)]/[(u - (v/2))]`.

Learn more about Final Momentum

brainly.com/question/29990455

#SPJ11

: Suppose 45 cm of wire is experiencing a magnetic force of 0.55 N. 50% Part (a) What is the angle in degrees between the wire and the 1.25 T field if it is carrying a 6.5 A current?

Answers

To find the angle between the wire and the magnetic field, we can use the formula for the magnetic force on a current-carrying wire:

F = BILsinθ

Where:

F = Magnetic force

B = Magnetic field strength

I = Current

L = Length of the wire

θ = Angle between the wire and the magnetic field

We are given:

F = 0.55 N

B = 1.25 T

I = 6.5 A

L = 45 cm = 0.45 m

Let's rearrange the formula to solve for θ:

θ = sin^(-1)(F / (BIL))

Substituting the given values:

θ = sin^(-1)(0.55 N / (1.25 T * 6.5 A * 0.45 m))

Now we can calculate θ:

θ = sin^(-1)(0.55 / (1.25 * 6.5 * 0.45))

Using a calculator, we find:

θ ≈ sin^(-1)(0.0558)

θ ≈ 3.2 degrees (approximately)

Therefore, the angle between the wire and the magnetic field is approximately 3.2 degrees.

Learn more about angle on:

https://brainly.com/question/30147425

#SPJ4

The angle is approximately 6.6°.

The formula for finding the magnetic force acting on a current carrying conductor in a magnetic field is,

F = BILSinθ Where,

F is the magnetic force in Newtons,

B is the magnetic field in Tesla

I is the current in Amperes

L is the length of the conductor in meters and

θ is the angle between the direction of current flow and the magnetic field lines.

Substituting the given values, we have,

F = 0.55 NB

  = 1.25 TI

  = 6.5 AL

  = 45/100 meters (0.45 m)

Let θ be the angle between the wire and the 1.25 T field.

The force equation becomes,

F = BILsinθ 0.55

  = (1.25) (6.5) (0.45) sinθ

sinθ = 0.55 / (1.25 x 6.5 x 0.45)

       = 0.11465781711

sinθ = 0.1147

θ = sin^-1(0.1147)

θ = 6.6099°

  = 6.6°

Learn more about magnetic force from the given link

https://brainly.com/question/2279150

#SPJ11

1. (a) At what temperature do the Fahrenheit and Celsius scales have the same numerical value? (b) At what temperature do the Fahrenheit and Kelvin scales have the same numerical value? 1. How large an expansion gap should be left between steel railroad rails if they may reach a maximum temperature 30 deg C greater than when they were laid? Their 1 original length is 12.5 m. Use a=1.2x10-5 O m

Answers

The point at which the Fahrenheit and Celsius scales have the same numerical value is -40°C. The point at which the Fahrenheit and Kelvin scales have the same numerical value is 459.67°F the expansion gap that should be left between the steel railroad rails is 0.0045 m or 4.5 mm.

(a) The point at which the Fahrenheit and Celsius scales have the same numerical value is -40°C. This is because this temperature is equivalent to -40°F.  At this temperature, both scales intersect and meet the same numerical value.
(b) The point at which the Fahrenheit and Kelvin scales have the same numerical value is 459.67°F. At this temperature, both scales intersect and meet the same numerical value.
For the second part of the question:
Given that the original length of the steel railroad rails is 12.5m, the maximum temperature rise is 30℃, and the coefficient of linear expansion (a) is 1.2×10⁻⁵/℃.
Therefore, the expansion ΔL can be calculated as:
ΔL = L×a×ΔT
Where L is the original length of the steel railroad rails, a is the coefficient of linear expansion, and ΔT is the temperature rise.
Substituting the given values, we have:
ΔL = 12.5×1.2×10⁻⁵×30
ΔL = 0.0045 m
Therefore, the expansion gap that should be left between the steel railroad rails is 0.0045 m or 4.5 mm. This gap allows the rails to expand without buckling or bending.

To know more about temperature visit;

brainly.com/question/7510619

#SPJ11

Lifting an elephant with a forklift is an energy intensive task requiring 200,000 J of energy. The average forklift has a power output of 10 kW (1 kW is equal to 1000 W)
and can accomplish the task in 20 seconds. How powerful would the forklift need to be
to do the same task in 5 seconds?

Answers

Lifting an elephant with a forklift is an energy intensive task requiring 200,000 J of energy. The average forklift has a power output of 10 kW (1 kW is equal to 1000 W) and can accomplish the task in 20 seconds. The forklift would need to have a power output of 40,000 W or 40 kW to lift the elephant in 5 seconds.

To determine the power required for the forklift to complete the task in 5 seconds, we can use the equation:

Power = Energy / Time

Given that the energy required to lift the elephant is 200,000 J and the time taken to complete the task is 20 seconds, we can calculate the power output of the average forklift as follows:

Power = 200,000 J / 20 s = 10,000 W

Now, let's calculate the power required to complete the task in 5 seconds:

Power = Energy / Time = 200,000 J / 5 s = 40,000 W

Therefore, the forklift would need to have a power output of 40,000 W or 40 kW to lift the elephant in 5 seconds.

For more such questions on power, click on:

https://brainly.com/question/2248465

#SPJ8

A sphere of radius R has uniform polarization
P and uniform magnetization M
(not necessarily in the same direction). Calculate the
electromagnetic moment of this configuration.

Answers

The electromagnetic moment of a sphere with uniform polarization P and uniform magnetization M can be calculated by considering the electric dipole moment due to polarization and the magnetic dipole moment due to magnetization.

To calculate the electromagnetic moment of the sphere, we need to consider the contributions from both polarization and magnetization. The electric dipole moment due to polarization can be calculated using the formula:

p = 4/3 * π * ε₀ * R³ * P,

where p is the electric dipole moment, ε₀ is the vacuum permittivity, R is the radius of the sphere, and P is the uniform polarization.

The magnetic dipole moment due to magnetization can be calculated using the formula:

m = 4/3 * π * R³ * M,

where m is the magnetic dipole moment and M is the uniform magnetization.

Since the electric and magnetic dipole moments are vectors, the total electromagnetic moment is given by the vector sum of these two moments:

μ = p + m.

Therefore, the electromagnetic moment of the sphere with uniform polarization P and uniform magnetization M is the vector sum of the electric dipole moment due to polarization and the magnetic dipole moment due to magnetization.

Learn more about vector here:
https://brainly.com/question/32317496

#SPJ11

If you double an object's velocity, its kinetic energy increases by a factor of four. True False

Answers

True. Doubling an object's velocity increases its kinetic energy by a factor of four.

The relationship between kinetic energy (KE) and velocity (v) is given by the equation [tex]KE=\frac{1}{2}*m * V^{2}[/tex]

where m is the mass of the object. According to this equation, kinetic energy is directly proportional to the square of the velocity. If we consider an initial velocity [tex]V_1[/tex], the initial kinetic energy would be:

[tex]KE_1=\frac{1}{2} * m * V_1^{2}[/tex].

Now, if we double the velocity to [tex]2V_1[/tex], the new kinetic energy would be [tex]KE_2=\frac{1}{2} * m * (2V_1)^2 = \frac{1}{2} * m * 4V_1^2[/tex].

Comparing the initial and new kinetic energies, we can see that [tex]KE_2[/tex] is four times larger than [tex]KE_1[/tex]. Therefore, doubling the velocity results in a fourfold increase in kinetic energy.

Learn more about velocity here:

https://brainly.com/question/18084516

#SPJ11

A274-V battery is connected to a device that draws 4.86 A of current. What is the heat in k), dissipated in the device in 273 minutes of operation

Answers

The heat dissipated in the device during 273 minutes of operation is approximately 217.56 kJ

To calculate the heat dissipated in the device over 273 minutes of operation, we need to find the power consumed by the device and then multiply it by the time.

Given that,

The device draws a current of 4.86 A, we need the voltage of the A274-V battery to calculate the power. Let's assume the battery voltage is 274 V based on the battery's name.

Power (P) = Current (I) * Voltage (V)

P = 4.86 A * 274 V

P ≈ 1331.64 W

Now that we have the power consumed by the device, we can calculate the heat dissipated using the formula:

Heat (Q) = Power (P) * Time (t)

Q = 1331.64 W * 273 min

To convert the time from minutes to seconds (as power is given in watts), we multiply by 60:

Q = 1331.64 W * (273 min * 60 s/min)

Q ≈ 217,560.24 J

To convert the heat from joules to kilojoules, we divide by 1000:

Q ≈ 217.56 kJ

Therefore, the heat dissipated in the device during 273 minutes of operation is approximately 217.56 kJ.

Learn more about heat from the given link

https://brainly.com/question/934320

#SPJ11

Classify the following statements about Einstein's postulates based on whether they are true or false, True False The speed of light is a constant in all uniformly moving reference frames All reference frames are arbitrary Motion can only be measured relative to one fixed point in the universe. The laws of physics work the same whether the reference frame is at rest or moving at a uniform speed Within a reference frame, it can be experimentally determined whether or not the reference frame is moving The speed of light varies with the speed of the source Answer Bank

Answers

According to Einstein's postulates of special relativity, the speed of light in a vacuum is constant and does not depend on the motion of the source or the observer.

This fundamental principle is known as the constancy of the speed of light.

True or False:

1) The speed of light is a constant in all uniformly moving reference frames - True

2) All reference frames are arbitrary - False

3) Motion can only be measured relative to one fixed point in the universe - False

4) The laws of physics work the same whether the reference frame is at rest or moving at a uniform speed - True

5) Within a reference frame, it can be experimentally determined whether or not the reference frame is moving - False

6) The speed of light varies with the speed of the source - False

Learn more about speed of light here : brainly.com/question/28224010
#SPJ11

A circuit operating at 90 Hz and contains only two circuit elements, but it is not known if they are L, R, or C. A maximum voltage of 175 V is applied by the source. If the maximum current in the circuit is 13.6 A and lags the voltage by 37 ∘
, a. Draw a phashor diagram of this circuit b. What two circuit elements are connected? Explain c. Calculate the values of the two circuit elements.

Answers

Resistance (R) = 12.87 Ω

Inductance (L) = 35 mH (or 0.000035 H)

a. Phasor diagram of the circuit is given below:b. The two circuit elements are connected are inductance (L) and resistance (R).

In a purely inductive circuit, voltage and current are out of phase with each other by 90°. In a purely resistive circuit, voltage and current are in phase with each other. Hence, by comparing the phase difference between voltage and current, we can determine that the circuit contains inductance (L) and resistance (R).

c. We know that;

Maximum voltage (V) = 175 VMaximum current (I) = 13.6

APhase angle (θ) = 37°

We can find out the Impedance (Z) of the circuit by using the below relation;

Impedance (Z) = V / IZ = 175 / 13.6Z = 12.868 Ω

Now, we can find out the values of resistance (R) and inductance (L) using the below relations;

Z = R + XL

Here, XL = 2πfL

Where f = 90 Hz

Therefore,

XL = 2π × 90 × LXL = 565.49 LΩ

Z = R + XL12.868 Ω = R + 565.49 LΩ

Maximum current (I) = 13.6 A,

so we can calculate the maximum value of R and L using the below relations;

V = IZ175 = 13.6 × R

Max R = 175 / 13.6

Max R = 12.87 Ω

We can calculate L by substituting the value of R

Max L = (12.868 − 12.87) / 565.49

Max L = 0.000035 H = 35 mH

Therefore, the two circuit elements are;

Resistance (R) = 12.87 Ω

Inductance (L) = 35 mH (or 0.000035 H)

learn more about Resistance on:

https://brainly.com/question/28135236

#SPJ11

(a) A defibrillator connected to a patient passes 15.0 A of
current through the torso for 0.0700 s. How much charge moves? C
(b) How many electrons pass through the wires connected to the
patient? ele

Answers

1.05 Coulombs of charge moves through the torso and  approximately 6.54 × 10^18 electrons pass through the wires connected to the patient.

(a) To calculate the amount of charge moved,

We can use the equation:

Charge (Q) = Current (I) * Time (t)

Given:

Current (I) = 15.0 A

Time (t) = 0.0700 s

Substituting the values into the equation:

Q = 15.0 A * 0.0700 s

Q = 1.05 C

Therefore, 1.05 Coulombs of charge moves.

(b) To determine the number of electrons that pass through the wires,

We can use the relationship:

1 Coulomb = 6.242 × 10^18 electrons

Given:

Charge (Q) = 1.05 C

Substituting the value into the equation:

Number of electrons = 1.05 C * 6.242 × 10^18 electrons/Coulomb

Number of electrons ≈ 6.54 × 10^18 electrons

Therefore, approximately 6.54 × 10^18 electrons pass through the wires connected to the patient.

Learn more about Coulomb's law from the given link :

https://brainly.com/question/506926

#SPJ11

Other Questions
eBookHampton Industries had $40,000 in cash at year-end 2020 and $16,000 in cash at year-end 2021. The firm invested in property, plant, and equipment totaling $270,000- the majority having a useful life greater than 20 years and falling under the alternative depreciation system. Cash flow from financing activities totaled +$250,000. Round your answers to the nearest dollar, if necessarya. What was the cash flow from operating activities? Cash outflow, if any, should be indicated by a minus signb. If accruals increased by $30,000, receivables and inventories increased by $155,000, and depreciation and amortization totaled $47,000, what was the firm's net income? _______ results from common nerve pathways where sensory impulses and synapses of the skin intertwine and follow the same path. A) proprioception B) referred pain C) sympathetic response D) this type of pain is not possible The fuse of a three-break firework rocket is programmed to ignite three times with 2-second intervals between the ignitions. When the rocket is shot vertically in the air, its height h in feet after t seconds is given by the formula h(t)=-5 t+70 t . At how many seconds after the shot should the firework technician set the timer of the first ignition to make the second ignition occur when the rocket is at its highest point?(A) 3 (B) 9(C) 5 (D) 7 If this wave is traveling along the x-axis from left to rightwith a displacement amplitude of 0.1 m in the y direction, find thewave equation for y as a function of x and time t. (1) Consider the IVP y (a) This is not separable equation but it is homogeneous: every summand in that rational function is a polynomial of degree 1. Use the change of variables z = y/x like we did in class to rewrite the differential equation in the form xz (d) As a sanity check, solve the IVP 4x + 2y 5x + y z+3z-4 5+2 (b) What are the special solutions you get from considering equilibrium solutions to the equation above? There are two of them! (c) Find the general solution to the differential equation (in the y variable). You can leave your answer in implicit form! y = 4x + 2y 5x + y y(2) = 2 List these factors and explain why the absence of these would be a problem. Would the presence of them motivate you? What about satisfiers-what satisfiers do you think motivate you the most? Why? Hygiene factors of most concern to you Why would the absence of these factors be a problem? Would the presence of them motivate you? What satisfiers do you think motivate you the most? Why Describe situations in which the use of newly developed instruments would be appropriated. What precautions do the practitioners need to take if they want to use new instruments? . Is it possible to have a test that is reliable but not valld? Why or why not? In the diagram below, each unit on the horizontal axis is 9.00 cm and each unit on the vertical axis is 4.00 cm. The equipotential lines in a region of uniform electric field are indicated by the blue lines. (Note that the diagram is not drawn to scale.)Determine the magnitude of the electric field in this region.Determine the shortest distance for which the change in potential is 3 V. Memories are primed by_____a.flashbulb memories b.memory consolidation c.sensory memory d.retrieval cues Consider a collision between two blocks. The sum of the blocks' kinetic and potential energies are equal before and after the collision. True False A parallel plate capacitor is charged to a potential of 3000 V and then isolated. Find the magnitude of the charge on the positive plate if the plates area is 0.40 m2 and the ditance between the plate discrete math Let S(n) be the following sum where n a positive integer1+ 1/3 + 1/9 + ....+ 1/ 3^n-1Then S(3) will beSelect one:O 13/9O -13/9O -9/13O 1/27O 9/13 The negation of the statement(Vx) A(x)'(x) (B(x) C(x))is equivalent toSelect one:O (3x) A(x)' V (Vx) (B(x) ^ C(x)')O (3x) A(x)' (Vx) (B(x) C(x)')O (3x) A(x)' (Vx) (B(x) v C(x)')O (3x) A(x)' (Vx) (B(x) ^ C(x)')O none of these Consider the recurrence relation T(n) = 2T(n - 1)-3T(n-2) for n > 2 subject to the initial conditions T(1) = 3,T(2)=2. Then T(4) =?Select one:O None of themO 2O -10O -16O 10 If it is known that the cardinality of the set S x S is 16. Then the cardinality of S is:Select one:O 32O 256O 16O 4O None of them A country with a closed economy discovers large oil deposits. Assume that the only effect of this discovery is an increase in the expected future marginal product of capital. a. Use the capital market diagram (user cost and MPK vs capital stock) to show the effect on the equilibrium level of capital stock. b. Use desired invertment/aningi diagram (with the real interest rate on the vertical axis) to analyzo the effecta on national saving, investment, and the real interest rate.Previous question Based on what you have learned about galaxy formation from a protogalactic cloud (and similarly star formation from a protostellar cloud), the fact that dark matter in a galaxy is distributed over a much larger volume than luminous matter can be explained by 1. Dark matter does not emit EM radiations. II. The pressure of an ideal gas decreases when temperature drops. III. The temperature of an ideal gas decreases when its thermal energy decreases. II Please help to answer the following questions:1. A glucose molecule has been transported into a muscle cell. This cell has ample supplies of oxygen. Discuss the steps involved in using this glucose to produce energy. For each step, describe its location and oxygen requirements and name the substances produced.2. Your friend wants to lose some weight. She is following a diet that contains 20% carbohydrates, 40% fat, and 40% protein. Why is this diet designed to limit fat deposition? (Include the actions of pancreatic hormones in your answer) Find the equations of the asymptotes of the hyperbola defined by the equation shown below. If necessary, round to the nearest tenth. 100pts A ladder of length L = 12.0 m and mass m = 42.0 kg leans against a slick wall (that is, there is no friction between the ladder and the wall). The ladder's upper end is at height h =8.9 m above the pavement on which the lower end is supported. The coefficient of static friction Hs between the ladder and the pavement is 0.557. The ladder's center of mass is L/3 from the lower end, along the length of the ladder. A firefighter of mass M = 69.0 kg climbs the ladder. How far up the ladder, as a fraction of the ladder's length, must she go to put the ladder on the verge of sliding? (Your answer should be a unitless number between 0 and 1.) Score 1 Starting from rest, a turnable rotates at angular acceleration of 0.13 rad/s2. How long does it take for it speed to get to 6 rad/s? 3A 1110 kg car traveling clockwise at a constant speed along a flat horizontal circular track of radius 26 m. The car takes 21 s to complete one lap around the track. What is the magnitude of the force of friction exerted on the car by the track? The angular velocity of a rotating object is defined by the function w = 4t - 2t + 3 What is the objects angular acceleration at t = 5 seconds? If you double an object's velocity, its kinetic energy increases by a factor of four. True False What, according to your textbook, is a robust and useful theory?What goes into creating a theory?What is the difference between a theory and an idea?Human nature is a broader concept than personality. The assumptions about human nature are reflected in the theories you will read. Looking at the list of six "dimensions for a concept of humanity" in the first chapter of your textbook (Feist et al., 2021), explain one of the dimensions in your own words and give an example.