2. Between 1986 and 2020, Guinea worm disease has been drastically reduced and is on the verge of being eradicated without the existence of a diagnostic test, drug or vaccine. What tools have been used to so dramatically decrease the incidence and prevalence? 3. Investment of the resources by governments and non governmental organizations, like the Carter center, have benefited the communities both in terms of health, but also economically. How does increasing the overall health of the population lead to stronger economies and less poverty? 4. One of the key resources involved in eradicating GW is aggressive surveillance by community health workers and quick bandaging and treatment of infected patients as soon as the blister appears to prevent the spread of the eggs back to water supplies. Explain how the ability to quality and easily accessible health care is an important part of the public health efforts to control the spread of this disease (and many others). How has this impacted your beliefs about health care? 5. NTDs are largely a problem in poorer, "developing" countries. Why, for the most part, are these diseases not found in the United States? Do you think countries like the US have an obligation to help? Why or why not?

Answers

Answer 1

Guinea worm disease has been drastically reduced and is on the verge of being eradicated without the existence of a diagnostic test, drug or vaccine.

Guinea worm disease has been reduced by the use of several tools, which include educating people to filter water to remove copepods that may carry the larvae, teaching people to keep themselves and their animals out of the water, and treating standing water with a larvicide that kills the copepods.

In addition, there has been aggressive surveillance by community health workers, and quick bandaging and treatment of infected patients as soon as the blister appears to prevent the spread of the eggs back to water supplies

To know more about Guinea visit :

https://brainly.com/question/29460883

#SPJ11


Related Questions

The heterozygous jiggle beetles represents pleiotropy. O polygenic. O incomplete dominance. codominance. complete domiance. Question 40 What can be concluded about the green allele and hot pink allele. O The green allele is recessive and the hot pink allele is dominant. O The green allele and pink allele are recessive. O The green allele is dominant and the hot pink allele is recessive. O The green allele and pink allele are dominant.

Answers

The green allele is recessive, and the hot pink allele is dominant in the case of the heterozygous jiggle beetles.

Based on the information provided, we can conclude that the green allele is recessive, and the hot pink allele is dominant. Pleiotropy refers to a single gene having multiple effects on an organism, which is not evident from the given context. Polygenic inheritance involves multiple genes contributing to a trait, which is also not mentioned in the scenario. Incomplete dominance occurs when neither allele is completely dominant over the other, resulting in an intermediate phenotype in heterozygotes. Codominance occurs when both alleles are expressed equally in the phenotype of heterozygotes. Complete dominance occurs when one allele is completely dominant over the other, resulting in the expression of only one allele in the phenotype of heterozygotes.

Since the scenario states that the beetles are heterozygous, meaning they carry two different alleles, we can deduce that the hot pink allele must be dominant because it is expressed in the phenotype. The green allele, on the other hand, is recessive because it remains unexpressed in the presence of the dominant hot pink allele. Therefore, the correct conclusion is that the green allele is recessive, and the hot pink allele is dominant.

Learn more about heterozygotes here: https://brainly.com/question/31628653

#SPJ11

Which of the following is not a dietary recommendation? a. Consume 0 grams of trans fats.
b. Consume 48 grams of dietary fiber. c. Consume no more than 50 grams of sugar, and preferably less than 36 grams. d. Consume no more than 80 grams of protein, and preferably less than 50 grams.
e. Consume no more than 2300 mg (2.3 grams) of sodium, and preferably less than 1500 mg.

Answers

Option (d) "Consume no more than 80 grams of protein, and preferably less than 50 grams" is not a dietary recommendation.

Option (d) is not a dietary recommendation because it suggests limiting protein intake to no more than 80 grams, preferably less than 50 grams. However, protein requirements can vary based on factors such as age, sex, body weight, activity level, and overall health. The appropriate amount of protein intake for an individual depends on their specific needs and goals, such as muscle building, weight management, or medical conditions. There is no universally recommended limit on protein intake, and it is generally advised to consume an adequate amount of protein to support overall health.

On the other hand, options (a), (b), (c), and (e) are dietary recommendations commonly advised for maintaining a healthy diet. These recommendations focus on avoiding trans fats, consuming an adequate amount of dietary fiber, limiting sugar intake, and controlling sodium intake for optimal health.

In summary, option (d) "Consume no more than 80 grams of protein, and preferably less than 50 grams" is not a general dietary recommendation, as protein requirements vary among individuals.

Learn more about preferably less here:

https://brainly.com/question/32508737

#SPJ11

You have isolated a microbe from the soil and sequenced its genome. Please discuss how you could use the sequence information to identify the organism and establish if it is a prokaryotic or eukaryotic microorganisms

Answers

To identify the organism and establish whether it is a prokaryotic or eukaryotic microorganism after isolating a microbe from the soil and sequencing its genome, the following steps could be taken: Assemble the genome sequencing reads into a contiguous sequence (contig).

Contigs are produced by sequencing the DNA multiple times and assembling the resulting DNA sequences together. During this process, overlapping regions are identified and used to construct a single continuous DNA sequence.Step 2: Using a genome annotation software, a genome annotation is made. The annotation process identifies genes and noncoding sequences, predicts gene function, and assigns them to functional classes. Gene identification can help determine whether the organism is prokaryotic or eukaryotic.

Comparison of the genome sequence with sequences of known organisms in a database. The comparison of genome sequences is commonly used to identify microbes, as sequence similarity is an indicator of evolutionary relatedness. In the case of eukaryotes, a comparison of gene sequences can also be used to identify and classify organisms.Another way of establishing whether an organism is prokaryotic or eukaryotic is by looking at the organization of the genome. Prokaryotic genomes are generally simpler in their organization, with no nucleus or organelles, and they have a circular chromosome. Eukaryotic genomes, on the other hand, are usually larger and more complex, with multiple chromosomes, a nucleus, and various organelles such as mitochondria, chloroplasts, and endoplasmic reticulum.

To know more about prokaryotic visit:

https://brainly.com/question/29119623

#SPJ11

8) Which gland sits atop each kidney? A) adrenal B) thymus C) pituitary D) pancreas artery lies on the boundary between the cortex and medulla of the kidney. 9) The A) lobar B) arcuate C) interlobar D

Answers

The gland that sits at the top of each kidney is called adrenal gland (option A). The arcuate artery lies on the boundary between the cortex and medulla of the kidney (option B).

What is the adrenal gland?

The adrenal gland is a complex endocrine glands found above each kidney.

It is saddled with the responsibility of secreting steroid hormones namely; adrenaline and noradrenaline.

These hormones help regulate the following:

heart rateblood pressuremetabolism

Also, the arcuate arteries of the kidney are renal circulation vessels and can be found between the cortex and the medulla of the renal kidney.

Learn more about adrenal gland at: https://brainly.com/question/29590708

#SPJ4

Consider the following segment of DNA, which is part of a linear chromosome: LEFT 5'....TGACTGACAGTC....3' 3'....ACTGACTGTCAG....5' RIGHT During RNA transcription, this double-strand molecule is separated into two single strands from the right to the left and the RNA polymerase is also moving from the right to the left of the segment. Please select all the peptide sequence(s) that could be produced from the mRNA transcribed from this segment of DNA. (Hint: you need to use the genetic codon table to translate the determined mRNA sequence into peptide. Please be reminded that there are more than one reading frames.) ...-Leu-Ser-Val-... ...-Leu-Thr-Val-... ...-Thr-Val-Ser-... ...-Met-Asp-Cys-Gln-... ...-Asp-Cys-Gln-Ser-...

Answers

Therefore, all of the provided peptide sequences could potentially be produced from the mRNA transcribed from this segment of DNA.

The peptide sequence(s) that could be produced from the mRNA transcribed from this segment of DNA are:

...-Leu-Ser-Val-...

...-Leu-Thr-Val-...

...-Thr-Val-Ser-...

...-Met-Asp-Cys-Gln-...

...-Asp-Cys-Gln-Ser-...

To determine the mRNA sequence, we need to transcribe the DNA sequence from the 3' to 5' direction. In this case, the RNA polymerase is moving from the right to the left of the segment.

The complementary RNA strand would be 5'....UGACUGACAGUC....3'.

Using the genetic codon table, we can translate this mRNA sequence into the corresponding peptide sequence:

Leu-Ser-Val

Leu-Thr-Val

Thr-Val-Ser

Met-Asp-Cys-Gln

Asp-Cys-Gln-Ser

To know more about mRNA

brainly.com/question/29314591

#SPJ11

Select all that apply.
Isoelectric focusing:
always involves separation in two dimensions.
makes use of the fact that proteins have fairly unique pI's.
makes use of a gel with a pH gradient.
allows smaller molecules to migrate through pores in the gel more quickly than larger ones, all other things being equal.
utilizes an electric field to cause proteins to migrate towards the positive pole.

Answers

All the given options are best suited for Isoelectric focusing. Isoelectric focusing is a technique used for protein separation.

Isoelectric focusing involves two-dimensional separation, utilizes a gel with a pH gradient, and takes advantage of the unique isoelectric points (pI) of proteins. It allows smaller molecules to migrate faster through the gel pores, and an electric field is applied to guide proteins towards the positive pole.

Isoelectric focusing is a powerful method for separating proteins based on their isoelectric points (pI), which is the pH at which a protein carries no net charge. This technique does not always involve separation in two dimensions.

It can be performed in a single dimension, where proteins are separated according to their pI values only, or in two dimensions, combining isoelectric focusing with another separation method, such as SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis), to achieve higher resolution.

The process of isoelectric focusing takes advantage of a gel with a pH gradient. The gel is prepared with a pH gradient that spans from acidic to basic regions.

When an electric field is applied, proteins migrate through the gel towards their respective isoelectric points, where their net charge is zero. This migration occurs because proteins move towards the pole (either positive or negative) that corresponds to their net charge.

In isoelectric focusing, smaller molecules tend to migrate through the pores in the gel more quickly than larger ones, assuming all other factors are equal. This is due to the differences in size and charge density between the molecules.

Smaller proteins can pass through the gel pores more easily, whereas larger proteins experience more hindrance and migrate at a slower rate.To guide the proteins during the separation process, an electric field is utilized. The electric field is applied across the gel, with one end being positive and the other negative.

This field induces movement of the charged proteins towards the pole that matches their net charge. By applying an electric field, the proteins are driven towards the positive pole, allowing for efficient separation based on their isoelectric points.

In summary, isoelectric focusing is a technique that utilizes a gel with a pH gradient and an electric field to separate proteins based on their isoelectric points.

While it can be performed in one or two dimensions, it is commonly used in combination with other techniques for higher resolution separations. The method takes advantage of the fact that proteins have distinct isoelectric points, and smaller proteins migrate more quickly through the gel pores than larger proteins, assuming other conditions are equal.

Learn more about Isoelectric focusing here ;

https://brainly.com/question/32602091

#SPJ11

Cationic detergents are considered more effective because... Otheir positive charge is repelled by the negative charged surface of microbial cells O their positive charge is attracted to the negative charged surface of microbial cells O their negative charge is attracted to the negative charged surface of microbial cells their positive charge is attracted by the positive charged surface of microbial cells

Answers

Cationic detergents are effective in fighting bacteria because their positively charged head is attracted to the negatively charged surface of microbial cells. When the detergent binds to the cell membrane, it disrupts the membrane's integrity and causes the cell contents to leak out.

Cationic detergents are considered more effective because their positive charge is attracted to the negative charged surface of microbial cells. An ionic detergent consists of a hydrophilic polar head, which has either a positive or negative charge, and a hydrophobic nonpolar tail, which is commonly a long alkyl chain.The most important feature of a cationic detergent is its positively charged head, which is why it's more effective against bacteria.

Cationic detergents, also known as cetylpyridinium chloride, benzalkonium chloride, and quaternary ammonium compounds, are effective against a variety of bacteria, including gram-positive and gram-negative bacteria. They act by disrupting the microbial cell membrane and causing the contents to leak  Cationic detergents are more effective because they are positively charged

Their positively charged head is attracted to the negative charge on the surface of microbial cells Cetylpyridinium chloride, benzalkonium chloride, and quaternary ammonium compounds are all examples of cationic detergents.Cationic detergents, such as these, cause bacterial cell membranes to rupture and leak out contents.

Cationic detergents are effective in fighting bacteria because their positively charged head is attracted to the negatively charged surface of microbial cells. When the detergent binds to the cell membrane, it disrupts the membrane's integrity and causes the cell contents to leak out.

To know more about cell membrane visit:

brainly.com/question/13524386

#SPJ11

Final answer:

Cationic detergents like quaternary ammonium salts (quats) are effective because their positive charge is attracted to the negatively charged surface of microbial cells. This disrupts the bacterial membrane, killing the bacteria. They're frequently used in disinfectants for this reason.

Explanation:

Cationic detergents are considered more effective because their positive charge is attracted to the negatively charged surface of microbial cells. These detergents, such as quaternary ammonium salts (quats), contain a positively charged cation at one end attached to a long hydrophobic chain.

The cationic charge of quats confers their antimicrobial properties, which are diminished when neutralized. Due to this property, they can effectively disrupt the integrity of bacterial membranes, thereby effectively killing the bacterial cells.

These quats, including benzalkonium chlorides, are also found in a variety of household cleaners and disinfectants as they are stable, non-toxic, inexpensive, colorless, odorless, and tasteless.

Learn more about Cationic detergents here:

https://brainly.com/question/31783975

#SPJ11

Compare and describe the differences and
similarities of artery muscle wall and large vein muscle
wall.

Answers

Arteries have thicker muscle walls and more elastic fibers compared to large veins, allowing them to withstand higher blood pressure and maintain continuous blood flow, while veins have thinner muscle walls and valves to prevent backflow of blood.

Both artery and large vein muscle walls are composed of smooth muscle cells, elastic fibers, and collagen. Smooth muscle cells are responsible for the contraction and relaxation of the muscle wall, allowing for the regulation of blood flow. Elastic fibers provide elasticity to the walls, allowing them to stretch and recoil.

Arteries have thicker muscle walls compared to large veins. This thicker wall is necessary to withstand the higher pressure generated by the heart during systole (contraction phase). The increased muscle thickness and elasticity of arteries enable them to expand and recoil, maintaining continuous blood flow and preventing fluctuations in blood pressure.

In contrast, large veins have thinner muscle walls. While they still contain smooth muscle cells, the muscle layer is less prominent. Large veins are equipped with valves, which help to prevent the backflow of blood and ensure the unidirectional flow towards the heart.

The thinner muscle walls in veins allow them to accommodate larger volumes of blood and facilitate the return of blood to the heart against lower pressure.

In summary, both artery and large vein muscle walls contain smooth muscle cells, elastic fibers, and collagen, contributing to their contractile and elastic properties.

Arteries have thicker muscle walls and more elastic fibers, allowing them to withstand higher blood pressure and maintain continuous blood flow. Large veins have thinner muscle walls, but their structure is complemented by valves, facilitating the return of blood to the heart.

Learn more about fibers here:

https://brainly.com/question/32631374

#SPJ11

1. Describe three differences between prokaryotic and
eukaryotic cells.
2. Discuss the major differences between a plant cell and an
animal cell.

Answers

Prokaryotic and eukaryotic cells have fundamental differences that separate them in terms of structure, function, and overall complexity. Here are three differences between prokaryotic and eukaryotic cells Prokaryotic cells do not have a nucleus, while eukaryotic cells have a nucleus.

Eukaryotic cells have membrane-bound organelles, whereas prokaryotic cells do not. Eukaryotic cells are more complex than prokaryotic cells. A plant cell and an animal cell are similar in that they are both eukaryotic cells and have many similarities in terms of structure and function. However, there are some significant differences between the two. Here are some major differences between a plant cell and an animal cell Plant cells have cell walls, while animal cells do not.

Plant cells contain chloroplasts, which are responsible for photosynthesis, while animal cells do not have chloroplasts. Plant cells have large central vacuoles, while animal cells have small vacuoles or none at all. Plant cells have a more regular shape, while animal cells can take on various shapes. Plant cells store energy as starch, while animal cells store energy as glycogen.

To know more about Prokaryotic visit :

https://brainly.com/question/28405832

#SPJ11

Describe the process of producing a fully functional egg cell,
or ovum, starting with the initial parent stem cell, and ending
with a fertilized ovum implanting in the uterus. Include all
intermediate

Answers

The production of a fully functional egg cell or ovum is known as oogenesis. Oogenesis occurs in the ovaries and is initiated during fetal development in humans.

The oogenesis process begins with the initial parent stem cell, called an oogonium, which undergoes mitosis to produce a primary oocyte. Primary oocytes enter meiosis I during fetal development but are arrested in prophase I until puberty. Once puberty is reached, one primary oocyte will be released each month to resume meiosis I, producing two daughter cells: a secondary oocyte and a polar body. The secondary oocyte then enters meiosis II and is arrested in metaphase II until fertilization occurs. If fertilization does occur, the secondary oocyte completes meiosis II, producing another polar body and a mature ovum. The ovum then travels through the fallopian tubes towards the uterus, where it may be fertilized by a sperm cell. If fertilization occurs, the zygote will undergo mitosis and divide into multiple cells while traveling toward the uterus. Approximately 6-7 days after fertilization, the fertilized ovum, now called a blastocyst, will implant into the lining of the uterus. Once implanted, the blastocyst will continue to divide and differentiate, eventually developing into a fetus and resulting in a pregnancy that will last approximately 9 months.

Learn more about Primary oocytes here:

https://brainly.com/question/1783144

#SPJ11

Statement 1: Dendritic cells are phagocytes with professional antigen-presenting properties Statement 2: Neutrophils circulate as part of the blood and act as surveillance to detect presence of pathogens O Statement 1 is true Statement 2 is false. O Statement 2 is true. Statement 1 is false. O Both statements are true. O Both statements are false points Statement 1: Fever is a sign of pathogen infection. Statement 2: Vasodilation is a type of immune response that can cause redness and swelling at the infection site. O Statement 1 is true. Statement 2 is false, O Statement 2 is true. Statement 1 is false. O Both statements are true. O Both statements are false Which of the following describes passive immunity? O vaccination for polio O allowing oneself to become infected with chicken pox O catching a common cold O antibodies transferred to the fetus from the mother across the placenta If Peter is allergic to peanuts and Paul is not, what is the precise molecular difference in Peter's bloodstream responsible for this? O Peter's blood has mast cells and basophils carrying IgEs that match an antigen on peanuts. Peter's blood has mast cells and basophils carrying IgGs that match an antigen on peanuts. O Peter's blood has mast cells and basophils carrying IgMs that match an antigen on peanuts O Peter's blood has mast cells and basophils carrying IgAs that match an antigen on peanuts Sive Answer 1 points Statement 1: The cell-mediated immune response is brought about by T cells Statement 2: In humoral immunity, some B cells become memory cells which are long-lived cells that can recognize an antigen that once already infected the body O Statement 1 is true. Statement 2 is false. Statement 2 is true. Statement 1 is false O Both statements are true Both statements are false.

Answers

Dendritic cells are phagocytes with professional antigen-presenting properties. Neutrophils circulate as part of the blood and act as surveillance to detect presence of pathogens.

The correct answer is that statement 1 is true and statement 2 is false. Fever is a sign of pathogen infection. Vasodilation is a type of immune response that can cause redness and swelling at the infection site. The correct answer is that both statements are true.

Passive immunity is antibodies transferred to the fetus from the mother across the placenta.The precise molecular difference in Peter's bloodstream responsible for this is Peter's blood has mast cells and basophils carrying IgEs that match an antigen on peanuts.

To more about phagocytes visit:

https://brainly.com/question/30802935

#SPJ11

True or False: A piece of silver can be cut indefinitely into pieces and still retain all of the properties of silver Al Truc. All particles, including subatomic particles that make up the element, possess the proporties of the element. B) True. Atoms are the smallest units of matter, are indivisible, and possess the properties of their element. C) False. Once the pieces are smaller than an atom of silver, the pieces no longer retain the properties of silver D) False. Silver atoms are too small to possess the properties of silver E) False. As a piece of silver is cut into smaller pieces, the atoms begin to take on the properties of smaller elements on

Answers

The statement "False. Once the pieces are smaller than an atom of silver, the pieces no longer retain the properties of silver" is the correct answer to this question.

Elements are made up of atoms that are identical in nature, including their physical and chemical properties. This is valid for silver as well. A silver atom can be cut into several pieces and still maintain its silver properties.

However, once the pieces are reduced to less than one silver atom, they lose their chemical properties as they no longer have the silver properties.

Once the pieces are smaller than an atom of silver, the pieces no longer retain the properties of silver.

To know more about atom visit:

https://brainly.com/question/1566330

#SPJ11

An enzyme has KM of 5.5 mM and Vmax of 10 mM/min. If [S] is 10 mm, which will increase the velocity more: a 10-fold decrease in Km or a 10-fold increase in Vmax? Explain why with examples.

Answers

A 10-fold decrease in Km will increase the velocity more compared to a 10-fold increase in Vmax in this scenario because it allows the enzyme to achieve its maximum velocity at lower substrate concentrations, making the enzyme more efficient in catalyzing the reaction.

To determine which change, a 10-fold decrease in Km or a 10-fold increase in Vmax, will increase the velocity (V) of the enzyme more, we need to understand their effects on the enzyme kinetics.

Km is a measure of the substrate concentration at which the enzyme achieves half of its maximum velocity. A lower Km value indicates higher affinity between the enzyme and the substrate, meaning the enzyme can reach its maximum velocity at lower substrate concentrations. On the other hand, Vmax represents the maximum velocity that the enzyme can achieve at saturating substrate concentrations.

In this case, when [S] is 10 mM, it is equal to the Km value. If we decrease the Km by 10-fold (to 0.55 mM), it means the enzyme can achieve half of its maximum velocity at a lower substrate concentration. Therefore, a 10-fold decrease in Km will significantly increase the velocity because the enzyme will reach its maximum velocity even at lower substrate concentrations.

In contrast, a 10-fold increase in Vmax (to 100 mM/min) would not have as significant an effect on the velocity at the given substrate concentration. The enzyme can already reach its maximum velocity (10 mM/min) at the current substrate concentration (10 mM), so further increasing the Vmax will not have a substantial impact on the velocity.

Therefore, a 10-fold decrease in Km will increase the velocity more compared to a 10-fold increase in Vmax in this scenario because it allows the enzyme to achieve its maximum velocity at lower substrate concentrations, making the enzyme more efficient in catalyzing the reaction.

Learn more about enzyme kinetics here:

https://brainly.com/question/31589760

#SPJ11

As serum calcium levels drop, which of the following response is INCORRECT? a) PTH increases bone breakdown to release calcium. Ob) PTH secretion increases. Oc) PTH increases vitamin D synthesis, whic

Answers

When the serum calcium levels in the human body drop, the following response is INCORRECT: Prolactin secretion increases.(option b)

Prolactin is a hormone secreted by the anterior pituitary gland in response to low levels of estrogen in the body. It has a variety of functions in the human body, including the stimulation of milk production in lactating women. However, it is not involved in the regulation of calcium levels in the body. Instead, parathyroid hormone (PTH) is responsible for this function.

PTH is released by the parathyroid glands in response to low serum calcium levels. It stimulates the following responses: PTH increases bone breakdown to release calcium .PTH secretion increases. PTH increases vitamin D synthesis, which helps in the absorption of calcium from the gut and prevents its loss through the kidneys. In summary, as serum calcium levels drop, prolactin secretion does not increase, but PTH secretion increases, leading to an increase in bone breakdown, vitamin D synthesis, and calcium absorption.

To know more about estrogen visit:

https://brainly.com/question/30246077

#SPJ11

Name the building block that makes up 40% of the plasma
membrane. (one word)

Answers

The building block that makes up 40% of the plasma membrane is phospholipids.

The plasma membrane is composed primarily of a bilayer of phospholipids. Phospholipids are a type of lipid molecule that consists of a hydrophilic (water-loving) head and two hydrophobic (water-repelling) tails. The hydrophilic heads face the aqueous environment both inside and outside the cell, while the hydrophobic tails are sandwiched between them, forming the interior of the membrane.

These phospholipids arrange themselves in a bilayer structure, with the hydrophilic heads oriented towards the aqueous surroundings and the hydrophobic tails facing inward. This arrangement creates a stable barrier that separates the cell's internal contents from the external environment, controlling the movement of substances in and out of the cell.

Due to their abundance and fundamental role in forming the plasma membrane, phospholipids make up a significant portion of it, accounting for approximately 40% of its composition. Other components of the plasma membrane include proteins, cholesterol, and various types of lipids, but phospholipids are the primary building blocks responsible for its structural integrity and selective permeability.

To learn more about plasma membrane, Visit:

https://brainly.com/question/734740

#SPJ11

In a large population of ragweed, genotype frequencies are in Hardy-Weinberg equilibrium with f(AA) = 0.04, f(Aa) = 0.32, f(aa) = 0.64. This locus is neutral with respect to fitness. Researchers sample 5 individuals from this population to establish a new population of ragweed in a national park. After several generations, the researchers return to the newly established population and find that the A allele has been lost. The most likely reason for this is: Non-random mating with respect to the A allele Drift caused by the sampling error in the founding population selected by the researchers Heterozygote advantage that decreased the homozygous individuals in the population New mutations that removed the A allele from the population Fluctuating selection pressure that vary over time or space

Answers

The most likely reason that the A allele has been lost in the new population of ragweed is due to drift caused by the sampling error in the founding population selected by the researchers.

A being passed on to the next generation should remain constant. However, when researchers sample 5 individuals from this population to establish a new population of ragweed in a national park, there is a chance that the frequency of the alleles will change due to sampling error.

The other options provided in the question, such as non-random mating, heterozygote advantage, new mutations, or fluctuating selection pressure, were not mentioned as factors in this scenario.

To know more about population visit:

https://brainly.com/question/15889243

#SPJ11

What is the function of Troponin C, Troponin I and Troponin T? How do they each cause muscle contraction? Include detail

Answers

Troponin C, Troponin I, and Troponin T are three subunits of the troponin complex found in muscle cells. They play crucial roles in regulating muscle contraction, specifically in skeletal and cardiac muscles.

Troponin C (TnC): Troponin C is a calcium-binding protein that is essential for muscle contraction. It binds to calcium ions (Ca2+) when the concentration of Ca2+ increases in the cytoplasm of muscle cells, triggering a series of events that lead to muscle contraction.

Troponin I (TnI): Troponin I is another subunit of the troponin complex that inhibits the interaction between actin and myosin, two key proteins involved in muscle contraction. Troponin I prevents muscle contraction in the absence of calcium ions. When calcium ions bind to troponin C, it causes a conformational change in troponin I, relieving its inhibitory effect on actin.

Troponin T (TnT): Troponin T is the third subunit of the troponin complex and plays a structural role in muscle contraction. Troponin T binds to tropomyosin, another protein that is associated with the actin filament. When troponin C binds to calcium ions, it induces a conformational change in troponin T, which in turn shifts the position of tropomyosin.

To learn more about troponin complex follow:

https://brainly.com/question/12897154

#SPJ11

describe how breast parenchyma changes with age and parity, and the effect these changes have on the radiographic visibility of potential masses.

Answers

Breast parenchyma undergoes changes with age and parity, which can impact the radiographic visibility of potential masses.

With age, breast parenchyma typically undergoes involution, which involves a decrease in glandular tissue and an increase in fatty tissue. As a result, the breast becomes less dense and more adipose, leading to decreased radiographic density. This decrease in density enhances the visibility of masses on mammograms, as the contrast between the mass and surrounding tissue becomes more apparent.

On the other hand, parity, or the number of pregnancies a woman has had, can influence breast parenchymal changes as well. During pregnancy and lactation, the breast undergoes hormonal and structural modifications, including an increase in glandular tissue and branching ductal structures. These changes can make the breast denser and more fibrous. Consequently, the increased glandular tissue can potentially mask or obscure masses on mammograms due to the similarity in radiographic appearance between dense breast tissue and potential abnormalities.

It is important to note that both age and parity can have variable effects on breast parenchymal changes and the radiographic visibility of masses. While aging generally leads to a reduction in breast density, individual variations exist, and some women may retain denser breast tissue even with increasing age. Similarly, the impact of parity on breast density can vary among individuals.

To ensure effective breast cancer screening, including the detection of potential masses, it is crucial to consider these factors and employ additional imaging techniques such as ultrasound or magnetic resonance imaging (MRI) in cases where mammography may be less sensitive due to breast density or structural changes. Regular breast examinations and discussions with healthcare providers can help determine the most appropriate screening approach for each individual based on their age, parity, and breast density.

learn more about Breast parenchyma here

https://brainly.com/question/1327882

#SPJ11

What is a shared derived characteristic for the stramenopiles?
What is a shared primitive characteristic for this group? How do
these differ from autopomorphies and synapomorpies?

Answers

The shared derived characteristic for the stramenopiles is the presence of two flagella. The presence of chlorophyll c, on the other hand, is a shared primitive characteristic of the stramenopiles.

A shared derived characteristic for the stramenopiles is the presence of two flagella.

One of the flagella has a smooth surface, while the other has fine, hair-like projections known as "straw-like" or "hairy" flagella. This unique flagellar arrangement is a distinguishing feature of the stramenopiles.

A shared primitive characteristic for the stramenopiles is the presence of chlorophyll c.

This type of chlorophyll pigment is also found in other algal groups. Chlorophyll c is considered primitive because it is a common feature among various algal lineages and not specific to the stramenopiles.

Stramenophiles are a specific group of organisms that share common characteristics, including the presence of two flagella with distinct structures. Autapomorphies are uniquely derived characteristics specific to individual taxa, while synapomorphies are shared derived characteristics that indicate common ancestry between multiple taxa.

Therefore, the shared derived characteristic and shared primitive characteristic for the stramenopiles is the presence of two flagella and chlorophyll c respectively.

To know more about Stramenopiles, click here:

https://brainly.com/question/29482606

#SPJ4

Please read all: (This is technically neuro-physiology so
hopefully putting this under anatomy and phys was the correct
idea)
Compare and contrast LTP, mGluR-LTD and
NMDAR-LTD.
INCLUDING:
– Inductio

Answers

LTP (Long-Term Potentiation), mGluR-LTD (Metabotropic Glutamate Receptor-Dependent Long-Term Depression), and NMDAR-LTD (N-Methyl-D-Aspartate Receptor-Dependent Long-Term Depression) are three forms of synaptic plasticity that contribute to the modulation of neural connections in the brain. Here's a comparison and contrast between these processes:

1. Induction:

- LTP: It is induced by strong and repetitive stimulation of the presynaptic neuron, leading to the activation of NMDA receptors and subsequent calcium influx.

- mGluR-LTD: It is induced by the activation of metabotropic glutamate receptors (mGluRs) located on the postsynaptic neuron.

- NMDAR-LTD: It is induced by low-frequency stimulation of the presynaptic neuron, resulting in the activation of NMDA receptors.

2. Mechanism:

- LTP: It involves the strengthening of synaptic connections through increased synaptic efficacy, primarily mediated by an increase in the number and activity of AMPA receptors.

- mGluR-LTD: It leads to the weakening of synaptic connections through the activation of intracellular signaling pathways that result in the removal of AMPA receptors from the postsynaptic membrane.

- NMDAR-LTD: It also leads to the weakening of synaptic connections, primarily by reducing the number and function of AMPA receptors.

3. Receptor Involvement:

- LTP: NMDA receptors play a crucial role in the induction of LTP, as their activation is necessary for calcium influx and subsequent signaling events.

- mGluR-LTD: Metabotropic glutamate receptors (mGluRs) are involved in the induction of mGluR-LTD, as their activation triggers intracellular cascades leading to synaptic depression.

- NMDAR-LTD: NMDA receptors are involved in the induction of NMDAR-LTD, although their activation under low-frequency stimulation leads to different signaling pathways compared to LTP.

4. Duration and Persistence:

- LTP: It is characterized by long-lasting potentiation of synaptic strength and can persist for hours to days.

- mGluR-LTD: It leads to long-term depression of synaptic strength and can persist for an extended period.

- NMDAR-LTD: It also results in long-term depression but can be reversible and transient.

In summary, LTP involves the strengthening of synaptic connections, mGluR-LTD and NMDAR-LTD involve the weakening of synaptic connections, and they differ in their induction mechanisms, receptor involvement, and persistence. These processes collectively contribute to synaptic plasticity and play a crucial role in learning, memory, and brain function.

To know more about NMDAR-LTD click here:

https://brainly.com/question/30509881

#SPJ11

Can
you help me to solve those questions?
Your male patient is in renal (kidney) failure. His recent blood tests indicated a hematocrit of 24%. (8 points) ■ Is this level of hematocrit normal or abnormal? Explain what information the hemato

Answers

A hematocrit level of 24% is considered abnormal or low. Hematocrit refers to the percentage of red blood cells (RBCs) in the total volume of blood.

Low hematocrit can indicate several conditions, and in the context of a patient with renal (kidney) failure, it can be attributed to several factors:

Anemia: Kidney failure can lead to decreased production of erythropoietin, a hormone responsible for stimulating red blood cell production in the bone marrow. Reduced erythropoietin levels can result in anemia, characterized by a low hematocrit level.

Blood loss: Patients with kidney failure may experience gastrointestinal bleeding or require frequent blood sampling for various tests. These factors can contribute to a decrease in hematocrit levels.

Fluid overload: Kidney failure can lead to fluid retention and an expansion of blood volume. Although the absolute number of red blood cells may be normal, the diluted blood volume can result in a lower hematocrit percentage.

To learn more about hematocrit level follow:

https://brainly.com/question/11141547

#SPJ11

in this part of the lab, the images will be converted from colour to grey scale; in other words a PPM image will be converted to the PGM format. You will implement a function called "BUPT_format_converter" which transforms images from colour to grey-scale using the following YUV conversion:
Y = 0.257 * R + 0.504 * G + 0.098 * B + 16
U = -0.148 * R - 0.291 * G + 0.439 * B + 128
V = 0.439 * R - 0.368 * G - 0.071 * B + 128
Note swap of 2nd and 3rd rows, and sign-change on coefficient 0.368
What component represents the luminance, i.e. the grey-levels, of an image?
Use thee boxes to display the results for the colour to grey-scale conversion.
Lena colour (RGB)
Lena grey
Baboon grey
Baboon colour (RGB)
Is the transformation between the two colour-spaces linear? Explain your answer.
Display in the box the Lena image converted to YUV 3 channels format.

Answers

The brightness or greyscale of an image is represented by the luminance component in the YUV colour space. The brightness is determined by the Y component in the supplied YUV conversion formula.

The original RGB image's red, green, and blue (R, G, and B) components are weighted together to create this value. The percentage each colour channel contributes to the final brightness value is determined by the coefficients 0.257, 0.504, and 0.098. It is not linear to convert between the RGB and YUV colour spaces. Weighted combinations of the colour components are used, along with nonlinear conversions. In applications where colour fidelity may be less important than brightness information, the YUV colour space separates the luminance information from the chrominance information, enabling more effective image reduction and processing. The The box will show the Lena image in a YUV format with three channels (Y, U, and V).

learn more about luminance here:

https://brainly.com/question/33298414

#SPJ11

Question 8.9 of 31 A FLAG QUESTION A species of butterfly is codominant for wing color. If a blue butterfly (D) mates with a yellow butterfly by what would their spring look like! Answers A-D А blue

Answers

A species of butterfly is codominant for wing color. If a blue butterfly mates with a yellow butterfly, their offspring would be green. When two codominant alleles are inherited, both traits are seen in offspring.

The cross between blue (DD) and yellow (DD) butterfly would produce offspring with genotype Dd, resulting in green wings, which is the intermediate color between blue and yellow. The blending of both colors results in an entirely new color altogether that is green in this case.

The blending happens because neither allele is dominant. Codominance is the relationship between two different versions of a gene, where both alleles are expressed simultaneously. Codominance is different from incomplete dominance, which happens when two different alleles for the same trait combine and form an intermediate phenotype.

For example, a cross between a red (RR) and white (WW) flower produces pink (RW) flowers, which are a mix of both colors.In conclusion, when a blue butterfly (DD) mates with a yellow butterfly (DD), their offspring would have a green (Dd) phenotype.

The new color that is produced is the result of codominance, which is when both alleles are expressed simultaneously.

Know more about offspring here:

https://brainly.com/question/14128866

#SPJ11

PLEASE ANSWER BOTH
1- All the following diseases may be associated with Claviceps purpurea, except one:
a. It produces aflatoxins.
b. It produces amatoxins.
c. It grows in the human respiratory tract.
d. It causes a specific skin rash.
e. It produces ergotism.
2 - Which one of the following characteristic signs of toxic shock syndrome is correct?
a. TSS is a self-limiting disease that resolves in a couple of days.
b. Only topical antibiotics are effective.
c. Symptoms are high temperature, vomiting, diarrhea, fainting, severe muscle aches, and peeling of the skin.
d. TSS is a fungal infection.
e. It is only occurring in children with weakened immune system.

Answers

It grows in the human respiratory tract. Claviceps purpurea is a parasitic fungus that attacks the ovaries of cereals and grasses, causing the disease known as ergot. Hence option C is correct.

It produces ergotism (a disease resulting from prolonged ingestion of ergot-contaminated grains) which can cause hallucinations, severe gastrointestinal upset, gangrene, and death. Aflatoxins and amatoxins are produced by fungi other than Claviceps purpurea. 2. The correct characteristic sign of toxic shock syndrome is c. Symptoms are high temperature, vomiting, diarrhea, fainting, severe muscle aches, and peeling of the skin.

Toxic shock syndrome (TSS) is a rare but life-threatening disease caused by toxins produced by bacteria such as Staphylococcus aureus and Streptococcus pyogenes. It can cause high fever, rash, low blood pressure, and organ failure. Treatment includes antibiotics and supportive care.

To know more about Claviceps purpurea visit

https://brainly.com/question/8773939

#SPJ11

Three genotypes in a very large population have, on average, the following values of survival and fecundity, regardless of their relative frequencies: Genotype A1A1 A1A2 A2A2 Survival to adulthood (viability) 0.80 0.90 0.50 Number of offspring 3.0 4.0 8.0 Absolute fitness 2.4 3.6 4.0 Which of the following best describes what will happen at this locus in the long run? There will be a stable polymorphism because the heterozygote has a higher survival rate than either homozygote. Nothing will happen because the differences among genotypes in survival and fecundity cancel each other out. Allele A2 will be fixed eventually. One allele will be fixed but we cannot predict which one. Allele Al will be fixed eventually.

Answers

The population under observation has three genotypes: A1A1, A1A2, and A2A2. These genotypes have survival rates of 0.80, 0.90, and 0.50, and fecundity rates of 3.0, 4.0, and 8.0, respectively.

The absolute fitness of these genotypes is 2.4, 3.6, and 4.0, respectively. Which of the following statements best describes what will happen to the locus in the long run? Allele A2 will eventually become fixed is the correct option. This is due to the fact that allele A2 has the highest fitness of the three alleles, with a fitness of 4.0, and will thus outcompete the other two alleles in the population over time. Eventually, A2 will become the only allele present in the population because it is more effective at reproducing and surviving than A1. Over time, A2 will increase in frequency while A1 will decrease, and ultimately, A2 will become fixed in the population because it will be the only allele remaining.

Therefore, allele A2 will be fixed eventually. The statement "There will be a stable polymorphism because the heterozygote has a higher survival rate than either homozygote" is incorrect.

To know more about population visit:

https://brainly.com/question/15889243

#SPJ11

In the process of megasporogenesis, the ______ divides______.
a. megasporocyte; mitotically
b. megasporocyte; meiotically
c. megaspores; meiotically

Answers

The megasporocyte splits meiotically throughout the megasporogenesis process.Megaspores are created in plant ovules by a process called megasporogenesis.

It takes place inside the flower's ovary and is an important step in the development of female gametophytes or embryo sacs.

Megasporogenesis involves the division of the megasporocyte, a specialised cell. Megaspores are produced by the megasporocyte, a diploid cell, during meiotic division. Meiosis is a type of cell division that generates four haploid cells during two rounds of division. The megasporocyte in this instance goes through meiosis to create four haploid megaspores.The female gametophyte, which is produced by the megaspores after further development, contains the egg cell and other cells required for fertilisation. This method of

learn more about Megaspores here :

https://brainly.com/question/32253393

#SPJ11

what are qualities common to plants pollinated at
night?

Answers

Plants that are pollinated at night typically have several qualities that help attract nocturnal pollinators which include: Strong Fragrances, Light-Colored Flowers, Large Flower Size, Production of Nectar, and Sturdy Structure.

1. Strong Fragrances: Flowers that release strong scents are easier for night-flying insects like moths and bats to detect. The fragrance often differs from that of day-blooming flowers, attracting the nocturnal pollinators that are more active at night.

2. Light-Colored Flowers: Insects that are active at night are usually attracted to lighter colors. Since most night-blooming plants are pollinated by nocturnal insects, they are more likely to be light-colored.

3. Large Flower Size: The size of the flowers is often larger and more complex to capture the attention of the night-flying animals.

4. Production of Nectar: Flowers that produce nectar provide an additional reward to their nocturnal pollinators. Since nectar is a good source of food for many animals, nocturnal pollinators are attracted to nectar-rich flowers.

5. Sturdy Structure: Night-blooming flowers have sturdy structures to withstand harsh winds. Wind resistance is important to ensure the flowers aren't damaged by the nightly winds.

Learn more about nocturnal pollinators here: https://brainly.com/question/30421059

#SPJ11

8. Compare between the pace maker action potential and the cardiomyocytes action potential.

Answers

Pacemaker action potential is generated in the sinoatrial node of the heart. The pacemaker action potential is different from that of cardiomyocytes action potential due to its spontaneous and rhythmic nature.

The cells that are involved in the pacemaker action potential are more automatic and have less of a stable membrane potential. Cardiomyocyte action potential, on the other hand, is produced by the cardiac muscle cell that is located in the heart's muscular tissue.

The cardiomyocytes action potential is slow compared to that of the pacemaker action potential. The cardiomyocytes action potential is only triggered when the cells are stimulated, unlike the pacemaker action potential that is spontaneous and does not require stimulation to occur.
To know more about potential visit:

https://brainly.com/question/28300184

#SPJ11

To correct sickle-cell anemia via gene therapy using a viral vector, the cells that would need to be collected from a sickle cell patient are called:
a. embryonic stem cells.
b. mesenchymal stem cells.
c. totipotent stem cells.
d. hematopoietic stem cells.
e. neural stem cells.

Answers

To correct sickle-cell anemia via gene therapy using a viral vector, the cells that would need to be collected from a sickle cell patient are hematopoietic stem cells. The correct option is d.

Hematopoietic stem cells are the cells responsible for generating the various types of blood cells, including red blood cells. In sickle-cell anemia, there is a mutation in the gene that codes for hemoglobin, resulting in the production of abnormal hemoglobin molecules that cause the characteristic sickle-shaped red blood cells.

To correct this mutation, gene therapy can be performed by introducing a functional copy of the gene into the patient's cells. Hematopoietic stem cells are an ideal target for gene therapy in sickle-cell anemia because they are the precursor cells that give rise to red blood cells.

By collecting hematopoietic stem cells from the patient, modifying them with the functional gene using a viral vector (such as a modified virus), and then reintroducing these genetically modified cells back into the patient's body, it is possible to restore normal hemoglobin production and alleviate the symptoms of sickle-cell anemia.

Therefore, the correct answer is d.

Here you can learn more about sickle-cell anemia

https://brainly.com/question/1189841#

#SPJ11  

Prokaryotic genomes can be said to be and as compared to eukaryotic ones. O gene dense; non-coding DNA poor gene poor, non-coding DNA rich gene poor; non-coding DNA poor O gene dense; non-coding DNA rich

Answers

Prokaryotic genomes can be said to be gene dense; non-coding DNA poor, as compared to eukaryotic ones. Prokaryotes have single, circular chromosomes which contain most of their genetic material, whereas eukaryotes have multiple linear chromosomes enclosed in a nucleus.

Prokaryotes are unicellular organisms that lack a true nucleus and membrane-bound organelles, while eukaryotes are organisms that have a true nucleus and membrane-bound organelles, like mitochondria, chloroplasts, and a Golgi apparatus. Eukaryotic DNA is wound around histones to form nucleosomes, which give the chromatin its structure and organization. Non-coding DNA accounts for the majority of the DNA in eukaryotes, while prokaryotes have a relatively small amount of non-coding DNA.Prokaryotic genomes are gene-rich because they have evolved to be very efficient. The high gene density is a result of the compact organization of prokaryotic genomes, which allows them to fit into a small cell. In comparison, eukaryotic genomes are much larger and more complex than prokaryotic ones. Eukaryotic DNA contains introns and exons, which can be alternatively spliced to produce a variety of protein isoforms. As a result, eukaryotic genomes are able to produce a greater diversity of proteins than prokaryotic ones.In conclusion, prokaryotic genomes are gene dense and non-coding DNA poor, while eukaryotic genomes are gene poor, non-coding DNA rich, and more complex.

To know more about Prokaryotic genomes visit:

https://brainly.com/question/31568628

#SPJ11

Other Questions
Thermodynamic Properties and Processes a) Sketch a plot showing three lines of constant temperature (isotherms) on a Pressure v Specific volume diagram. Clearly indicate the liquid, vapour and two-phase regions. [ a. Draw two separate flow charts (one for lower temperaturesand another for increased temperatures). Show the homeostaticresponses that occur for each (including both physiological andbehavioral re A ladder and a person weigh 15 kg and 80 kg respectively, as shown in Figure Q1. The centre of mass of the 36 m ladder is at its midpoint. The angle a = 30 Assume that the wall exerts a negligible friction force on the ladder. Take gravitational acceleration as 9.81m/s? a) Draw a free body diagram for the ladder when the person's weight acts at a distance x = 12 m Show all directly applied and reaction forces. A coin is chosen at random from a set of two coins: one coin in the set is fake with both sides showing "Tails," while the other coin in the set is a real and fair coin with one side showing "Heads" a For reference, the Nernst equation Ex = 60/z log10 ([X1]/[X2]); show all calculation steps to obtain full credits for each question a) Consider a cell that has a Cat* equilibrium potential of +180 mV. What is the ratio of ++ extra- and intracellular concentrations? (Show all the steps; specify which side is greater; 5pts). b) If the cell membrane potential were set to +150 mV, in which direction would Ca++ flow? Explain. (5 pts) 10. (D) ALTEN 510 M (i) There is a Prokaryotic structure discussed in class and seen in both GN and GP bacteria that can be used to protect the cell from viral infection. Name the structure and explain how it would protect the cell.(ii) In comparing the growth rates of two viruses, Virus A grows slower than Virus B. Explain why might this be the case? Both viruses are enveloped and are the same size.(iii) Antiviral chemicals often target or prevent the early replication steps of a viral infection or the viral replication cycle. Explain why.(iv) Explain why viruses can infect and replicate in bacterial host cells in the lag phase of a closed system growth curve. When the following equation is balanced correctly under acidicconditions, what are the coefficients of the species shown?____Fe3+ +_____ClO3-______Fe2++ _____ClO4-Water appears in the balanced A 32-year-old woman was referred to a teaching hospital with a blood pressure of 220/120 mm Hg. Her hypertension appeared during a pregnancy, 6 years previously, and over the years has been treated with a variety of antihypertensive drugs. Blood pressure was equal in all 4 extremities, and bilateral abdominal bruits were noted on physical examination. Fundoscopy showed A/V nicking, extensive hemorrhages and exudates. Her serum & urine laboratory values were within normal limits except her serum K+ 3.3 mEq/L (4). A renal arteriogram revealed bilateral fibromuscular dysplasia, with evidence of high-grade obstruction on the left side. How is the afferent arteriolar pressure in the affected kidney? How is the GFR in the affected kidney? How is the excretion of Na+ and water in the left kidney? How about in the right one? How is Renin secretion by the left kidney? How about by the right one? How do you explain the plasma [K+] of the patient Which is the mechanism causing the patients hypertension? (i) Stars less massive than about 10 Mo end their lives as white dwarfs, while stars with initial masses between 10 and approximately 15 M. become neutron stars. Explain the cause of this difference. Describe a vaccination. What are the component(s) found in a vaccine that makes them effective? What happens in the body when a vaccine is administered? Finally, list and compare and contrast 3 different types (NOT the specific vaccine target, i.e. flu, rabies, tetanus) of vaccines available (How they are created & how they differ from each other). A drive system consists of single strand Roller chain with a * inch pitch running on a 17 tooth drive input sprocket with a speed ratio of 2.7: 1 (The output shaft rotates 2.7 times faster than the input). Use the accepted initial design parameter for roller chains, Center distance D+ (0.5)d Find Required number of teeth on driven sprocket Sprocket pitch diameters (driver and driven) Total Chain Length in inches Chain Velocity in Feet per minute if the drive sprocket is attached to a 3600 rpm three phase electric motor. What would happen during DNA extraction process, ifyou forgot to add in the soap solution? Please provide answers foreach boxes.The population of a certain country was approximately 100 million in 1900,200 million in 1950 , and 350 million in 2000 . Construct a model for this data by finding a quadratic equation whose graph pa An organism takes up 4 subdivisions (or 4 o.s/4 ocular spaces) when viewed with the 100x objective. How big is the organism? Asailboat costs $25,385. You pay 5% down and amortize the rest withthe equal monthly payments over a 13 year period. If you must pay6.6% compounded monthly, what is your monthly payment? How muchi You add 20C water to 0.20 kg of 40C soup. After a little mixing, the water and soup mixture is at 34C. The specific heat of the soup is 3800 J/kgC and specific heat of the water is 4180 J/kgC.A.) Determine the mass of the water.B.) Determine the charge in the thermal energy of the water.C.) Determine the change in the thermal energy of the soup. Kilograms of Saturated water liquid at 200kPa is in a constant pressure piston cylinder. At this state the piston is 0.1 m from the cylinder bottom. The water is heated to occupy 200 times the original volume:a) initial volume in m3b) initial temperature in Cc) final volume in m3d) final quality X2 When 4.84 g of a nonelectrolyte solute is dissolved in water to make 425 mL of solution at 26 C, the solution exerts an osmotic pressure of 967 torr. What is the molar concentration of the solution? Please answer the following questions to the best of your ability. Make sure that it is a 200-word paragraph for each question, DO NOT PLAGIARIZE1. What are the 5 themes of geography in Marrakech as you answer the question, please make sure to include the Area, Place, Human-Environment Interaction, Movement, and Region.2. What are the 5 themes of geography in Melbourne as you answer the question, please make sure to include the Area, Place, Human-Environment Interaction, Movement, and Region. Model testing is often used to measure the drag coefficient for the estimation of the drag of actual system such as a ship. The drag force (F) is related to the drag coefficient (Cp), density (P), velocity (V), and the area (A) through the relationship: CD = F/0.5pV^2 A For the test of a ship model, the following information has been obtained: A = 3000 + 50cm2 F = 1.70 + 0.05kN V = 30.0 + 0.2 m/s p = 1.18 + 0.01kg/m3 Determine the value of Cp and the maximum possible error.