Answer:
20000 kg
Step-by-step explanation:
Recall that 1 kg = 2.2 lb approximately. Then:
22 tons 1 kg 2000 lb
------------ * ------------ * -------------- = 20000 kg
1 2.2 lb 1 ton
If each interior angle of a regular polygon measures 160°, how many sides does it have?
Answer:
18
Step-by-step explanation:
Each exterior angle is the supplement of the adjacent interior angle, so is ...
180° -160° = 20°
The total of all n of these exterior angles is 360°, so we have ...
n(20°) = 360°
n = 18 . . . . . . . . . divide by 20°
The polygon is an 18-gon. It has 18 sides.
Answer:
18 Sides
Step-by-step explanation:
Each interior angle = 160°
Each exterior angle = 180° - 160° = 20°
The sum of the exterior angles = 360°
Hence the number of exterior angles =360°/20°
= 18
The polygon has 18 sides (since it has 18 exterior angles).
Hope this helps.
Please mark me as Brainliest.
Find the derivative of the function f(x) = (x3 - 2x + 1)(x – 3) using the product rule.
then by distributing and make sure they are the same answer
Answer:
Step-by-step explanation:
Hello, first, let's use the product rule.
Derivative of uv is u'v + u v', so it gives:
[tex]f(x)=(x^3-2x+1)(x-3)=u(x) \cdot v(x)\\\\f'(x)=u'(x)v(x)+u(x)v'(x)\\\\ \text{ **** } u(x)=x^3-2x+1 \ \ \ so \ \ \ u'(x)=3x^2-2\\\\\text{ **** } v(x)=x-3 \ \ \ so \ \ \ v'(x)=1\\\\f'(x)=(3x^2-2)(x-3)+(x^3-2x+1)(1)\\\\f'(x)=3x^3-9x^2-2x+6 + x^3-2x+1\\\\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Now, we distribute the expression of f(x) and find the derivative afterwards.
[tex]f(x)=(x^3-2x+1)(x-3)\\\\=x^4-2x^2+x-3x^3+6x-4\\\\=x^4-3x^3-2x^2+7x-4 \ \ \ so\\ \\\boxed{f'(x)=4x^3-9x^2-4x+7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Which transformation was applied to Figure 1 in order to arrive at Figure 2? Geometry A
Answer:
(B) Reflection in the x-axis
Step-by-step explanation:
We can see that these triangles have the exact same x-coordinates, however their y coordinates are opposite each other. This means that if we wanted to get one of the triangles to the other, we’d have to reflect over the x-axis
(by default, if the x values are the same and y are opposite, reflect across x axis. If y values are the same and x is opposite, reflect over y. it’s sort of like opposites.)
Hope this helped!
Can anyone help me?
Answer:
y is not a function of x
Step-by-step explanation:
This fails the vertical line test. This means that not all inputs have exactly one output. This makes this not a function.
Emily made a pot cream of pumpkin soup for thanksgiving dinner she put 5 cups of cream in the soup she poured the soup into 24 small bowl show much cream measured in oz is used for each small bowl of soup?
Answer:
each bowl can contain 5/3 oz. of soup.
Step-by-step explanation:
1 cup = 8 oz.
8 oz.
5 cups x -------------- = 40 oz.
1 cup
to get the measurement of each bowl,
40 oz. divided into 24 bowls.
therefore, each bowl can contain 5/3 oz. of soup.
the sum of (a-b)^2 and (a+b)^2
Answer:
sum is 2(a² + b²)
Step-by-step explanation:
[tex] {(a - b)}^{2} + {(a + b)}^{2} \\ = ( {a}^{2} - 2ab + {b}^{2} ) + ( {a}^{2} + 2ab + {b}^{2} ) \\ = 2 {a}^{2} + 2 {b}^{2} \\ = 2( {a}^{2} + {b}^{2} )[/tex]
Find the measure of each angle in Triangle ABC
Answer:
m<A = 133 degrees
m<B = 17 degrees
m<C = 30 degrees
Step-by-step explanation:
In a triangle, all the angles add up to 180 degrees.
So, adding all the angles gets us,
39x + 24
This equals 180 degrees so,
39x + 24 = 180
Subtract 24 from both sides,
39x + 24 - 24 = 180 - 24
39x = 156
Divide both sides by 39
x = 4
Now we have x = 4, we use this to plug in each equation of the angles.
m<A = 40(4) - 27 = 160 - 27 = 133
m<B = 25 - 2(4) = 25 - 8 = 17
m<C = 26 + 4 = 30
6(x + 2) = 30Solve the following linear equation
Answer:
[tex]\huge \boxed{x=3}[/tex]
Step-by-step explanation:
[tex]6(x+2)=30[/tex]
[tex]\sf Divide \ both \ sides \ by \ 6.[/tex]
[tex]x+2=5[/tex]
[tex]\sf Subtract \ 2 \ from \ both \ sides.[/tex]
[tex]x=3[/tex]
Answer:
3
Step-by-step explanation:
30 = 6(x+2)
30/6 = 5
5 = x+2
5-2 = 3
3=x
This is a pretty simple question and I tried to make it as simple as possible when explaining it.
Use the model to show to help find the sum 0.34 plus 0.49
Answer/Step-by-step explanation:
The idea to use in solving this problem using the model, is to express the number of shaded boxes in fraction form.
Thus, the blue red shaded boxes has 34 boxes shaded out of 100 boxes. This represents [tex] \frac{34}{100} [/tex]. This will give us 0.34.
The other shaded boxes represents [tex] \frac{49}{100} = 0.49 [/tex].
Using the model, we can solve 0.34 + 0.49.
Add both fractions together.
[tex] \frac{34}{100} + \frac{49}{100} = \frac{34+49}{100} [/tex]
[tex] \frac{83}{100} = 0.83 [/tex]
Suppose a professional baseball player hit 55 home runs his first season, 58 his second,
and 69 his third. How many home runs would he need to hit in the current season so that
his average for the 4 years is no less than 59?
Answer:
About 54
Step-by-step explanation:
To work backwards from average, you need to multiply the average by the total number of cases, which is 4, since there are 3 current cases/seasons and you want the 4th.
59 * 4 = 236
You then subtract the total home runs that you know of from 236.
236 - 55 - 58 - 69 = 54
To find average, you are adding to the total and then dividing by the number of groups, which is essentially mean (mean is basically the average).
Please help look at the question in image
Answer:
In part 1, the value for D is given. Putting D as 1 gives us the answer 17/20
In part 2, the value of E is given as 1, putting E as 1 gives us D = 20/17
Can someone help me with this
Answer:
Step-by-step explanation:
If two triangles have two congruent sides and a congruent non included angle, then triangles are not necessarilly congruent.
How many times does 1/4 go into 3/8
Answer:
3/2
Step-by-step explanation:
3/8 ÷ 1/4
Copy dot flip
3/8 * 4/1
12/8
Divide top and bottom by 4
3/2
In rectangle ABCD, point E lies half way between sides AB and CD and halfway between sides AD and BC. If AB=10 and BC=2, what is the area of the shaded region? Answer as a decimal, if necessary. Little confused on this one.
Answer:
10 units²
Step-by-step explanation:
Consider the unshaded region to consists of 2 triangles, ∆AED and ∆BEC, which are both of equal dimensions. Their bases and heights are both the same. Both triangles are embedded inside a rectangle ABCD.
Area of the shaded region = Area of rectangle - area of the 2 triangles.
Area of rectangle = l*w
l = 10
w = 2
[tex] Area_R = 10*2 = 20 units^2 [/tex]
Area of the 2 triangles = 2(½*b*h)
b = 2
h = 5
[tex]Area_T = 2(\frac{1}{2}*2*5)[/tex]
[tex] Area_T = 1*2*5 = 10 units^2 [/tex]
Area of shaded region = 20 - 10 = 10 units²
Write an explicit formula for the sequence.
-4,7,-10,13,-16
Step-by-step explanation:
Sequence is
4
,
7
,
10
,
13
,
16
,
.
.
.
a
1
=
4
,
a
2
=
7
,
a
3
=
10
,
.
.
.
If it is Arithmetic sequence,
a
2
−
a
1
=
a
3
−
a
2
=
a
4
−
a
3
& so on
In the given sum,
a
2
−
a
1
=
7
−
4
=
3
a
3
−
a
2
=
10
−
7
=
3
a
4
−
a
3
=
13
−
10
=
3
Since the difference between the successive terms is same and
hence
common difference
d
=
3
True or false? "In any sample data set, the sum of all the values is equal to the product of the mean and the sample size."
Answer:
TRUEStep-by-step explanation:
One of the method of analysing the distribution of a dataset is by finding the mean of the dataset which is part of the measure of central of tendency.
Mean of a dataset is also known as the average and it is the ratio of the sum of the individual dataset to the sample size.
Mathematically xbar = ΣXi/N where
ΣXi is the sum of the individual dataset
N is the sample size
xbar is the mean
From the formula, ΣXi = xbar * N
This means that the sum of the individual dataset (all values in the dataset) is equal to the product of the mean (xbar) and the sample size(N).
Hence the statement that In any sample data set, the sum of all the values is equal to the product of the mean and the sample size."is TRUE
7. Suppose that y varies inversely with x. Write an equation for the inverse variation,
y = 4 when x = 6
A
у
x =
2
B
х
y =
24
с
24
y =
OD y = 2x
Answer:
The answer is
[tex]y = \frac{24}{x} [/tex]Step-by-step explanation:
The statement
y varies inversely with x is written as
[tex]y = \frac{k}{x} [/tex]
where k is the constant of proportionality
To find k substitute the values of x and y into the equation
From the question
y = 4
x = 6
We have
[tex]4 = \frac{k}{6} [/tex]
Cross multiply
k = 4 × 6
k = 24
So the formula for the variation is
[tex]y = \frac{24}{x} [/tex]Hope this helps you
Answer: 5
Step-by-step explanation:
A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on
3 separate days? Also find its Standard Deviation
Answer:
a. 0.06166
b. 0.9447
Step-by-step explanation:
15 percent is the probability it will rain on any given day. P = 0.15
lets define x as the number of days it will rain in one week.
this solution will follow a binomial distribution.
p(X=x) = nCxP^x(1-p)^x
n = 7
x = 3
1-p = 0.85
p =0.15
inserting these values into the formula
p(X=3)=7C3(0.15)^3(0.85)^4
= 7!/4!3! × 0.003375 × 0.5220
= 35 × 0.003375 × 0.5220
= 0.06166
sd = √np(1-p)
= √7 × 0.15(0.85)
= 0.9447
What is the area of the region bounded by the three lines with equations $2x+y = 8$, $2x-5y = 20$ and $x+y = 10$?
Answer:
42
Step-by-step explanation:
A graphing tool is useful for finding the points of intersection of these lines. If the equations are numbered 1, 2, 3 in the order given, we can find the points of intersection to be ...
equations 1, 2: A(5, -2)
equations 2, 3: B(10, 0)
equations (3, 1): C(-2, 12)
Then the area can be found from the coordinates using the formula ...
A = (1/2)|x1(y2-y3) +x2(y3-y1) +x3(y1-y2)|
= (1/2)|5(0-12) +10(12-(-2)) -2(-2-0))| = (1/2)|-60 +140 +4|
A = 42
The area of the triangular region is 42 square units.
15+9=? (5+3) What number is missing from the expression?
Answer:
[tex] \boxed{ \boxed{ \bold{ \mathsf{3}}}}[/tex]Step-by-step explanation:
Let the missing number be 'x'
⇒[tex] \mathsf{15 + 9 = x(5 + 3)}[/tex]
Distribute x through the parentheses
⇒[tex] \mathsf{15 + 9 = 5x + 3x}[/tex]
Swap the sides of the equation
⇒[tex] \mathsf{5x + 3x = 15 + 9}[/tex]
Add the numbers
⇒[tex] \mathsf{5x + 3x = 24}[/tex]
Collect like terms
⇒[tex] \mathsf{8x = 24}[/tex]
Divide both sides of the equation by 8
⇒[tex] \mathsf{ \frac{8x}{8} = \frac{24}{8} }[/tex]
Calculate
⇒[tex] \mathsf{x = 3}[/tex]
Hope I helped!
Best regards!
in the similarity transformation of ABC to DEF ABC was dilated by a scale factor of ? reflected across the ? and moved through the translation ?
Answer:
Does the answer help you?
Which of the following is the correct equation for the distance formula for the points (x1, y1) and (x2,y2)?
A. D=sqrt (x2-x1)^2+(y2-y1)^2
B. D=sqrt (x2-y2)^2+(y1-x1)^2
C. D=sqrt -(y2-y1)^2+(x2-x1)^2
D. D=sqrt (x1-x2)^2+(y2-y1)^2
Answer:
A. D=sqrt( (x2-x1)^2+(y2-y1)^2 )
Step-by-step explanation:
The distance between two points is the root of the sum of the squares of the differences in their corresponding coordinates. The equation of choice A is the usual formulation.
__
Comment on answer choices
Because the square of a number is the same as the square of its opposite, the formula in choice D is also correct.
Ana drinks chocolate milk out of glasses that each holds 1/8 fraction of a liter. She has 7/10 fraction of a liter of chocolate milk in her refrigerator. How many glasses of chocolate milk can she pour?
Answer:
6 glasses
I hope this helps!
Answer:
28/5
Step-by-step explanation:
looked up on khan
what is the formula for lineal equetion
Answer:
y=mx+c
Step-by-step explanation:
A linear equation means the equation of straight line.
The formula for equation of straight line in slope intercept form is y=mx+c
where, m is the slope of line and c is the y intercept
The formula for equation of straight line in double intercept form is x/a+y/b=1
The formula for equation of straight line in normal form is xcos α + y cos α=p
There are more formulas bur assuming you are asking for the general representation of the straight-line equation, it is y=mx+c.
Answer:
[tex]\textbf{Linear Equations : y=mx+b}[/tex]
[tex]\textbf{m= slope}[/tex]
[tex]\textbf{b= y-intercept}[/tex]
[tex]\textbf{Example:-}[/tex] [tex]\textrm{y= 6x+8}[/tex]
[tex]slope(m)=6[/tex]
[tex]y-intercept=8[/tex]
[tex]\textbf{OAmalOHopeO}[/tex]
You work as a residential painter. A customer wants two tables and eight chairs painted using one coat of the same color paint. Each table requires 158
5
8
quarts of paint, and each chair requires 23
2
3
quarts of paint. How many total quarts of paint should you bring to paint this furniture?
Each table requires = 158 quarts paint
Each chair = 23 quarts of paint
Total no. Of coats = 1
Total chairs = 8
Total table = 2
Total paint required = (158×2)+(23×8)
= 500 quarts of paint
Must click thanks and mark brainliest
Determine what type of model best fits the given situation:
A. linear
B. exponential
O c. quadratic
D. none of these
Reset Selection
correct answer gets brainliest!
find two expressions whose difference is 3x + 4
Answer:
(7x+4) and (4x)
Step-by-step explanation:
The two expressions are (7x+4) and (4x)
Plaz guys help me on this question additional mathematics
Answer:
Step-by-step explanation:
vector OA=a
vector OB=b
vector OX= λ vector OA=λa
vector OY=μ vector OB=μb
a.
1.vector BX=(vector OX-vector OB)=λa-b
ii. vector AY=(vector OY-vector OA)=μb-a
b.
5 vector BP=2 vector BX
5(vector OP-vector OB)=2 (vector OX-vector OB)
5(vector OP-b)=2(λa-b)
5 vector OP-5b=2λa-2b
5 vector OP=2λa-2b+5b
vector OP=1/5(2λa+3b)
ii
complete it.
The state of Georgia is divided up into 159 counties. Consider a population of Georgia residents with mutually independent and equally likely home locations. If you have a group of n such residents, what is the probability that two or more people in the group have a home in the same county
Answer:
[tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
Step-by-step explanation:
number of counties = 159
n number of people are mutually independent and equally likely home locations
considering the details given in the question
n ≤ 159
The number of ways for people ( n ) will live in the different counties (159) can be determined as [tex](\left \{ {{159} \atop {n}} \right} )[/tex]
since the residents are mutually independent and equally likely home locations hence there are : [tex]159^{n}[/tex] ways for the residents to live in
therefore the probability = [tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
which of the following are ordered pairs for the given function f(x)=1+x.? (1,2) (3,3) (0,2) (1,0) (0,1)
Answer:
no,
(
1
,
0
)
is not an ordered pair of the function
f
(
x
)
=
1
+
x
.
Step-by-step explanation:
Ordered pairs are usually written in the form
(
x
,
y
)
by tradition.
so usingthe function,
f
(
x
)
=
1
+
x
we can rewrite it as,
y
=
1
+
x
any pair of x and y that satisfy this equation are solutions to the equation.
so subbing in
(
1
,
0
)
,
0
=
1
+
(
1
)
0
=
2
which is not true so the point does not make the function true.
It might be easier to see graphically,
graph{1+x [-10, 10, -5, 5]}
any combination of x and y on this line make the equation true and as such are an ordered pair of the function.
Answer:
Step-by-step explanation: