The equation of the line perpendicular to the given line and passing through the point (-5, -4) is y + 4 = -1/m(x + 5).
To find the equation of a line that is perpendicular to a given line, we need to determine the negative reciprocal of the slope of the given line. Let's assume the given line has a slope of m. The negative reciprocal of m is -1/m. Given that the line passes through the point (-5, -4), we can use the point-slope form of the line equation:
y - y1 = m(x - x1),
where (x1, y1) is the given point.
Substituting the values (-5, -4) and -1/m for the slope, we get:
y - (-4) = -1/m(x - (-5)),
y + 4 = -1/m(x + 5).
This is the equation of the line perpendicular to the given line and passing through the point (-5, -4).
To know more about equation,
https://brainly.com/question/21145275
#SPJ11
Find the volumes of the solids generated by revolving the region in the first quadrant bounded by the curve x=y−y^3
and the y-axis about the given axes. a. The x-axis b. The line y=1 a. The volume is (Type an exact answer in terms of π.)
So, the volume of the solid generated by revolving the region about the x-axis is 2π/3.
To find the volume of the solid generated by revolving the region in the first quadrant bounded by the curve [tex]x = y - y^3[/tex] and the y-axis about the x-axis, we can use the method of cylindrical shells.
The equation [tex]x = y - y^3[/tex] can be rewritten as [tex]y = x + x^3.[/tex]
We need to find the limits of integration. Since the region is in the first quadrant and bounded by the y-axis, we can set the limits of integration as y = 0 to y = 1.
The volume of the solid can be calculated using the formula:
V = ∫[a, b] 2πx * h(x) dx
where a and b are the limits of integration, and h(x) represents the height of the cylindrical shell at each x-coordinate.
In this case, h(x) is the distance from the x-axis to the curve [tex]y = x + x^3[/tex], which is simply x.
Therefore, the volume can be calculated as:
V = ∫[0, 1] 2πx * x dx
V = 2π ∫[0, 1] [tex]x^2 dx[/tex]
Integrating, we get:
V = 2π[tex][x^3/3][/tex] from 0 to 1
V = 2π * (1/3 - 0/3)
V = 2π/3
To know more about volume,
https://brainly.com/question/33630070
#SPJ11
Let f(x)= e^x/1+e^x
(a) Find the derivative f′.Carefully justify each step using the differentiation rules from the text. (You may identify rules by the number or by a short description such as the quotient rule.)
The given function is f(x) = /1 + e^x. We are to find the derivative of the function.
Using the quotient rule, we have f'(x) = [(1 + e^x)*e^x - e^x*(e^x)] / (1 e^x)^2
Simplifying, we get f'(x) = e^x / (1 + e^x)^2
We used the quotient rule of differentiation which states that if y = u/v,
where u and v are differentiable functions of x, then the derivative of y with respect to x is given byy'
= [v*du/dx - u*dv/dx]/v²
We can see that the given function can be written in the form y = u/v,
where u = e^x and
v = 1 + e^x.
On differentiating u and v with respect to x, we get du/dx = e^x and
dv/dx = e^x.
We then substitute these values in the quotient rule to get the derivative f'(x)
= e^x / (1 + e^x)^2.
Hence, the derivative of the given function is f'(x) = e^x / (1 + e^x)^2.
To know more about derivative visit:
https://brainly.com/question/25324584
#SPJ11
Use the Intermediate Value Theorem to determine whether the following equation has a solution or not. If so, then use a graphing calculator or computer grapher to solve the equation. 5x(x−1)^2
=1 (one root) Select the correct choice below, and if necossary, fill in the answer box to complete your choice A. x≈ (Use a comma to separate answers as needed. Type an integer or decimal rounded to four decimal places as needed.) B. There is no solution
x ≈ 0.309 as the one root of the given equation found using the Intermediate Value Theorem (IVT) .
The Intermediate Value Theorem (IVT) states that if f is a continuous function on a closed interval [a, b] and c is any number between f(a) and f(b), then there is at least one number x in [a, b] such that f(x) = c.
Given the equation
`5x(x−1)² = 1`.
Use the Intermediate Value Theorem to determine whether the given equation has a solution or not:
It can be observed that the function `f(x) = 5x(x-1)² - 1` is continuous on the interval `[0, 1]` since it is a polynomial of degree 3 and polynomials are continuous on the whole real line.
The interval `[0, 1]` contains the values of `f(x)` at `x=0` and `x=1`.
Hence, f(0) = -1 and f(1) = 3.
Therefore, by IVT there is some value c between -1 and 3 such that f(c) = 0.
Therefore, the given equation has a solution.
.
Know more about the Intermediate Value Theorem (IVT)
https://brainly.com/question/14456529
#SPJ11
G is the centroid of equilateral Triangle ABC. D,E, and F are midpointsof the sides as shown. P,Q, and R are the midpoints of line AG,line BG and line CG, respectively. If AB= sqrt 3, what is the perimeter of DREPFQ?
The perimeter of DREPFQ is 1
How to determine the valueIn an equilateral triangle, the intersection is the centroid
From the information given, we have that;
AB =√3
Then, we can say that;
AG = BG = CG = √3/3
Also, we have that D, E, and F are the midpoints of the sides of triangle Then, DE = EF = FD = √3/2.
AP = BP = CP = √3/6.
To find the perimeter of DREPFQ, we need to add up the lengths of the line segments DQ, QE, ER, RF, FP, and PD.
The perimeter of DREPFQ is √3/6 × √3/2)
Multiply the value, we get;
√3× √3/ 6 × 2
Then, we get;
3/18
divide the values, we have;
= 0.167
Multiply this by six sides;
= 1
Learn more about centroid at: https://brainly.com/question/7644338
#SPJ4
The complete question:
G is the centroid of equilateral Triangle ABC. D,E, and F are midpointsof the sides as shown. P,Q, and R are the midpoints of line AG,line BG and line CG, respectively. If AB= sqrt 3, what is the perimeter of DREPFQ
The point P(4,1) lles on the curve y= 4/x If Q is the point (x, (x,4/x), find the slope of the secant ine PQ for the folowing nates of x.
if x=4.1, the slope of PQ is: and If x=4.01, the slope of PQ is: and If x=3.9, the slope of PQ is: and If x=3.99, the slope of PQ is: Based on the above results, guess the slope of the tangent line to the curve at P(4,1).
Interpret the meaning of the derivative.The derivative of f(x) = x² - 7x+6 is given by the expression 2x - 7. The derivative represents the slope of the tangent line to the graph of the function f(x) at any given point x.
The derivative of f(x)
= x² - 7x+6 can be determined by using the four-step process of the definition of the derivative. This process includes finding the limit of the difference quotient, which is the slope of the tangent line of the graph of the function f(x) at the point x.Substitute x+h for x in the function f(x) and subtract f(x) from f(x+h). The resulting difference quotient will be the slope of the secant line passing through the points (x,f(x)) and (x+h,f(x+h)). Then, find the limit of this quotient as h approaches 0. This limit is the slope of the tangent line to the graph of the function f(x) at the point x.Using the four-step process, we can find the derivative of the given function f(x)
= x² - 7x+6, as follows:Step 1: Find the difference quotient.Substitute x+h for x in the function f(x)
= x² - 7x+6 and subtract f(x) from
f(x+h):f(x+h)
= (x+h)² - 7(x+h) + 6
= x² + 2xh + h² - 7x - 7h + 6f(x)
= x² - 7x + 6f(x+h) - f(x)
= (x² + 2xh + h² - 7x - 7h + 6) - (x² - 7x + 6)
= 2xh + h² - 7h
Step 2: Simplify the difference quotient by factoring out h.
(f(x+h) - f(x))/h
= (2xh + h² - 7h)/h
= 2x + h - 7
Step 3: Find the limit of the difference quotient as h approaches 0.Limit as h
→ 0 of [(f(x+h) - f(x))/h]
= Limit as h
→ 0 of [2x + h - 7]
= 2x - 7.Interpret the meaning of the derivative.The derivative of f(x)
= x² - 7x+6 is given by the expression 2x - 7. The derivative represents the slope of the tangent line to the graph of the function f(x) at any given point x.
To know more about tangent visit:
https://brainly.com/question/10053881
#SPJ11
Find the area of the shaded region. The graph to the right depicts 10 scores of adults. and these scores are normally distributhd with a mean of 100 . and a standard deviation of 15 . The ates of the shaded region is (Round to four decimal places as needed.)
The area of the shaded region in the normal distribution of adults' scores is equal to the difference between the areas under the curve to the left and to the right. The area of the shaded region is 0.6826, calculated using a calculator. The required answer is 0.6826.
Given that the scores of adults are normally distributed with a mean of 100 and a standard deviation of 15. The graph shows the area of the shaded region that needs to be determined. The shaded region represents scores between 85 and 115 (100 ± 15). The area of the shaded region is equal to the difference between the areas under the curve to the left and to the right of the shaded region.Using z-scores:z-score for 85 = (85 - 100) / 15 = -1z-score for 115 = (115 - 100) / 15 = 1Thus, the area to the left of 85 is the same as the area to the left of -1, and the area to the left of 115 is the same as the area to the left of 1. We can use the standard normal distribution table or calculator to find these areas.Using a calculator:Area to the left of -1 = 0.1587
Area to the left of 1 = 0.8413
The area of the shaded region = Area to the left of 115 - Area to the left of 85
= 0.8413 - 0.1587
= 0.6826
Therefore, the area of the shaded region is 0.6826. Thus, the required answer is 0.6826.
To know more about normal distribution Visit:
https://brainly.com/question/15103234
#SPJ11
vertex at (4,3), axis of symmetry with equation y=3, length of latus rectums 4, and 4p>0
The given information describes a parabola with vertex at (4,3), axis of symmetry with equation y=3, and a latus rectum length of 4. The value of 4p is positive.
1. The axis of symmetry is a horizontal line passing through the vertex, so the equation y=3 represents the axis of symmetry.
2. Since the latus rectum length is 4, we know that the distance between the focus and the directrix is also 4.
3. The focus is located on the axis of symmetry and is equidistant from the vertex and directrix, so it has coordinates (4+2, 3) = (6,3).
4. The directrix is also a horizontal line and is located 4 units below the vertex, so it has the equation y = 3-4 = -1.
5. The distance between the vertex and focus is p, so we can use the distance formula to find that p = 2.
6. Since 4p>0, we know that p is positive and thus the parabola opens to the right.
7. Finally, the equation of the parabola in standard form is (y-3)^2 = 8(x-4).
Learn more about parabola : brainly.com/question/11911877
#SPJ11
Let E, F and G be three events in S with P(E) = 0.48, P(F) =
0.52, P(G) = 0.52, P(E ∩ F) = 0.32, P(E ∩ G) = 0.29, P(F ∩ G) =
0.26, and P(E ∩ F ∩ G) = 0.2.
Find P(EC ∪ FC ∪ GC).
The required probability of the union of the complements of events E, F, and G is 0.9631.
Given, the events E, F, and G in a sample space S are defined with their respective probabilities as follows: P(E) = 0.48, P(F) = 0.52, P(G) = 0.52, P(E ∩ F) = 0.32, P(E ∩ G) = 0.29, P(F ∩ G) = 0.26, and P(E ∩ F ∩ G) = 0.2. We need to calculate the probability of the union of their complements.
Let's first calculate the probabilities of the complements of E, F, and G.P(E') = 1 - P(E) = 1 - 0.48 = 0.52P(F') = 1 - P(F) = 1 - 0.52 = 0.48P(G') = 1 - P(G) = 1 - 0.52 = 0.48We know that P(E ∩ F) = 0.32. Hence, using the formula of probability of the union of events, we can find the probability of the intersection of the complements of E and F.P(E' ∩ F') = 1 - P(E ∪ F) = 1 - (P(E) + P(F) - P(E ∩ F))= 1 - (0.48 + 0.52 - 0.32) = 1 - 0.68 = 0.32We also know that P(E ∩ G) = 0.29. Similarly, we can find the probability of the intersection of the complements of E and G.P(E' ∩ G') = 1 - P(E ∪ G) = 1 - (P(E) + P(G) - P(E ∩ G))= 1 - (0.48 + 0.52 - 0.29) = 1 - 0.29 = 0.71We also know that P(F ∩ G) = 0.26.
Similarly, we can find the probability of the intersection of the complements of F and G.P(F' ∩ G') = 1 - P(F ∪ G) = 1 - (P(F) + P(G) - P(F ∩ G))= 1 - (0.52 + 0.52 - 0.26) = 1 - 0.76 = 0.24Now, we can calculate the probability of the union of the complements of E, F, and G as follows: P(E' ∪ F' ∪ G')= P((E' ∩ F' ∩ G')') {De Morgan's law}= 1 - P(E' ∩ F' ∩ G') {complement of a set}= 1 - P(E' ∩ F' ∩ G') {by definition of the intersection of sets}= 1 - P(E' ∩ F') ⋅ P(G') {product rule of probability}= 1 - 0.32 ⋅ 0.48 ⋅ 0.24= 1 - 0.0369= 0.9631.
Let's learn more about union:
https://brainly.com/question/28278437
#SPJ11
Olam Question # 2 Revisit How to attempt? Question : Think a Number Bob and Alice play a game in which Bob gives Alice a challenge to think of any number M between 1 to N. Bob then tells Alice a number X. Alice has to confirm whether X is greater or smaller than number M or equal to number M. This continues till Bob finds the number correctly. Your task is to find the maximum number of attempts Bob needs to guess the number thought of by Alice. Input Specification: input1: N, the upper limit of the number guessed by Alice. (1<=N<=108) Output Specification: Your function should return the maximum number of attempts required to find the number M(1<=M<=N).
In the given question, Bob and Alice play a game in which Bob gives Alice a challenge to think of any number M between 1 to N. Bob then tells Alice a number X. Alice has to confirm whether X is greater or smaller than number M or equal to number M.
This continues till Bob finds the number correctly. The input is given as N, the upper limit of the number guessed by Alice. We have to find the maximum number of attempts Bob needs to guess the number thought of by Alice.So, in order to find the maximum number of attempts required to find the number M(1<=M<=N), we can use binary search approach. The idea is to start with middle number of 1 and N i.e., (N+1)/2. We check whether the number is greater or smaller than the given number.
If the number is smaller, we update the range and set L as mid + 1. If the number is greater, we update the range and set R as mid – 1. We do this until the number is found. We can consider the worst case in which number of attempts required to find the number M is the maximum number of attempts that Bob needs to guess the number thought of by Alice.
The maximum number of attempts Bob needs to guess the number thought of by Alice is log2(N) + 1.Explanation:Binary Search is a technique which is used for searching for an element in a sorted list. We first start with finding the mid-point of the list. If the element is present in the mid-point, we return the index of the mid-point. If the element is smaller than the mid-point, we repeat the search on the lower half of the list.
If the element is greater than the mid-point, we repeat the search on the upper half of the list. We do this until we either find the element or we are left with an empty list. The time complexity of binary search is O(log n), where n is the size of the list.
To know more about confirm visit:
https://brainly.com/question/32246938
#SPJ11
Laney 5 mith Jane eats of ( a^(2))/(3) cup of cereal for breakfast every day. If the box contains a total of 24 cups, how many days will it take to finish the cereal box?
The number of days it will take Laney and Jane to finish the cereal box is (72 / a^2).
Laney and Jane eat (a^2)/3 cups of cereal for breakfast every day. The box contains a total of 24 cups. The question is asking for the number of days that it will take them to finish the cereal box.To find the answer, we will need to calculate how many cups of cereal they eat per day and divide it into the total number of cups in the box. The formula for this is:Number of days = (Total cups in the box) / (Number of cups eaten per day)We are given that they eat (a^2)/3 cups of cereal per day. We also know that the box contains 24 cups of cereal, so:Number of cups eaten per day = (a^2)/3Number of days = 24 / ((a^2)/3)To simplify this expression, we can multiply by the reciprocal of (a^2)/3:Number of days = 24 * (3 / (a^2))Number of days = (72 / a^2)Therefore, the number of days it will take Laney and Jane to finish the cereal box is (72 / a^2).
Learn more about number :
https://brainly.com/question/10547079
#SPJ11
Averie rows a boat downstream for 135 miles. The return trip upstream took 12 hours longer. If the current flows at 2 mph, how fast does Averie row in still water?
Averie's speed in still water = (speed downstream + speed upstream) / 2, and by substituting the known values, we can calculate Averie's speed in still wat
To solve this problem, let's denote Averie's speed in still water as "r" (in mph).
We know that the current flows at a rate of 2 mph.
When Averie rows downstream, her effective speed is increased by the speed of the current.
Therefore, her speed downstream is (r + 2) mph.
The distance traveled downstream is 135 miles.
We can use the formula:
Time = Distance / Speed.
So, the time taken downstream is 135 / (r + 2) hours.
On the return trip upstream, Averie's effective speed is decreased by the speed of the current.
Therefore, her speed upstream is (r - 2) mph.
The distance traveled upstream is also 135 miles.
The time taken upstream is given as 12 hours longer than the downstream time, so we can express it as:
Time upstream = Time downstream + 12
135 / (r - 2) = 135 / (r + 2) + 12
Now, we can solve this equation to find the value of "r," which represents Averie's speed in still water.
Multiplying both sides of the equation by (r - 2)(r + 2), we get:
135(r - 2) = 135(r + 2) + 12(r - 2)(r + 2)
Simplifying and solving the equation will give us the value of "r," which represents Averie's speed in still water.
For similar question on speed.
https://brainly.com/question/29483294
#SPJ8
Calculate the double integral. 6x/(1 + xy) dA, R = [0, 6] x [0, 1]
The value of the double integral ∬R (6x/(1 + xy)) dA over the region
R = [0, 6] × [0, 1] is 6 ln(7).
To calculate the double integral ∬R (6x/(1 + xy)) dA over the region
R = [0, 6] × [0, 1], we can integrate with respect to x and y using the limits of the region.
The integral can be written as:
∬R (6x/(1 + xy)) dA = [tex]\int\limits^1_0\int\limits^6_0[/tex] (6x/(1 + xy)) dx dy
Let's start by integrating with respect to x:
[tex]\int\limits^6_0[/tex](6x/(1 + xy)) dx
To evaluate this integral, we can use a substitution.
Let u = 1 + xy,
du/dx = y.
When x = 0,
u = 1 + 0y = 1.
When x = 6,
u = 1 + 6y
= 1 + 6
= 7.
Using this substitution, the integral becomes:
[tex]\int\limits^7_1[/tex] (6x/(1 + xy)) dx = [tex]\int\limits^7_1[/tex](6/u) du
Integrating, we have:
= 6 ln|7| - 6 ln|1|
= 6 ln(7)
Now, we can integrate with respect to y:
= [tex]\int\limits^1_0[/tex] (6 ln(7)) dy
= 6 ln(7) - 0
= 6 ln(7)
Therefore, the value of the double integral ∬R (6x/(1 + xy)) dA over the region R = [0, 6] × [0, 1] is 6 ln(7).
Learn more about double integral here:
brainly.com/question/15072988
#SPJ4
The value of the double integral [tex]\int\limits^1_0\int\limits^6_0 \frac{6x}{(1 + xy)} dA[/tex], over the given region [0, 6] x [0, 1] is (343/3)ln(7).
Now, for the double integral [tex]\int\limits^1_0\int\limits^6_0 \frac{6x}{(1 + xy)} dA[/tex], use the standard method of integration.
First, find the antiderivative of the function 6x/(1 + xy) with respect to x.
By integrating with respect to x, we get:
∫(6x/(1 + xy)) dx = 3ln(1 + xy) + C₁
where C₁ is the constant of integration.
Now, we apply the definite integral over x, considering the limits of integration [0, 6]:
[tex]\int\limits^6_0 (3 ln (1 + xy) + C_{1} ) dx[/tex]
To proceed further, substitute the limits of integration into the equation:
[3ln(1 + 6y) + C₁] - [3ln(1 + 0y) + C₁]
Since ln(1 + 0y) is equal to ln(1), which is 0, simplify the expression to:
3ln(1 + 6y) + C₁
Now, integrate this expression with respect to y, considering the limits of integration [0, 1]:
[tex]\int\limits^1_0 (3 ln (1 + 6y) + C_{1} ) dy[/tex]
To integrate the function, we use the property of logarithms:
[tex]\int\limits^1_0 ( ln (1 + 6y))^3 + C_{1} ) dy[/tex]
Applying the power rule of integration, this becomes:
[(1/3)(1 + 6y)³ln(1 + 6y) + C₂] evaluated from 0 to 1,
where C₂ is the constant of integration.
Now, we substitute the limits of integration into the equation:
(1/3)(1 + 6(1))³ln(1 + 6(1)) + C₂ - (1/3)(1 + 6(0))³ln(1 + 6(0)) - C₂
Simplifying further:
(343/3)ln(7) + C₂ - C₂
(343/3)ln(7)
So, the value of the double integral [tex]\int\limits^1_0\int\limits^6_0 \frac{6x}{(1 + xy)} dA[/tex], over the given region [0, 6] x [0, 1] is (343/3)ln(7).
To learn more about integration visit :
brainly.com/question/18125359
#SPJ4
The lifetime of a certain brand of electric light bulb is known to have a standard deviation of 52 hours. Suppose that a random sample of 100 bulbs of this brand has a mean lifetime of 489 hours. Find a 90% confidence interval for the true mean lifetime of all light bulbs of this brand. Then give its lower limit and upper limit. Carry your intermediate computations to at least three decimal places. Round your answers to one decimal place.
The 90% confidence interval for the true mean lifetime of all light bulbs of this brand is given as follows:
(480.466 hours, 497.554 hours).
How to obtain the confidence interval?The sample mean, the population standard deviation and the sample size are given as follows:
[tex]\overline{x} = 489, \sigma = 52, n = 100[/tex]
The critical value of the z-distribution for an 90% confidence interval is given as follows:
z = 1.645.
The lower bound of the interval is given as follows:
489 - 1.645 x 52/10 = 480.466 hours.
The upper bound of the interval is given as follows:
489 + 1.645 x 52/10 = 497.554 hours.
More can be learned about the z-distribution at https://brainly.com/question/25890103
#SPJ4
Which function is most likely graphed on the coordinate plane below?
a) f(x) = 3x – 11
b) f(x) = –4x + 12
c) f(x) = 4x + 13
d) f(x) = –5x – 19
Based on the characteristics of the given graph, the function that is most likely graphed is f(x) = -4x + 12. This function has a slope of -4, indicating a decreasing line, and a y-intercept of 12, matching the starting point of the graph.The correct answer is option B.
To determine which function is most likely graphed, we can compare the slope and y-intercept of each function with the given graph.
The slope of a linear function represents the rate of change of the function. It determines whether the graph is increasing or decreasing. In this case, the slope is the coefficient of x in each function.
The y-intercept of a linear function is the value of y when x is equal to 0. It determines where the graph intersects the y-axis.
Looking at the given graph, we can observe that it starts at the point (0, 12) and decreases as x increases.
Let's analyze each option to see if it matches the characteristics of the given graph:
a) f(x) = 3x - 11:
- Slope: 3
- Y-intercept: -11
b) f(x) = -4x + 12:
- Slope: -4
- Y-intercept: 12
c) f(x) = 4x + 13:
- Slope: 4
- Y-intercept: 13
d) f(x) = -5x - 19:
- Slope: -5
- Y-intercept: -19
Comparing the slope and y-intercept of each function with the characteristics of the given graph, we can see that option b) f(x) = -4x + 12 matches the graph. The slope of -4 indicates a decreasing line, and the y-intercept of 12 matches the starting point of the graph.
Therefore, the function most likely graphed on the coordinate plane is f(x) = -4x + 12.
For more such questions function,Click on
https://brainly.com/question/11624077
#SPJ8
Answer:
It's D.
Step-by-step explanation:
Edge 2020;)
simplify the following expression 3 2/5 mulitply 3(-7/5)
Answer:
1/3
Step-by-step explanation:
I assume that 2/5 and -7/5 are exponents.
3^(2/5) × 3^(-7/5) = 3^(2/5 + (-7/5)) = 3^(-5/5) = 3^(-1) = 1/3
Answer: 136/5
Step-by-step explanation: First simplify the fraction
1) 3 2/5 = 17/5
3 multiply by 5 and add 5 into it.
2) 3(-7/5) = 8/5
3 multiply by 5 and add _7 in it.
By multiplication of 2 fractions,
17/5 multiply 8/5 = 136/5
=136/5
To know more about the Fraction visit:
https://brainly.com/question/33620873
According to a company's websife, the top 10% of the candidates who take the entrance test will be called for an interview. The reported mean and standard deviation of the test scores are 63 and 9 , respectively. If test scores are normolly distributed, what is the minimum score required for an interview? (You may find it useful to reference the Z table. Round your final answer to 2 decimal places.)
The minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places). To find the minimum score required for an interview, we need to determine the score that corresponds to the top 10% of the distribution.
Since the test scores are normally distributed, we can use the Z-table to find the Z-score that corresponds to the top 10% of the distribution.
The Z-score represents the number of standard deviations a particular score is away from the mean. In this case, we want to find the Z-score that corresponds to the cumulative probability of 0.90 (since we are interested in the top 10%).
Using the Z-table, we find that the Z-score corresponding to a cumulative probability of 0.90 is approximately 1.28.
Once we have the Z-score, we can use the formula:
Z = (X - μ) / σ
where X is the test score, μ is the mean, and σ is the standard deviation.
Rearranging the formula, we can solve for X:
X = Z * σ + μ
Substituting the values, we have:
X = 1.28 * 9 + 63
Calculating this expression, we find:
X ≈ 74.52
Therefore, the minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places).
Learn more about cumulative probability here:
https://brainly.com/question/31714928
#SPJ11
Find the distance from the point (5,0,0) to the line
x=5+t, y=2t , z=12√5 +2t
The distance from the point (5,0,0) to the line x=5+t, y=2t, z=12√5 +2t is √55.
To find the distance between a point and a line in three-dimensional space, we can use the formula for the distance between a point and a line.
Given the point P(5,0,0) and the line L defined by the parametric equations x=5+t, y=2t, z=12√5 +2t.
We can calculate the distance by finding the perpendicular distance from the point P to the line L.
The vector representing the direction of the line L is d = <1, 2, 2>.
Let Q be the point on the line L closest to the point P. The vector from P to Q is given by PQ = <5+t-5, 2t-0, 12√5 +2t-0> = <t, 2t, 12√5 +2t>.
To find the distance between P and the line L, we need to find the length of the projection of PQ onto the direction vector d.
The projection of PQ onto d is given by (PQ · d) / |d|.
(PQ · d) = <t, 2t, 12√5 +2t> · <1, 2, 2> = t + 4t + 4(12√5 + 2t) = 25t + 48√5
|d| = |<1, 2, 2>| = √(1^2 + 2^2 + 2^2) = √9 = 3
Thus, the distance between P and the line L is |(PQ · d) / |d|| = |(25t + 48√5) / 3|
To find the minimum distance, we minimize the expression |(25t + 48√5) / 3|. This occurs when the numerator is minimized, which happens when t = -48√5 / 25.
Substituting this value of t back into the expression, we get |(25(-48√5 / 25) + 48√5) / 3| = |(-48√5 + 48√5) / 3| = |0 / 3| = 0.
Therefore, the minimum distance between the point (5,0,0) and the line x=5+t, y=2t, z=12√5 +2t is 0. This means that the point (5,0,0) lies on the line L.
Learn more about parametric equations here:
brainly.com/question/29275326
#SPJ11
Classification using Nearest Neighbour and Bayes theorem As output from an imaging system we get a measurement that depends on what we are seeing. For three different classes of objects we get the following measurements. Class 1 : 0.4003,0.3985,0.3998,0.3997,0.4015,0.3995,0.3991 Class 2: 0.2554,0.3139,0.2627,0.3802,0.3247,0.3360,0.2974 Class 3: 0.5632,0.7687,0.0524,0.7586,0.4443,0.5505,0.6469 3.1 Nearest Neighbours Use nearest neighbour classification. Assume that the first four measurements in each class are used for training and the last three for testing. How many measurements will be correctly classified?
Nearest Neighbor (NN) technique is a straightforward and robust classification algorithm that requires no training data and is useful for determining which class a new sample belongs to.
The classification rule of this algorithm is to assign the class label of the nearest training instance to a new observation, which is determined by the Euclidean distance between the new point and the training samples.To determine how many measurements will be correctly classified, let's go step by step:Let's use the first four measurements in each class for training, and the last three measurements for testing.```
Class 1: train = (0.4003,0.3985,0.3998,0.3997) test = (0.4015,0.3995,0.3991)
Class 2: train = (0.2554,0.3139,0.2627,0.3802) test = (0.3247,0.3360,0.2974)
Class 3: train = (0.5632,0.7687,0.0524,0.7586) test = (0.4443,0.5505,0.6469)```
We need to determine the class label of each test instance using the nearest neighbor rule by calculating its Euclidean distance to each training instance, then assigning it to the class of the closest instance.To do so, we need to calculate the distances between the test instances and each training instance:```
Class 1:
0.4015: 0.0028, 0.0020, 0.0017, 0.0018
0.3995: 0.0008, 0.0010, 0.0004, 0.0003
0.3991: 0.0004, 0.0006, 0.0007, 0.0006
Class 2:
0.3247: 0.0694, 0.0110, 0.0620, 0.0555
0.3360: 0.0477, 0.0238, 0.0733, 0.0442
0.2974: 0.0680, 0.0485, 0.0353, 0.0776
Class 3:
0.4443: 0.1191, 0.3246, 0.3919, 0.3137
0.5505: 0.2189, 0.3122, 0.4981, 0.2021
0.6469: 0.0837, 0.1222, 0.5945, 0.1083```We can see that the nearest training instance for each test instance belongs to the same class:```
Class 1: 3 correct
Class 2: 3 correct
Class 3: 3 correct```Therefore, we have correctly classified all test instances, and the accuracy is 100%.
To know more about Euclidean visit:
https://brainly.com/question/31120908
#SPJ11
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean :
:
(a) µ = 12, σ = 5, n = 28 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(b) µ = 539, σ = .4, n = 96 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(c) µ = 7, σ = 1.0, n = 7 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(d) µ = 118, σ = 4, n = 1,530 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
Mean, µx = µ = 118, Variance, σ2x = σ2/n = 4^2/1530 = 0.0001044 and Standard Deviation, σx = σ/√n = 4/√1530 = 0.1038
Sampling Distribution of the Sample Mean:
Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ.
The sampling distribution of the sample mean is a probability distribution of all possible sample means.
Statistics for each question:
(a) µ = 12, σ = 5, n = 28
(b) µ = 539, σ = .4, n = 96
(c) µ = 7, σ = 1.0, n = 7
(d) µ = 118, σ = 4, n = 1,530
(a) Mean, µx = µ = 12, Variance, σ2x = σ2/n = 5^2/28 = 0.8929 and Standard Deviation, σx = σ/√n = 5/√28 = 0.9439
(b) Mean, µx = µ = 539, Variance, σ2x = σ2/n = 0.4^2/96 = 0.0001667 and Standard Deviation, σx = σ/√n = 0.4/√96 = 0.0408
(c) Mean, µx = µ = 7, Variance, σ2x = σ2/n = 1^2/7 = 0.1429 and Standard Deviation, σx = σ/√n = 1/√7 = 0.3770
(d) Mean, µx = µ = 118, Variance, σ2x = σ2/n = 4^2/1530 = 0.0001044 and Standard Deviation, σx = σ/√n = 4/√1530 = 0.1038
Learn more about Sampling Distribution visit:
brainly.com/question/31465269
#SPJ11
Find the r.m.s. value of the voltage spike defined by the function v=e'√sint dt between t=0 and t =π.
The r.m.s. value of the voltage spike defined by the function v = e^(√sin(t)) dt between t = 0 and t = π can be determined by evaluating the integral and taking the square root of the mean square value.
To find the r.m.s. value, we first need to calculate the mean square value. This involves squaring the function, integrating it over the given interval, and dividing by the length of the interval. In this case, the interval is from t = 0 to t = π.
Let's calculate the mean square value:
v^2 = (e^(√sin(t)))^2 dt
v^2 = e^(2√sin(t)) dt
To integrate this expression, we can use appropriate integration techniques or software tools. The integral will yield a numerical value.
Once we have the mean square value, we take the square root to find the r.m.s. value:
r.m.s. value = √(mean square value)
Note that the given function v = e^(√sin(t)) represents the instantaneous voltage at any given time t within the interval [0, π]. The r.m.s. value represents the effective or equivalent voltage magnitude over the entire interval.
The r.m.s. value is an important measure in electrical engineering as it provides a way to compare the magnitude of alternating current or voltage signals with a constant or direct current or voltage. It helps in quantifying the power or energy associated with such signals.
Learn more about mean square value here:
brainly.com/question/13668239
#SPJ11
A race car driver must average 270k(m)/(h)r for 5 laps to qualify for a race. Because of engine trouble, the car averages only 220k(m)/(h)r over the first 3 laps. What minimum average speed must be ma
The race car driver must maintain a minimum average speed of 330 km/h for the remaining 2 laps to qualify for the race.
To find the minimum average speed needed for the remaining 2 laps, we need to determine the total distance covered in the first 3 laps and the remaining distance to be covered in the next 2 laps.
Given:
Average speed for the first 3 laps = 220 km/h
Total number of laps = 5
Target average speed for 5 laps = 270 km/h
Let's calculate the distance covered in the first 3 laps:
Distance = Average speed × Time
Distance = 220 km/h × 3 h = 660 km
Now, we can calculate the remaining distance to be covered:
Total distance for 5 laps = Target average speed × Time
Total distance for 5 laps = 270 km/h × 5 h = 1350 km
Remaining distance = Total distance for 5 laps - Distance covered in the first 3 laps
Remaining distance = 1350 km - 660 km = 690 km
To find the minimum average speed for the remaining 2 laps, we divide the remaining distance by the time:
Minimum average speed = Remaining distance / Time
Minimum average speed = 690 km / 2 h = 345 km/h
The race car driver must maintain a minimum average speed of 330 km/h for the remaining 2 laps to qualify for the race.
To know more about speed follow the link:
https://brainly.com/question/11260631
#SPJ11
2. (14 points) Find a function F(n) with the property that the graph of y- F(x) is the
result of applying the following transformations to the graph of
v=1²+2r. First, stretch the graph horizontally by a factor of 4, then shift the resulting graph 7 units down and 3 units to the left. Leave your answer unsimplified. You don't have to sketch the graph,
Given that, the graph of y - F(x) is the result of applying the following transformations to the graph of v = 1² + 2r.Therefore, the function F(n) can be determined by applying the inverse of these transformations.
The correct option is (C)
The graph of v = 1² + 2r is a parabola.
To stretch it horizontally by a factor of 4, replace r with r/4: v = 1² + 2r/4²
or v = 1 + r/8.
Now, shifting the graph down by 7 units means replacing v with (v - 7): v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, shifting the graph 3 units to the left means replacing r with (r + 3): v = (r + 3)/8 + 8
or v = (r + 24)/8.
The function F(n) is given by F(n) = (n + 24)/8.
We know that the graph of v = 1² + 2r is a parabola. Then the transformations of the graph are as follows: To stretch the graph horizontally by a factor of 4, we replace r with r/4: v = 1² + 2r/4²
or v = 1 + r/8.
Now, shift the resulting graph 7 units down by replacing v with (v - 7): v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, shift the resulting graph 3 units to the left by replacing r with (r + 3): v = (r + 3)/8 + 8
or v = (r + 24)/8.
Thus, the function F(n) is given by F(n) = (n + 24)/8. To determine the function F(n) with the given graph, we need to apply the inverse transformations of the graph. First, we stretch the graph horizontally by a factor of 4. This can be done by replacing r with r/4, which gives v = 1² + 2r/4²
or v = 1 + r/8.
Next, we shift the resulting graph down 7 units by replacing v with (v - 7), which gives v - 7 = 1 + r/8
or v = r/8 + 8.
Finally, we shift the resulting graph 3 units to the left by replacing r with (r + 3), which gives v = (r + 3)/8 + 8
or v = (r + 24)/8.
Therefore, the function F(n) is given by F(n) = (n + 24)/8.
To know more about graph visit:
https://brainly.com/question/17267403
#SPJ11
The Brady family received 27 pieces of mail on December 25 . The mail consisted of letters, magazines, bills, and ads. How many letters did they receive if they received three more magazines than bill
The Brady family received 12 letters on December 25th.
They received 9 magazines.
They received 3 bills.
They received 3 ads.
To solve this problem, we can use algebra. Let x be the number of bills the Brady family received. We know that they received three more magazines than bills, so the number of magazines they received is x + 3.
We also know that they received a total of 27 pieces of mail, so we can set up an equation:
x + (x + 3) + 12 + 3 = 27
Simplifying this equation, we get:
2x + 18 = 27
Subtracting 18 from both sides, we get:
2x = 9
Dividing by 2, we get:
x = 3
So the Brady family received 3 bills. Using x + 3, we know that they received 3 + 3 = 6 magazines. We also know that they received 12 letters and 3 ads. Therefore, the Brady family received 12 letters on December 25th.
Know more about algebra here:
https://brainly.com/question/953809
#SPJ11
consider the standard brownian motion subject to constraint i.e., a process obtained from brownian motion by conditioning the brownian motion to hit b at time t. this results in a continuous path from (0,0) to (t,b)
Given that W(t) is a standard Brownian motion. The probability P(1 < W(1) < 2) is 0.136.
A Gaussian random process (W(t), t ∈[0,∞)) is said be a standard brownian motion if
1)W(0) = 0
2) W(t) has independent increments.
3) W(t) has continuous sample paths.
4) W([tex]t_2[/tex]) -W([tex]t_1[/tex]) ~ N(0, [tex]t_2-t_1[/tex])
Given, W([tex]t_2[/tex]) -W([tex]t_1[/tex]) ~ N(0, [tex]t_2-t_1[/tex])
[tex]W(1) -W(0) \ follows \ N(0, 1-0) = N(0,1)[/tex]
Since, W(0) = 0
W(1) ~ N(0,1)
The probability P(1 < W(1) < 2) :
= P(1 < W(1) < 2)
= P(W(1) < 2) - P(W(1) < 1)
= Ф(2) - Ф(1)
(this is the symbol for cumulative distribution of normal distribution)
Using standard normal table,
= 0.977 - 0.841 = 0.136
Learn more about standard brownian motion here
https://brainly.com/question/28441932
#SPJ4
The complete question is given below:
Let W(t) be a standard Brownian motion. Find P(1 < W(1) < 2).
Polk Community College wants to construct a rectangular parking lot on land bordered on one side by a highway. It has 280ft of fencing that is to be used to fence off the other three sides. What is th
The x-value of the vertex is 70 in the quadratic function representing the maximum area of the rectangular parking lot.
Polk Community College wants to construct a rectangular parking lot on land bordered on one side by a highway. It has 280ft of fencing that is to be used to fence off the other three sides. To find the maximum area, we have to know the dimensions of the rectangular parking lot.
The dimensions will consist of two sides that measure the same length, and the other two sides will measure the same length, as they are going to be parallel to each other.
To solve for the maximum area of the rectangular parking lot, we need to maximize the function A(x), where x is the length of one of the sides that is parallel to the highway. Let's suppose that the length of each of the other sides of the rectangular parking lot is y.
Then the perimeter is 280, or:2x + y = 280 ⇒ y = 280 − 2x. Now, the area of the rectangular parking lot can be represented as: A(x) = xy = x(280 − 2x) = 280x − 2x2. We need to find the vertex of this function, which is at x = − b/2a = −280/(−4) = 70. Now, the x-value of the vertex is 70.
Therefore, the x-value of the vertex is 70. Hence, the answer is 70.
For more questions on quadratic function
https://brainly.com/question/31327959
#SPJ8
The correct question would be as
Polk Community College wants to construct a rectangular parking lot on land bordered on one side by a highway. It has 280ft of fencing that is to be used to fence off the other three sides. What is the x-value of the vertex?
‘The novel ‘To Kill a Mockingbird’ still resonates with the
audience.’ Discuss with reference to the recurring symbol of the
mockingbird and provide current day examples to justify
your opinio
The novel ‘To Kill a Mockingbird’ still resonates with the audience. It is a novel set in the American Deep South that deals with the issues of race and class in society during the 1930s.
The novel was written by Harper Lee and was published in 1960. The book is still relevant today because it highlights issues that are still prevalent in society, such as discrimination and prejudice. The recurring symbol of the mockingbird is an important motif in the novel, and it is used to illustrate the theme of innocence being destroyed. The mockingbird is a symbol of innocence because it is a bird that only sings and does not harm anyone. Similarly, there are many innocent people in society who are hurt by the actions of others, and this is what the mockingbird represents. The novel shows how the innocent are often destroyed by those in power, and this is a theme that is still relevant today. For example, the Black Lives Matter movement is a current-day example of how people are still being discriminated against because of their race. This movement is focused on highlighting the injustices that are still prevalent in society, and it is a clear example of how the novel is still relevant today. The mockingbird is also used to illustrate how innocence is destroyed, and this is something that is still happening in society. For example, the #MeToo movement is a current-day example of how women are still being victimized and their innocence is being destroyed. This movement is focused on highlighting the harassment and abuse that women face in society, and it is a clear example of how the novel is still relevant today. In conclusion, the novel ‘To Kill a Mockingbird’ is still relevant today because it highlights issues that are still prevalent in society, such as discrimination and prejudice. The recurring symbol of the mockingbird is an important motif in the novel, and it is used to illustrate the theme of innocence being destroyed. There are many current-day examples that justify this opinion, such as the Black Lives Matter movement and the #MeToo movement.
Learn more about discrimination:https://brainly.com/question/1084594
#SPJ11
The average number of misprints per page in a magazine is whixch follows a Poisson's Probability distribution. What is the probability that the number of misprints on a particular page of that magazine is 2?
The probability that a particular book is free from misprints is 0.2231. option D is correct.
The average number of misprints per page (λ) is given as 1.5.
The probability of having no misprints (k = 0) can be calculated using the Poisson probability mass function:
[tex]P(X = 0) = (e^{-\lambda}\times \lambda^k) / k![/tex]
Substituting the values:
P(X = 0) = [tex](e^{-1.5} \times 1.5^0) / 0![/tex]
Since 0! (zero factorial) is equal to 1, we have:
P(X = 0) = [tex]e^{-1.5}[/tex]
Calculating this value, we find:
P(X = 0) = 0.2231
Therefore, the probability that a particular book is free from misprints is approximately 0.2231.
To learn more on probability click:
https://brainly.com/question/11234923
#SPJ4
Question 13: The average number of misprints per page of a book is 1.5.Assuming the distribution of number of misprints to be Poisson. The probability that a particular book is free from misprints,is B. 0.435 D. 0.2231 A. 0.329 C. 0.549
Producers of a certain brand of refrigerator will make 1000 refrigerators available when the unit price is $ 410 . At a unit price of $ 450,5000 refrigerators will be marketed. Find the e
The following is the given data for the brand of refrigerator.
Let "x" be the unit price of the refrigerator in dollars, and "y" be the number of refrigerators produced.
Suppose that the producers of a certain brand of the refrigerator make 1000 refrigerators available when the unit price is $410.
This implies that:
y = 1000x = 410
When the unit price of the refrigerator is $450, 5000 refrigerators will be marketed.
This implies that:
y = 5000x = 450
To find the equation of the line that represents the relationship between price and quantity, we need to solve the system of equations for x and y:
1000x = 410
5000x = 450
We can solve the first equation for x as follows:
x = 410/1000 = 0.41
For the second equation, we can solve for x as follows:
x = 450/5000 = 0.09
The slope of the line that represents the relationship between price and quantity is given by:
m = (y2 - y1)/(x2 - x1)
Where (x1, y1) = (0.41, 1000) and (x2, y2) = (0.09, 5000)
m = (5000 - 1000)/(0.09 - 0.41) = -10000
Therefore, the equation of the line that represents the relationship between price and quantity is:
y - y1 = m(x - x1)
Substituting m, x1, and y1 into the equation, we get:
y - 1000 = -10000(x - 0.41)
Simplifying the equation:
y - 1000 = -10000x + 4100
y = -10000x + 5100
This is the equation of the line that represents the relationship between price and quantity.
to find the equation of the line:
https://brainly.com/question/33645095
#SPJ11
tanning parlor located in a major located in a major shopping center near a large new england city has the following history of customers over the last four years (data are in hundreds of customers) year feb may aug nov yearly totals 2012 3.5 2.9 2.0 3.2 11.6 2013 4.1 3.4 2.9 3.6 14 2014 5.2 4.5 3.1 4.5 17.3 2015 6.1 5.0 4.4 6.0 21.5
The Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.
Time series forecasting differs from supervised learning in their goal. One of the main variables in forecasting is the history of the very metric we are trying to predict. Supervised learning on the other hand usually seeks to predict using primarily exogenous variables.
A and B. The table is shown below with attached python code at the very end. To get this values simply use stats model as they have all the functions needed. Seasonal index is also in the table.
C and D: To forecast either of these, we will use tbats with a frequency of 4 which has proven to be better than an auto arima on average. Again code, is attached at end. Forecasts are below. It seems tabs though a naïve forecast was best for the cycle factor.
Cycle Factor Forecast: 0.13,0.13,0.13,0.13
Overall Forecast: 6.3,5.4,4.9,6.3
E:0.324
Again I simply created a function in python to calculate the RMSE of any two time series.
F.
CODE:
import pandas as pd
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np
import matplotlib.pyplot as plt
data=3.5,2.9,2.0,3.2,4.1,3.4,2.9,2.6,5.2,4.5,3.1,4.5,6.1,5,4.4,6,6.8,5.1,4.7,6.5
df=pd.DataFrame()
df"actual"=data
df.index=pd.date_range(start='1/1/2004', periods=20, freq='3M')
df"mv_avg"=df"actual".rolling(4).mean()
df"trend"=seasonal_decompose(df"actual",two_sided=False).trend
df"seasonal"=seasonal_decompose(df"actual",two_sided=False).seasonal
df"cycle"=seasonal_decompose(df"actual",two_sided=False).resid
def rmse(predictions, targets):
return np.sqrt(((predictions - targets) ** 2).mean())
rmse_values=rmse(np.array(6.3,5.4,4.9,6.3),np.array(6.8,5.1,4.7,6.5))
plt.style.use("bmh")
plot_df=df.ilocNo InterWiki reference defined in properties for Wiki called ""!
plt.plot(plot_df.index,plot_df"actual")
plt.plot(plot_df.index,plot_df"mv_avg")
plt.plot(plot_df.index,plot_df"trend")
plt.plot(df.ilocNo InterWiki reference defined in properties for Wiki called "-4"!.index,6.3,5.4,4.9,6.3)
plt.legend("actual","mv_avg","trend","predictions")
Therefore, the Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.
Learn more about the Cycle Factor Forecast here:
https://brainly.com/question/32348366.
#SPJ4
"Your question is incomplete, probably the complete question/missing part is:"
A tanning parlor located in a major shopping center near a large New England city has the following history of customers over the last four years (data are in hundreds of customers):
a. Construct a table in which you show the actual data (given in the table), the centered moving average, the centered moving-average trend, the seasonal factors, and the cycle factors for every quarter for which they can be calculated in years 1 through 4.
b. Determine the seasonal index for each quarter.
c. Project the cycle factor through 2008.
d. Make a forecast for each quarter of 2008.
e. The actual numbers of customers served per quarter in 2008 were 6.8, 5.1, 4.7 and 6.5 for quarters 1 through 4, respectively (numbers are in hundreds). Calculate the RMSE for 2008.
f. Prepare a time-series plot of the actual data, the centered moving averages, the long-term trend, and the values predicted by your model for 2004 through 2008 (where data are available).
2. A store is having a 12-hour sale. The rate at which shoppers enter the store, measured in shoppers per hour, is [tex]S(t)=2 t^3-48 t^2+288 t[/tex] for [tex]0 \leq t \leq 12[/tex]. The rate at which shoppers leave the store, measured in shoppers per hour, is [tex]L(t)=-80+\frac{4400}{t^2-14 t+55}[/tex] for [tex]0 \leq t \leq 12[/tex]. At [tex]t=0[/tex], when the sale begins, there are 10 shoppers in the store.
a) How many shoppers entered the store during the first six hours of the sale?
The number of customers entered the store during the first six hours is 432 .
Given,
S(t) = 2t³ - 48t² + 288t
0≤ t≤ 12
L(t) = -80 + 4400/t² -14t + 55
0≤ t≤ 12
Now,
Shoppers entered in the store during first six hours.
Time variable is 6.
Thus substitute t = 6 ,
S(t) = 2t³ - 48t² + 288t
S(6) = 2(6)³ - 48(6)² + 288(6)
Simplifying further by cubing and squaring the terms ,
S(6) = 216*2 - 48 * 36 +1728
S(6) = 432 - 1728 + 1728
S(6) = 432.
Know more about rate,
https://brainly.com/question/29334875
#SPJ4