Answer:
168
Step-by-step explanation:
first, split both 840 and 24 into there primes.
840=2×2×2×3×5×7
24=2×2×2×3
therefore any multiples of 24 must have those factor.
so, factors of 840 that are multiples of 24 are
2×2×2×3=24
2×2×2×3×5=120
2×2×2×3×7=168
2×2×2×3×5×7=840
there the answer is 168
Ellen is making jewelry sets that contain a bracelet and a pair of earrings. Each bracelet uses 3 times as many beads as one earring. Each bracelet uses 3 as times as many beads as one earring . Ellen uses 13 beads for each earring. How many beads does Ellen need to make one jewelry set?
It's given that the Bracelet uses 3 times the number of beads that's used in making a single earring.
It's also given that one single earing has 13 beads. So a single bracelet would have (3×13) beads .... and that's equal to 39.
Making a single set of jewellery needs a pair of earrings and a Bracelet.
So total number of required beads will be =
39 + 13 + 13 = 65Find the solutions of x^2+30 = 0
please give detailed steps!
Answer:
x= i√30
Step-by-step explanation:
I'm going to go into this under the assumption that you've covered imaginary numbers based on the question. If I'm wrong then sorry about that.
Okay, so first you want to subtract 30 from both sides
x^2=-30
Then you take the square root of each side.
√(x^2)=√-30
x=√-30
Since it's impossible to square a number to get a negative number, you'll end up with an imaginary number. You have to rewrite x=√-30 to get rid of the negative sign under the radical. Rewriting this will also indicate that it's an imaginary number.
Final answer: x = i√30
The Bay Area Online Institute (BAOI) has set a guideline of 60 hours for the time it should take to complete an independent study course. To see if the guideline needs to be changed and if the actual time taken to complete the course exceeds60 hours, 16 students are randomly chosen and the average time to complete the course was 68hours with a standard deviation of 20 hours. What inference can BAOI make about the time it takes to complete this course?
Answer:
At the 5% level, BAOI can infer that the average time to complete does not exceeds 60 hours.
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 60 \ hr[/tex]
The sample size is [tex]n = 16[/tex]
The sample mean is [tex]\= x = 68 \ hr[/tex]
The standard deviation is [tex]\sigma = 20 \ hr[/tex]
The null hypothesis is [tex]H_o : \mu = 60[/tex]
The alternative [tex]H_a : \mu > 60[/tex]
Here we would assume the level of significance of this test to be
[tex]\alpha = 5\% = 0.05[/tex]
Next we will obtain the critical value of the level of significance from the normal distribution table, the value is [tex]Z_{0.05} = 1.645[/tex]
Generally the test statistics is mathematically represented as
[tex]t = \frac{ \= x - \mu}{ \frac{ \sigma }{\sqrt{n} } }[/tex]
substituting values
[tex]t = \frac{ 68 - 60 }{ \frac{ 20 }{\sqrt{16} } }[/tex]
[tex]t = 1.6[/tex]
Looking at the value of t and [tex]Z_{\alpha }[/tex] we see that [tex]t< Z_{\alpha }[/tex] hence we fail to reject the null hypothesis
This means that there no sufficient evidence to conclude that it takes more than 60 hours to complete the course
So
At the 5% level, BAOI can infer that the average time to complete does not exceeds 60 hours.
Angelique travels 75 miles. Jamila travels 115 kilometres. Show that Angelique has travelled futher than Jamila.
Answer:
Step-by-step explanation:
-we know :
we must have the same unit on the distance traveled in order to be able to compare distances
1 mile = 1.6 kilometers
-Angelique traveled 75 miles ( 120 kilometers)
75 miles = 1.6 *75 = 120 kilometers
-Jamila traveled 115 kilometers is given in the problem
-Angelique has travelled further than Jamila because
120 kilometers > 115 kilometers
What are the solution(s) of the quadratic equation 98 - x2 = 0?
x = +27
Ox= +63
x = +7/2
no real solution
Answer:
±7 sqrt(2) = x
Step-by-step explanation:
98 - x^2 = 0
Add x^2 to each side
98 =x^2
Take the square root of each side
±sqrt(98) = sqrt(x^2)
±sqrt(49*2) = x
±7 sqrt(2) = x
Answer:
[tex]\huge \boxed{{x = \pm 7\sqrt{2} }}[/tex]
Step-by-step explanation:
[tex]98-x^2 =0[/tex]
[tex]\sf Add \ x^2 \ to \ both \ sides.[/tex]
[tex]98=x^2[/tex]
[tex]\sf Take \ the \ square \ root \ of \ both \ sides.[/tex]
[tex]\pm \sqrt{98} =x[/tex]
[tex]\sf Simplify \ radical.[/tex]
[tex]\pm \sqrt{49} \sqrt{2} =x[/tex]
[tex]\pm 7\sqrt{2} =x[/tex]
[tex]\sf Switch \ sides.[/tex]
[tex]x= \pm 7\sqrt{2}[/tex]
how can i solve this factorial? A 6,2- P6- A 5,3 + P5
The sum of two numbers is 49 and the difference between these two numbers is 9. What are these two numbers?Shown working out please
Let numbers be x and y
ATQ
x+y=49---(1)x-y=9---(2)Adding both
[tex]\\ \sf\longmapsto 2x=58[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{58}{2}[/tex]
[tex]\\ \sf\longmapsto x=29[/tex]
Now putting value in eq(2)
[tex]\\ \sf\longmapsto x-y=9[/tex]
[tex]\\ \sf\longmapsto 29-9=y[/tex]
[tex]\\ \sf\longmapsto y=20[/tex]
A basketball player scored 33 points during a game by shooting 1-point free throws, 2-point field goals, and 3-point field goals. The player scored 17 times. She scored 3 more 2-point field goals than 1-point free throws. The system of equations below represents the situation, where x is the number of 1-point free throws, y is the number of 2-point field goals, and z is the number of 3-point field goals. x + y + z = 17 x + 2y + 3z = 33 y – x = 3
Answer:
No. of 1 pt free throws = 5, No. of 2 pt goals = 8, No. of 3 pt goals = 4
Step-by-step explanation:
Equations : x + y + z = 17 [ Total times taken to score ]
1x + 2y + 3z = 33 [ Total Score ]
Also, y = x + 3
Putting the value of 'y' in both equations :
x + (x + 3)+ z = 17 → 2x + 3 + z = 17 → 2x + z = 14 (i)
1x + 2 (x + 3) + 3z = 33 → x + 2x + 6 + 3z = 33 → 3x + 3z = 27 (ii)
Solving these equations :
From (i), z = 14 - 2x
Putting this value in (ii), 3x + 3(14 - 2x) = 27 → 3x + 42 - 6x = 27
42 - 3x = 27 → 3x = 15 → x = 5
y = x + 3 = 5 + 3 → y = 8
z = 17 - x - y → z = 17 - 5 - 8 = 17 - 13 → z = 4
Answer:
4
Step-by-step explanation:
Steven’s basketball team won 5 out of their first 12 games. If they continue to win at this rate, how many games will they lose if they play 49 games?
Answer:
29 losses in 49 games.
Step-by-step explanation:
The number of games that they lost in the first 12 = 12 - 5 = 7
7/12 = x / 49 Multiply both sides by 49
7*49 / 12 = x
x = 343/12
x = 28.5833
What do you do with the 0.5833? I would say round up to 29.
increased from 1432 to 2219. Which of the following is the approximate percent of increase
22. Between the years 2000 and 2010, the number of births in the town of Daneville
in the number of births during those ten years?
a. 55%
b. 36%
c. 64%
d. 42%
9514 1404 393
Answer:
a. 55%
Step-by-step explanation:
The percentage increase is calculated from ...
% increase = (amount of increase)/(original amount) × 100%
= (2219 -1432)/1432 × 100% = 787/1432 × 100% ≈ 54.96%
The number of births increased by about 55% during those 10 years.
Answer:
Step-by-step explanation:
2219-1432/1432 x 100% = 787/1432 x 100 = 54.9581~~ 55%
Graph: y < 3x + 1 please help me
Answer:
Using a graphing calc.
Step-by-step explanation:
What is the domain of f?
Answer:
-5 ≤x ≤6
Step-by-step explanation:
The domain is the values that x can take
X goes from -5 and includes -5 to x =6 and includes 6
-5 ≤x ≤6
Answer:
See attached!
Step-by-step explanation:
please help me find the value of x
Answer:
x=10
Step-by-step explanation:
The whole figure is symmetric hence x=10
What is 5 over 30= 3 over c
Answer:
c=18
Step-by-step explanation:
5/30=3/c
1/6=3/18
1✖️3=3
6✖️3=18
An oblique cylinder is shown.
An oblique cylinder is shown. It has a radius of 5, a height of 12, and a slant length of 13.
Which represents the volume of the cylinder, in cubic units?
120π
130π
300π
325π
Answer:
The volume in terms of Pi is 300πStep-by-step explanation:
This problem is on the mensuration of solid shapes, an oblique cylinder.
the expression for the volume of an oblique cylinder is given as
[tex]volume= \pi r^2h[/tex]
Given data
radius r= 5
height h= 12, and
slant length of 13.
Substituting the given data into the expression we can solve for the volume below
[tex]volume= \pi* 5^2*12\\\ volume= \pi*25*12\\\ volume= \pi*300\\\ volume= 300\pi[/tex]
Answer:
300
Step-by-step explanation:
In an opinion poll, 29% of 100 people sampled said they were strongly opposed to the state lottery. What is the approximate standard error of the sample proportion?
Answer:
The approximate standard error of the sample proportion is [tex]SE = 0.0454[/tex]
Step-by-step explanation:
From the question we are told that
The sample proportion is [tex]\r p = 0.29[/tex]
The sample size is n = 100
Generally the standard error of the sample proportion is mathematically represented as
[tex]SE = \sqrt{ \frac{ \r p (1- \r p )}{n} }[/tex]
substituting values
[tex]SE = \sqrt{ \frac{ 0.29 (1- 0.29 )}{ 100 } }[/tex]
[tex]SE = 0.0454[/tex]
What is the error in this problem
Answer:
12). LM = 37.1 units
13). c = 4.6 mi
Step-by-step explanation:
12). LM² = 23² + 20² - 2(23)(20)cos(119)°
LM² = 529 + 400 - 920cos(119)°
LM² = 929 - 920cos(119)°
LM = [tex]\sqrt{929+446.03}[/tex]
= [tex]\sqrt{1375.03}[/tex]
= 37.08
≈ 37.1 units
13). c² = 5.4² + 3.6² - 2(5.4)(3.6)cos(58)°
c² = 29.16 + 12.96 - 38.88cos(58)°
c² = 42.12 - 38.88cos(58)°
c = [tex]\sqrt{42.12-20.603}[/tex]
c = [tex]\sqrt{21.517}[/tex]
c = 4.6386
c ≈ 4.6 mi
83=4k-7(1+7k) How to solve
Answer:
k = -2
Step-by-step explanation:
83=4k-7(1+7k)
Distribute
83=4k-7-49k
Combine like terms
83 = -45k -7
Add 7 to each side
83+7 = -45k-7+7
90 = -45k
Divide each side by -45
90/-45 = -45k/-45
-2 = k
Answer:
k = -2Step-by-step explanation:
Step 1: Use 7 to open the bracket :
-7(1+7k)=-7-49k
Step 2: Collect like terms
Step 3 : Divide both sides of the equation by -45
[tex]83=4k-7(1+7k) \\ \\83 = 4k-7-49k\\\\ 83+7=4k-49k\\\\90 = -45k\\\\\frac{90}{-45} = \frac{-45k}{-45} \\\\k = -2[/tex]
Use the numbers 6 2 9 5 2 3
to make 36.
Answer:
6+2+9+5+2+3+6+3 = 36
Step-by-step explanation:
If you like my answer than please mark me brainliest
Identify the type of equation: y-6 = 7(x+8)
Step-by-step explanation:
Recognize the relation between the graph and the slope–intercept form of an equation of a line
Identify the slope and y-intercept form of an equation of a line
Graph a line using its slope and intercept
Choose the most convenient method to graph a line
Graph and interpret applications of slope–intercept
Use slopes to identify parallel lines
Use slopes to identify perpendicular lines
A ___________ gives theoretical probabilities of each possible event in an experiment.
A. probability outcome
B. sample space
C. random event
D. probability distribution
A probability outcome gives theoretical probabilities of each possible event in an experiment so option (A) will be correct.
What is probability?The probability of an event occurring is defined by probability.
Do not take underestimate probability it has several uses in daily life whether forecasts and like that.
Theoretical probability is the probability that shows by the probability formula while experimental probability is an actual probability that can obtain by experiments.
There are various situations in our daily lives where we might need to make predictions about how things will turn out.
Probability outcome which comes out by mathematical formula is always theoretical probability while actual experiment gives us experimental probability hence probability outcome will be the correct answer.
For more information about the probability
brainly.com/question/11234923,
#SPJ2
The mean number of rushing yards for one NFL team was less than 99 yards per game. If a hypothesis test is performed, how should you interpret a decision that rejects the null hypothesis?
Question options :
A. There is sufficient evidence to reject the claim
u < 99.
B. There is sufficient evidence to support the claim
u < 99.
C. There is not sufficient evidence to reject the claim
u < 99.
D. There is not sufficient evidence to support the claim
u< 99.
Answer:
B. There is sufficient evidence to support the claim
u < 99.
Step-by-step explanation:
We construct the n*ll and alternative hypotheses to support our claim
The n*ll hypothesis :H0
The alternative hypothesis : Ha
N*ll hypothesis =H0: u=99
Alternative hypothesis =Ha: u<99
So if n*ll hypothesis (H0) u=99 is rejected, then we accept the alternative hypothesis that u<99
we can therefore have sufficient evidence to support our claim that u<99
A rhombus has an area of 5 square meters and a side length of 3 meters. In another similar rhombus, the length of a side is 9 meters. What is the area of the second rhombus?
(A) 30 square meters
(B) 45 square meters
(C) 60 square meters
(D) 75 square meters
Hence the area of the second rhombus is 45 square meters
The area of a rhombus is expressed as
A = base * height
For the rhombus with an area of 5 square meters and a side length of 3 meters
Height = Area/length
Height = 5/3 metres
Since the length of a similar rhombus is 9meters, the scale factor will be expressed as;
k = ratio of the lengths = 9/3
k = 3
Height of the second rhombus = 3 * height of the first rhombus
Height of the second rhombus = 3 * 5/3
Height of the second rhombus = 5 meters
Area of the second rhombus = length * height
Area of the second rhombus = 5 * 9
Area of the second rhombus = 45 square meters
Hence the area of the second rhombus is 45 square meters
Learn more here: brainly.com/question/20247331
The correct option is option B;
(B) 45 square meters
The known parameters in the question are;
The area of the rhombus, A₁ = 5 m²
The length of one of the sides of the rhombus, a = 3 m
The length of a side in a similar rhombus, b = 9 m
The unknown parameter;
The area of the second rhombus
Strategy or method;
We have that two shapes are similar if their corresponding sides are proportional
From the above statement we get that the ratio of the areas of the two shapes is equal to the square of the ratio of the lengths of the corresponding sides of the two shapes of follows;
[tex]\begin{array}{ccc}Length \ Ratio&&Area \ Ratio\\\dfrac{a}{b} &&\left (\dfrac{a}{b} \right)^2 \\&&\end{array}[/tex]
Let the area of the second rhombus be A₂, we get;
[tex]Area \ ratio = \dfrac{A_1}{A_2} = \left( \dfrac{a}{b} \right)^2[/tex]
Where;
a = 3 m, b = 9 m, and A₁ = 5 m², we get;
[tex]Area \ ratio = \dfrac{5 \ m^2}{A_2} = \left( \dfrac{3 \, m}{9 \, m} \right)^2 = \dfrac{1}{9}[/tex]
Therefore;
9 × 5 m² = A₂ × 1
A₂ = 45 m²
The area of the second rhombus, A₂ = 5 m².
Learn more about scale factors here;
https://brainly.com/question/20247331
Help!!!!!!! Thank you!!!!!!!
Answer:
D
Step-by-step explanation:
The ratio of yellow paint to blue paint is 4:3. We can make the largest amount of green paint by using all of the 20 quarts of yellow paint so we have to solve for x in 4:3 = 20:x, since 4 * 5 = 20, 3 * 5 = x so we use 15 qts of blue paint, therefore we will have 20 + 15 = 35 qts of green paint.
Answer:
D
Step-by-step explanation:
Find the counterclockwise circulation and outward flux of the field F=7xyi+5y^2j around and over the boundary of the region C enclosed by the curves y=x^2 and y=x in the first quadrant.
Split up the boundary of C (which I denote ∂C throughout) into the parabolic segment from (1, 1) to (0, 0) (the part corresponding to y = x ²), and the line segment from (1, 1) to (0, 0) (the part of ∂C on the line y = x).
Parameterize these pieces respectively by
r(t) = x(t) i + y(t) j = t i + t ² j
and
s(t) = x(t) i + y(t) j = (1 - t ) i + (1 - t ) j
both with 0 ≤ t ≤ 1.
The circulation of F around ∂C is given by the line integral with respect to arc length,
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T \,\mathrm ds[/tex]
where T denotes the tangent vector to ∂C. Split up the integral over each piece of ∂C :
• on the parabolic segment, we have
T = dr/dt = i + 2t j
• on the line segment,
T = ds/dt = -i - j
Then the circulation is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(\mathbf i+2t\,\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i-\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (7t^3+10t^5)\,\mathrm dt - 12 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{-\frac7{12}}[/tex]
Alternatively, we can use Green's theorem to compute the circulation, as
[tex]\displaystyle\int_{\partial C}\mathbf F\cdot\mathbf T\,\mathrm ds = \iint_C\frac{\partial(5y^2)}{\partial x} - \frac{\partial(7xy)}{\partial y}\,\mathrm dx\,\mathrm dy \\\\ = -7\int_0^1\int_{x^2}^x x\,\mathrm dx \\\\ = -7\int_0^1 xy\bigg|_{y=x^2}^{y=x}\,\mathrm dx \\\\ =-7\int_0^1(x^2-x^3)\,\mathrm dx = -\frac7{12}[/tex]
The flux of F across ∂C is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N \,\mathrm ds[/tex]
where N is the normal vector to ∂C. While T = x'(t) i + y'(t) j, the normal vector is N = y'(t) i - x'(t) j.
• on the parabolic segment,
N = 2t i - j
• on the line segment,
N = - i + j
So the flux is
[tex]\displaystyle \int_{\partial C}\mathbf F\cdot\mathbf N\,\mathrm ds = \int_0^1 (7t^3\,\mathbf i+5t^4\,\mathbf j)\cdot(2t\,\mathbf i-\mathbf j)\,\mathrm dt + \int_0^1 (7(1-t)^2\,\mathbf i+5(1-t)^2\,\mathbf j)\cdot(-\mathbf i+\mathbf j)\,\mathrm dt \\\\ = \int_0^1 (14t^4-5t^4)\,\mathrm dt - 2 \int_0^1 (1-t)^2\,\mathrm dt =\boxed{\frac{17}{15}}[/tex]
if point B is the midpoint of points A and C, find the value of x and AC. AB= 5x - 2, BC= 9x -10
9514 1404 393
Answer:
x = 2AC = 16Step-by-step explanation:
The midpoint divides the segment into two equal lengths:
AB = BC
5x -2 = 9x -10
8 = 4x
2 = x
AB = 5(2) -2 = 8
AC = 2AB = 2(8) = 16
A machine that produces ball bearings has initially been set so that the true average diameter of the bearings it produces is 0.500 in. A bearing is acceptable if its diameter is within 0.004 in. of this target value. Suppose, however, that the setting has changed during the course of production, so that the bearings have normally distributed diameters with a mean 0.499 in. and standard deviation 0.002 in. What percentage of bearings will now not be acceptable
Answer:
the percentage of bearings that will not be acceptable = 7.3%
Step-by-step explanation:
Given that:
Mean = 0.499
standard deviation = 0.002
if the true average diameter of the bearings it produces is 0.500 in and bearing is acceptable if its diameter is within 0.004 in.
Then the ball bearing acceptable range = (0.500 - 0.004, 0.500 + 0.004 )
= ( 0.496 , 0.504)
If x represents the diameter of the bearing , then the probability for the z value for the random variable x with a mean and standard deviation can be computed as follows:
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - \mu}{\sigma} \leq \dfrac{X -\mu}{\sigma} \leq \dfrac{0.504 - \mu}{\sigma})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{0.496 - 0.499}{0.002} \leq \dfrac{X -0.499}{0.002} \leq \dfrac{0.504 - 0.499}{0.002})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (\dfrac{-0.003}{0.002} \leq Z \leq \dfrac{0.005}{0.002})[/tex]
[tex]P(0.496\leq X \leq 0.504) = (-1.5 \leq Z \leq 2.5)[/tex]
[tex]P(0.496\leq X \leq 0.504) = P (-1.5 \leq Z \leq 2.5)[/tex]
[tex]P(0.496\leq X \leq 0.504) = P(Z \leq 2.5) - P(Z \leq -1.5)[/tex]
From the standard normal tables
[tex]P(0.496\leq X \leq 0.504) = 0.9938-0.0668[/tex]
[tex]P(0.496\leq X \leq 0.504) = 0.927[/tex]
By applying the concept of probability of a complement , the percentage of bearings will now not be acceptable
P(not be acceptable) = 1 - P(acceptable)
P(not be acceptable) = 1 - 0.927
P(not be acceptable) = 0.073
Thus, the percentage of bearings that will not be acceptable = 7.3%
Which number is divisible by 5? 99 45 83 94
Answer:
45
Step-by-step explanation:
because 5•9=45 so yeah that's the answer
Simplify.
10
3
(2.8 +1.2)
6
16
18.4
20
26
Answer:
see similar to the number of the number
Marcelina uses a blend of white corn and yellow corn to make tortilla chips at her restaurant. She needs to buy 50kg of corn in total for her next order. White corn costs $0.30 per kilogram, yellow corn costs $0.15 per kilogram, and she wants to spend $12.00 in total. Here's a graph that shows a system of equations for this scenario where x is the amount of white corn she buys and y is the amount of yellow corn she buys.
Answer:
https://brainly.com/question/17155330
Step-by-step explanation:
Question:
Marcelina uses a blend of white corn and yellow corn to make tortilla chips at her restaurant. She needs to buy 50kg of corn in total for her next order. White corn costs $0.30 per kilogram, yellow corn costs $0.15 per kilogram, and she wants to spend $12 total.
What does point F represent in this context?
Answer:
Marcelina spends less that the intended amount of money and buy less than enough corn