To solve the given problem, we can use the principle of conservation of energy, which states that the total energy of an isolated system remains constant.
A) To find the mass of the water, we can use the equation:
m1 * c1 * ΔT1 = m2 * c2 * ΔT2
where m1 and m2 represent the masses of the water and soup, c1 and c2 are the specific heats, and ΔT1 and ΔT2 are the temperature changes.
Plugging in the given values:
(0.20 kg) * (4180 J/kg⋅∘C) * (34∘C - 20∘C) = m2 * (3800 J/kg⋅∘C) * (34∘C - 40∘C)
Solving for m2, the mass of the water:
m2 ≈ 0.065 kg
B) The change in thermal energy of the water can be calculated using the formula:
ΔQ = m2 * c2 * ΔT2
ΔQ = (0.065 kg) * (4180 J/kg⋅∘C) * (34∘C - 40∘C) ≈ -1611 J
C) The change in thermal energy of the soup can be determined using the equation:
ΔQ = m1 * c1 * ΔT1
ΔQ = (0.20 kg) * (3800 J/kg⋅∘C) * (34∘C - 20∘C) ≈ 1296 J
to learn more about energy click here:brainly.com/question/8630757
#SPJ11
Obtain the thermal velocity of electrons in silicon crystal
(vth), mean free time, and mean free path by calculation. Indicate
the procedure.
The thermal velocity of electrons in Silicon Crystal (vth), mean free time, and mean free path can be obtained by calculation. Here is the procedure to obtain these quantities:
Procedure for obtaining vth:We know that the thermal velocity (vth) of electrons in Silicon is given by: [tex]vth = sqrt[(3*k*T)/m][/tex] Where k is the Boltzmann's constant, T is the temperature of the crystal, and m is the mass of the electron.
To calculate vth for Silicon, we need to use the values of these quantities. At room temperature [tex](T=300K), k = 1.38 x 10^-23 J/K and m = 9.11 x 10^-31 kg[/tex]. Substituting these values, we get: [tex]vth = sqrt[(3*1.38x10^-23*300)/(9.11x10^-31)]vth = 1.02 x 10^5 m/s[/tex] Procedure for obtaining mean free time:
Mean free time is the average time between two successive collisions. It is given by:τ = l/vthWhere l is the mean free path.
Substituting the value of vth obtained in the previous step and the given value of mean free path (l), we get:τ = l/vth
Procedure for obtaining mean free path:Mean free path is the average distance covered by an electron before it collides with another electron. It is given by:l = vth*τ
Substituting the values of vth and τ obtained in the previous steps, we get:[tex]l = vth*(l/vth)l = l[/tex], the mean free path is equal to the given value of l.
Hence, we have obtained the thermal velocity of electrons in Silicon Crystal (vth), mean free time, and mean free path by calculation.
To know about velocity visit:
https://brainly.com/question/30559316
#SPJ11
6. For a quantum mechanical system with the Hamiltonian H = hwZ, (a) Find the unitary matrix corresponding to exp(-itH) (b) Find the final state (t₂)) given the initial state (t₁ = 0)) = (10) + 1)
Given that the Hamiltonian is H = hwZ, we have to find the unitary matrix corresponding to exp(-itH) and the final state given the initial state.
Find the unitary matrix corresponding to exp(-itH)The unitary matrix corresponding to exp(-itH) is given as follows:exp(-itH) = e^(-ithwZ),where t represents the time and i is the imaginary unit. Hence, we have the unitary matrix corresponding to exp(-itH) as U = cos(hw t/2) I - i sin(hw t/2) Z,(b) Find the final state (t₂)) given the initial state (t₁ = 0)) = (10) + 1)The initial state is given as (t₁ = 0)) = (10) + 1).
We have to find the final state at time t = t₂. The final state is given by exp(-itH) |ψ(0)>where |ψ(0)> is the initial state. Here, the initial state is (10) + 1). Hence, the final state is given as follows: exp(-itH) (10) + 1) = [cos(hw t/2) I - i sin(hw t/2) Z] (10 + 1) = cos(hw t/2) (10 + 1) - i sin(hw t/2) Z (10 + 1)= cos(hw t/2) (10 + 1) - i sin(hw t/2) (10 - 1)= cos(hw t/2) (10 + 1) - i sin(hw t/2) (10 - 1)Therefore, the final state is [(10 + 1) cos(hw t/2) - i (10 - 1) sin(hw t/2)] . Therefore, the final state at time t₂ is given as follows:(10 + 1) cos(hw t/2) - i (10 - 1) sin(hw t/2)I hope this helps.
To know more about Hamiltonian visit:
https://brainly.com/question/33266122
#SPJ11
3 questions about quantum
Ehrenfest theorem [10 points]
Consider a particle moving in one dimension with Hamiltonian H
given by
p
2
H = + V (x).
2m
Show that the expectation values hxi and hpi are tim
5. Ehrenfest theorem [10 points] Consider a particle moving in one dimension with Hamiltonian H given by p² H = +V(x). 2m Show that the expectation values (x) and (p) are time-dependent functions tha
Ehrenfest theorem, the expectation values of position and momentum obey the following equations of motion: d(x)/dt = (p/m) and
d(p)/dt = -dV(x)/dx.The three questions about quantum are as follows:
The Hamiltonian for a particle moving in one dimension is given by the following formula: H = (p^2/2m) + V(x) where p is the momentum, m is the mass, and V(x) is the potential energy function.
2) What are the expectation values (x) and (p).The expectation values (x) and (p) are given by the following formulae: (x) = h(x) and (p) = h(p) where h denotes the expectation value of a quantity.
3) How do (x) and (p) vary with time.The expectation values (x) and (p) are time-dependent functions that are given by the Ehrenfest theorem.
According to the Ehrenfest theorem, the expectation values of position and momentum obey the following equations of motion: d(x)/dt = (p/m) and
d(p)/dt = -dV(x)/dx.
To know more about Ehrenfest theorem visit:
https://brainly.com/question/33292862
#SPJ11
ATT 24. Which of the following is (a) unique to muscle cells, compared with the other pes of muscle cells? A. Produce endomysium Utilize calmodulin can contact Oven when maximally stretched D. Self-ex
Among the following choices, the one that is unique to muscle cells, compared with the other pes of muscle cells is D. Self-excitable.Pacemaker cells are cells that are self-excitable.
This means that these cells are capable of generating action potentials spontaneously and rhythmically without any external stimulation pacemaker cells in the heart and the gastrointestinal tract can generate action potentials by themselves without any external stimuli.Muscle cells are unique in many ways.
They have special cellular structures, such as myofibrils and sarcomeres, that enable them to contract and generate force. Muscle cells also have a high concentration of mitochondria, which produce energy for the cell through cellular respiration.
To know more about unique visit:
https://brainly.com/question/1594636
#SPJ11
find I_x by using mesh analysis
please include explanation
i think the answer should be 0.75A?
To solve for the current Ix by using mesh analysis, the following steps need to be followed:Step 1: Label the mesh currents. Choose a direction for each mesh current.
There will be n-1 mesh currents, where n is the number of meshes. The number of meshes depends on the number of independent loops in the circuit. It's essential to label the current in the direction of mesh current for proper calculation. Mesh currents in the circuit are labelled as I1, I2, and I3, and they are taken clockwise.Step 2: Assign voltage terms. Assign a voltage term to each mesh current. The voltage term is positive when it is in the direction of the mesh current and negative when it is in the opposite direction. Using Ohm's law, the voltage terms are determined by multiplying the resistance by the current in each branch. V1 = R1I1, V2 = R2I2, and V3 = R3(I2 - I1)Step 3: Write equations for each mesh using KVL (Kirchhoff's Voltage Law).
Write an equation for each mesh current using KVL (Kirchhoff's Voltage Law). Start with the outermost mesh and move inwards. Sum the voltage drops for all elements (resistors, voltage sources) in the mesh. The sum should equal zero for the current mesh. Mesh equations are written as:Mesh1: V1 + V2 - V3 = 0Mesh2: V3 - Vs = 0Step 4: Solve the mesh equations. Using the mesh equations, solve for each mesh current. A simultaneous equation system can be obtained by substituting each voltage term from step 2 into each mesh equation from step 3.Mesh1: (R1 + R2)I1 - R3I2 = 0Mesh2: R3I1 - Vs = 0Step 5: Solve for Ix in the circuit.Using the Ohm's law I = V/R for the resistor between node 3 and 4, solve for the current Ix. In this case, Ix = (V3 - V4)/R4 = R4(I2 - I1) / R4 = I2 - I1. Ix = I2 - I1 = 0.75A. Therefore, Ix is 0.75A.
To know more about KVL visit:-
https://brainly.com/question/15121145
#SPJ11
how does the orientation of a secondary coil relative to a primary coil affect the response to a varying current
The orientation of a secondary coil relative to a primary coil has a significant impact on the response to a varying current. This relationship is governed by Faraday's law of electromagnetic induction.
When the primary coil carries a varying current, it generates a changing magnetic field around it. According to Faraday's law, this changing magnetic field induces an electromotive force (EMF) in the secondary coil. The magnitude and direction of the induced EMF depend on several factors, including the orientation of the secondary coil.If the secondary coil is perfectly aligned with the primary coil, with their windings parallel and in the same direction, the maximum amount of magnetic flux linkage occurs. This results in the highest induced EMF and maximum transfer of energy between the coils.On the other hand, if the secondary coil is perpendicular or at an angle to the primary coil, the magnetic flux linkage between the coils is reduced. This leads to a lower induced EMF and decreased transfer of energy.
To learn more about Faraday's law:
https://brainly.com/question/1640558
#SPJ11
Please, choose the correct solution from the list below. What is the force between two point-like charges with magnitude of 1 C in a vacuum, if their distance is 1 m? a. N O b. 9*10⁹ N O c. 1N O d.
The force between two point-like charges with magnitude of 1 C in a vacuum, if their distance is 1 m is b. 9*10⁹ N O.
The Coulomb’s law of electrostatics states that the force of attraction or repulsion between two charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. Mathematically, Coulomb’s law of electrostatics is represented by F = k(q1q2)/d^2 where F is the force between two charges, k is the Coulomb’s constant, q1 and q2 are the two point charges, and d is the distance between the two charges.
Since the magnitude of each point-like charge is 1C, then q1=q2=1C.
Substituting these values into Coulomb’s law gives the force between the two point-like charges F = k(q1q2)/d^2 = k(1C × 1C)/(1m)^2= k N, where k=9 × 10^9 Nm^2/C^2.
Hence, the correct solution is b. 9*10⁹ N O.
Learn more about Coulomb’s law at:
https://brainly.com/question/506926
#SPJ11
Faulty valves in the veins of the lower extremity would
most directly impact
A-VO2 difference
VO2max
Heart rate
Stroke Volume
Option (a), The faulty valves in the veins of the lower extremity would most directly impact the VO2 difference.
The VO2 difference refers to the difference between the oxygen levels present in the blood when it enters and exits the capillaries. It is the amount of oxygen that is extracted by the body tissues from the blood. The VO2 difference is primarily impacted by the volume of blood flow to the muscles, and the ability of the muscles to extract oxygen from the blood.
Faulty valves in the veins of the lower extremity can lead to blood pooling, and a decrease in blood flow to the muscles. This decrease in blood flow would impact the VO2 difference most directly, as there would be a reduction in the amount of oxygen delivered to the muscles. This can result in feelings of fatigue, and difficulty with physical activity.
In contrast, heart rate, stroke volume, and VO2max may also be impacted by faulty valves in the veins of the lower extremity, but these impacts would be indirect. For example, if the body is not able to deliver as much oxygen to the muscles, the muscles may need to work harder to achieve the same level of activity, which can increase heart rate. Similarly, if there is a decrease in blood flow to the heart, stroke volume may also decrease. However, these effects would not impact these measures directly.
Learn more about The VO2 difference: https://brainly.com/question/31602654
#SPJ11
Consider the functions f(x) = x³-6 and g(x)= )=√x+6. (a) Find f(g(x)). (b) Find g(f(x)). (c) Determine whether the functions f and g are inverses of each other. COULD (a) What is f(g(x))? f(g(x)) =
The requried function of function is given as:
(a) [tex]f(g(x)) = ( \sqrt {x + 6}))^3 - 6[/tex],
(b) [tex]g(f(x)) = \sqrt (x^3)[/tex]
(c) The functions f and g are not inverses of each other.
To find f(g(x)), we substitute g(x) into the function f(x).
Given:
[tex]f(x) = x^3 - 6[/tex]
[tex]g(x) = \sqrx + 6[/tex]
(a) Find f(g(x)):
[tex]f(g(x)) = (g(x))^3 - 6[/tex]
Substituting g(x) into f(x):
[tex]f(g(x)) = ( \sqrt x + 6))^3 - 6[/tex]
Therefore, [tex]f(g(x)) = ( \sqrt {x + 6}))^3 - 6[/tex]
Similarly
(b) [tex]g(f(x)) = \sqrt (x^3)[/tex]
(c) It is evident that f(g(x)) ≠ x and g(f(x)) ≠ x. Therefore, the functions f and g are not inverses of each other.
Learn more about function here:
https://brainly.com/question/32543072
#SPJ4
with what minimum speed must you toss a 190 g ball straight up to just touch the 11- m -high roof of the gymnasium if you release the ball 1.1 m above the ground? solve this problem using energy.
To solve this problem using energy considerations, we can equate the potential energy of the ball at its maximum height (touching the roof) with the initial kinetic energy of the ball when it is released.
The potential energy of the ball at its maximum height is given by:
PE = mgh
Where m is the mass of the ball (190 g = 0.19 kg), g is the acceleration due to gravity (9.8 m/s^2), and h is the maximum height (11 m).
The initial kinetic energy of the ball when it is released is given by:
KE = (1/2)mv^2
Where v is the initial velocity we need to find.
Since energy is conserved, we can equate the potential energy and initial kinetic energy:
PE = KE
mgh = (1/2)mv^2
Canceling out the mass m, we can solve for v:
gh = (1/2)v^2
v^2 = 2gh
v = sqrt(2gh)
Plugging in the values:
v = sqrt(2 * 9.8 m/s^2 * 11 m)
v ≈ 14.1 m/s
Therefore, the minimum speed at which the ball must be tossed straight up to just touch the 11 m-high roof of the gymnasium is approximately 14.1 m/s.
Learn more about Kinetic Energy
brainly.com/question/15764612
#SPJ11
A double tube counter flow heat exchanger is used to cool oil (cp=2.20kJ/kg°C) from 110°C to 85°C at a rate of 0.75kg/s by cold water (cp=4.18kJ/kg°C) that enters the heat exchanger at 20°C at a rate 0f 0.6kg/s. If the overall heat transfer coefficient U is 800 W/m2 °C, determine the heat transfer area of the heat exchanger.
The heat transfer area of the double tube counterflow heat exchanger is 0.0104 m^2. We can use the formula:CQ = U * A * ΔTlm
To determine the heat transfer area of the double tube counter flow heat exchanger, we can use the formula:
Q = U * A * ΔTlm
where Q is the heat transfer rate, U is the overall heat transfer coefficient, A is the heat transfer area, and ΔTlm is the logarithmic mean temperature difference.
The heat transfer rate Q can be calculated using:
Q = m1 * cp1 * (T1 - T2)
where m1 is the mass flow rate of oil, cp1 is the specific heat capacity of oil, T1 is the inlet temperature of oil, and T2 is the outlet temperature of oil.
Given:
m1 = 0.75 kg/s (mass flow rate of oil)
cp1 = 2.20 kJ/kg°C (specific heat capacity of oil)
T1 = 110°C (inlet temperature of oil)
T2 = 85°C (outlet temperature of oil)
Q = 0.75 * 2.20 * (110 - 85)
Q = 41.25 kJ/s
Similarly, we can calculate the heat transfer rate for water:
Q = m2 * cp2 * (T3 - T4)
where m2 is the mass flow rate of water, cp2 is the specific heat capacity of water, T3 is the inlet temperature of water, and T4 is the outlet temperature of water.
Given:
m2 = 0.6 kg/s (mass flow rate of water)
cp2 = 4.18 kJ/kg°C (specific heat capacity of water)
T3 = 20°C (inlet temperature of water)
T4 = 85°C (outlet temperature of water)
Q = 0.6 * 4.18 * (85 - 20)
Q = 141.66 kJ/s
Next, we need to calculate the logarithmic mean temperature difference (ΔTlm). For a counter flow heat exchanger, the ΔTlm can be calculated using the formula:
ΔTlm = (ΔT1 - ΔT2) / ln(ΔT1 / ΔT2)
where ΔT1 = T1 - T4 and ΔT2 = T2 - T3.
ΔT1 = 110 - 20
ΔT1 = 90°C
ΔT2 = 85 - 20
ΔT2 = 65°C
ΔTlm = (90 - 65) / ln(90 / 65)
ΔTlm = 19.22°C
Finally, we can rearrange the formula Q = U * A * ΔTlm to solve for the heat transfer area A:
A = Q / (U * ΔTlm)
A = (41.25 + 141.66) / (800 * 19.22)
A = 0.0104 m^2
Therefore, the heat transfer area of the double tube counter flow heat exchanger is 0.0104 m^2.
To learn more about heat exchanger click here
https://brainly.com/question/13088479
#SPJ11
Exercise 1.14. By the time we have read Pascal's work we will be able to show (Exercise 1.38) that n nk+1 įk +? k-1 +?n +0. =k+1+z² nk k+1 = +1 and There is a simple geometric interpretation of the
First, let us look at Exercise 1.38 where we show that n nk+1 įk +? k-1 +?n +0. =k+1+z² nk k+1 = +1. Second, we have to understand that there is a simple geometric interpretation of the results of the previous part.
For the first part, we can start by replacing the left-hand side of the equation with the formula for the sum of kth powers of the first n positive integers. After applying the formula, we obtain a telescoping series that ultimately reduces to k+1+z² nk k+1 = +1.
For the second part, we have to understand that the kth power of an integer can be represented geometrically by a pyramid that has a rectangular base of length n and width k.
Therefore, we can visualize the sum of kth powers of the first n positive integers as a stack of k pyramids of increasing width, with the smallest pyramid having a base of length one and the largest having a base of length n.
As we increase k from 1 to n, the pyramids become wider and form a structure that can be interpreted as a (n+1)-dimensional pyramid.
Finally, we can conclude that Exercise 1.14 relates to the concept of summation of powers of integers and its geometric interpretation. It demonstrates how to use the formula for the sum of kth powers of the first n positive integers and visualize it as a pyramid of (n+1) dimensions.
We can understand that the concepts of summation of powers of integers and its geometric interpretation are essential. It is a demonstration of how to use the formula for the sum of kth powers of the first n positive integers and visualize it as a pyramid of (n+1) dimensions.To understand Exercise 1.14, we can divide it into two parts. Firstly, we need to look at Exercise 1.38, where we show that n nk+1 įk +? k-1 +?n +0. =k+1+z² nk k+1 = +1.
Secondly, we need to understand the simple geometric interpretation of the previous part. The formula for the sum of kth powers of the first n positive integers can be replaced by the left-hand side of the equation. After applying the formula, we obtain a telescoping series that ultimately reduces to k+1+z² nk k+1 = +1.
The kth power of an integer can be represented geometrically by a pyramid that has a rectangular base of length n and width k. The sum of kth powers of the first n positive integers can be visualized as a stack of k pyramids of increasing width, with the smallest pyramid having a base of length one and the largest having a base of length n. As we increase k from 1 to n, the pyramids become wider and form a structure that can be interpreted as a (n+1)-dimensional pyramid.
In conclusion, Exercise 1.14 demonstrates the relationship between summation of powers of integers and its geometric interpretation. It helps us to visualize the formula for the sum of kth powers of the first n positive integers and how it can be represented as a pyramid of (n+1) dimensions.
Learn more about integers here:
brainly.com/question/490943
#SPJ11
2: Consider a linear MCK system as follows: A. Determine the DOF of the system. B. Write the constraint equation for the system. C. Derive the Equation of the motion based on Newtonian Formalism. D. D
Based on the traffic flow model, the city should close the road with the least amount of traffic. From the diagram, we see that the road with the least amount of traffic is Salisbury St.
(a) Constraints:
The flow into and out of Jones St. is equal to the total flow into and out of Salisbury St. and Edenton St.
The flow into and out of McDowell St. is equal to the total flow into and out of Salisbury St. and Edenton St.
The flow into and out of Salisbury St. is equal to the sum of the flow into and out of Jones St. and McDowell St.
The total flow into and out of each street must be greater than or equal to 0.
Let x, y, z, and w be the traffic flow in cars per hour along Jones St., Salisbury St., Edenton St., and McDowell St., respectively. Then the system of linear equations that models this scenario is:
x - y - z = 0
w - y - z = 0
y + z - x - w = 0
x, y, z, w ≥ 0
(b) Augmented matrix representation:
[1 -1 -1 0 | 0]
[0 -1 -1 1 | 0]
[1 -1 1 -1 | 0]
[1 0 0 0 | 0]
Gauss-Jordan reduction:
[1 0 0 0 | 0]
[0 1 0 0 | 0]
[0 0 1 0 | 0]
[0 0 0 0 | 0]
The final augmented matrix is shown above. The solution to the system is x = 0, y = 0, z = 0, and w = 0.
(c) If the city were to close one of these 4 roads, then the traffic would have to be rerouted. Based on the traffic flow model, the city should close the road with the least amount of traffic. From the diagram, we see that the road with the least amount of traffic is Salisbury St. Therefore, the city should close Salisbury St.
Learn more about augmented matrix here: brainly.com/question/16796667
#SPJ4
Please answer
4. A jet of water with an area of 4 in² and a velocity of 175 ft/s strikes a single vane which reverses it through 180 without friction loss. Find the force exerted if the vane moves, (a) In the same
The force exerted by the vane on the water when it moves in the same direction as the jet of water is 680.79 lb.
Given Data:
Area (A) of jet of water = 4 in²
Velocity (V) of jet of water = 175 ft/s
Total Angle (θ) of vane = 180°
(a) If the vane moves in the same direction as the jet of water,
The force exerted by the vane can be calculated as follows:
We know that Force (F) = mass (m) × acceleration (a)
Mass of water flowing per second through the given area can be determined as:
mass = density × volume
density = 1 slug/ft³
Volume (V) = area (A) × velocity (V)
mass = density × volume
mass = 1 × 4/144 × 175
mass = 1.2153 slug
Acceleration of the water can be calculated as:
a = V²/2g sinθ
where g = 32.2 ft/s²
a = (175)²/2 × 32.2 × sin(180)
a = 559.94 ft/s²
Force exerted on the vane can be given as:
F = ma
F = 1.2153 × 559.94
F = 680.79 lb
Therefore, the force exerted by the vane on the water when it moves in the same direction as the jet of water is 680.79 lb.
Conclusion:
Thus, the force exerted by the vane can be given as F = ma, where m is the mass of water flowing per second through the given area and a is the acceleration of the water.
To know more about Acceleration, visit:
https://brainly.com/question/2303856
#SPJ11
Show that the free-particle one-dimensional Schro¨dinger
equation for the wavefunc-
tion Ψ(x, t):
∂Ψ
i~
∂t = −
~
2
2m
∂
2Ψ
,
∂x2
is invariant under Galilean transformations
x
′ = x −
3. Galilean invariance of the free Schrodinger equation. (15 points) Show that the free-particle one-dimensional Schrödinger equation for the wavefunc- tion V (x, t): at h2 32 V ih- at is invariant u
The Galilean transformations are a set of equations that describe the relationship between the space-time coordinates of two reference systems that move uniformly relative to one another with a constant velocity. The aim of this question is to demonstrate that the free-particle one-dimensional Schrodinger equation for the wave function ψ(x, t) is invariant under Galilean transformations.
The free-particle one-dimensional Schrodinger equation for the wave function ψ(x, t) is represented as:$$\frac{\partial \psi}{\partial t} = \frac{-\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$Galilean transformation can be represented as:$$x' = x-vt$$where x is the position, t is the time, x' is the new position after the transformation, and v is the velocity of the reference system.
Applying the Galilean transformation in the Schrodinger equation we have:
[tex]$$\frac{\partial \psi}{\partial t}[/tex]
=[tex]\frac{\partial x}{\partial t} \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial t}$$$$[/tex]
=[tex]\frac{-\hbar}{2m} \frac{\partial^2 \psi}{\partial x^2}$$[/tex]
Substituting $x'
= [tex]x-vt$ in the equation we get:$$\frac{\partial \psi}{\partial t}[/tex]
= [tex]\frac{\partial}{\partial t} \psi(x-vt, t)$$$$\frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x} \psi(x-vt, t)$$$$\frac{\partial^2 \psi}{\partial x^2} = \frac{\partial^2}{\partial x^2} \psi(x-vt, t)$$[/tex]
Substituting the above equations in the Schrodinger equation, we have:
[tex]$$\frac{\partial}{\partial t} \psi(x-vt, t) = \frac{-\hbar}{2m} \frac{\partial^2}{\partial x^2} \psi(x-vt, t)$$[/tex]
This shows that the free-particle one-dimensional Schrodinger equation is invariant under Galilean transformations. Therefore, we can conclude that the Schrodinger equation obeys the laws of Galilean invariance.
To know more about transformation visit:-
https://brainly.com/question/15200241
#SPJ11
Using the wave function
find
Þ(x) = (70²)-1/4 exp(-2² 2 + ikx)
2 (p²/²)
The wave function is an integral part of quantum mechanics and is used to describe the wave-like properties of particles. The wave function is a complex-valued function that describes the probability distribution of finding a particle in a particular state.
In this case, the wave function is given as[tex]Þ(x) = (70²)-1/4 exp(-2² 2 + ikx) 2 (p²/²).[/tex]
This wave function describes a particle in a one-dimensional box with a length of L. The particle is confined to this box and can only exist in certain energy states. The wave function is normalized, which means that the probability of finding the particle anywhere in the box is equal to one. The wave function is also normalized to a specific energy level, which is given by the value of k.
The energy of the particle is given by the equation E = (n² h²)/8mL², where n is an integer and h is Planck's constant. The wave function is then used to calculate the probability of finding the particle at any point in the box.
This probability is given by the absolute value squared of the wave function, which is also known as the probability density. The probability density is highest at the center of the box and decreases towards the edges. The wave function also describes the wave-like properties of the particle, such as its wavelength and frequency.
The wavelength of the particle is given by the equation [tex]λ = h/p[/tex], where p is the momentum of the particle. The frequency of the particle is given by the equation[tex]f = E/h[/tex].
The wave function is a fundamental concept in quantum mechanics and is used to describe the behavior of particles in the microscopic world.
To learn more about microscopic visit;
https://brainly.com/question/1869322
#SPJ11
1. What do you mean by Ultraviolet catastrophe? Explain with proper diagram. If a [S] star has a radius 2.000 times that of the sun and is 100,000 times the luminosity (i.e., total energy radiated by
1. The Ultraviolet Catastrophe refers to the discrepancy between the predicted and observed energy distribution of black body radiation.
2. The ratio of the surface temperature of the [S] star to the sun is 25:1.
Ultraviolet CatastropheThe Ultraviolet Catastrophe refers to a problem in classical physics that arose when attempting to explain the distribution of energy emitted by a blackbody radiator at different wavelengths. According to classical physics, as the wavelength of radiation becomes shorter (towards the ultraviolet region), the energy emitted should increase without bound, leading to an infinite amount of energy. However, this contradicted experimental observations.
The problem can be illustrated with the help of a diagram known as the Rayleigh-Jeans curve, which represents the predicted energy distribution of a blackbody radiator based on classical physics. In the Rayleigh-Jeans curve, the energy emitted increases continuously as the wavelength decreases, resulting in the Ultraviolet Catastrophe.
To resolve this discrepancy, quantum mechanics was introduced, which explained that energy emission and absorption occur in discrete packets called "quanta" or "photons." This led to the development of Planck's law, which accurately describes the energy distribution of a blackbody radiator and avoids the ultraviolet catastrophe by considering energy quantization.
2. Classical physics predicted that the intensity of radiation would increase infinitely as the frequency approached the ultraviolet region, leading to a catastrophic divergence. However, experiments showed that the intensity of radiation reached a peak and then decreased in the ultraviolet region, leading to a discrepancy between theory and observation.
The solution to the ultraviolet catastrophe was provided by Max Planck, who proposed the concept of quantized energy. According to Planck's theory, energy is emitted and absorbed in discrete packets called "quanta" or "photons." This quantum theory of radiation laid the foundation for the development of quantum mechanics.
Regarding the second part of your question, the ratio of the surface temperature of the star ([S]) to the sun ([sun]) can be determined using the Stefan-Boltzmann law, which relates the luminosity, surface temperature, and radius of a star:
(L[S]/L[sun]) = (T[S]⁴ × R[S]²) / (T[sun]⁴ × R[sun]²)
Given that R[S] = 2.000 × R[sun] and L[S] = 100,000 × L[sun], we can solve for (T[S]/T[sun]):
(100,000) = (T[S]⁴ × (2.000 × R[sun])²) / (T[sun]⁴ × R[sun]²)
Simplifying the equation, we get:
(100,000) = (T[S]⁴ × 4.000 × R[sun]²) / (T[sun]⁴ × R[sun]²)
Cancelling out the common terms, we have:
(100,000) = (T[S]⁴ × 4.000) / (T[sun]⁴
Rearranging the equation, we find:
(T[S]/T[sun])⁴ = (100,000) / 4.000 = 25,000
Taking the fourth root of both sides, we obtain:
(T[S]/T[sun]) = 25
Therefore, the ratio of the surface temperature of the star to the sun is 25:1.
Read more on Ultraviolet Catastrophe here: https://brainly.com/question/31877191
#SPJ11
need help asap pls !!
MY NOTES ASK YOUR TEACHER A spaceship hevering ever the surface of Saturn drops an object from a height of 75 m. How much longer does it take to reach the surface than if dropped from the same height
The question asks how much longer it takes for an object to reach the surface of Saturn when dropped from a spaceship hovering over the surface compared to when it is dropped from the same height.
When an object is dropped from a spaceship hovering over the surface of Saturn, it experiences the gravitational pull of Saturn. The time it takes for the object to reach the surface depends on the acceleration due to gravity on Saturn and the initial height from which it is dropped. To determine how much longer it takes to reach the surface compared to a free-fall scenario, we need to compare the times it takes for the object to fall under the influence of gravity in both situations
In the first scenario, when the object is dropped from the spaceship, it already has an initial height of 75 m above the surface. We can calculate the time it takes for the object to fall using the equations of motion and considering the gravitational acceleration on Saturn. In the second scenario, when the object is dropped from the same height without the influence of the spaceship, it falls freely under the gravitational acceleration of Saturn. By comparing the times taken in both scenarios, we can determine how much longer it takes for the object to reach the surface when dropped from the spaceship.
Learn more about space ship:
https://brainly.com/question/30616701
#SPJ11
Calculate the percentage losses for a counting system having a dead time of t=10μsec at true counting rates of 10,000 and 100,000 cps. Note that percentage losses are given by R₁t for small losses
Answer: The percentage losses are 1% at a true counting rate of 10,000 cps and 10% at a true counting rate of 100,000 cps
Explanation: To calculate the percentage losses for a counting system with a dead time, we can use the formula:
Percentage Loss = R * t * 100
Where:
R is the true counting rate in counts per second (cps)
t is the dead time in seconds
Let's calculate the percentage losses for the given true counting rates of 10,000 cps and 100,000 cps with a dead time of 10 μsec (10 × 10^-6 sec):
For the true counting rate of 10,000 cps:
Percentage Loss = 10,000 cps * 10 × 10^-6 sec * 100
Percentage Loss = 1%
For the true counting rate of 100,000 cps:
Percentage Loss = 100,000 cps * 10 × 10^-6 sec * 100
Percentage Loss = 10%
Therefore, for a counting system with a dead time of 10 μsec, the percentage losses are 1% at a true counting rate of 10,000 cps and 10% at a true counting rate of 100,000 cps
To know more about system, visit:
https://brainly.com/question/19843453
#SPJ11
A small bird of mass 50 g is sitting on a wire of length 2 m and mass 150 g. A current of 4.0 A is passing through the wire. A magnetic field B perpendicular to the wire is applied in the region so that the force due to magnetic field balances the weight of the bird and the wire. What is the magnitude of B?
Given data: Mass of bird, mb = 50 g Length of wire, L = 2 mMass of wire, mw = 150 gCurrent, I = 4 A The force due to magnetic field balances the weight of the bird and the wire. Therefore, the net force acting on the wire and the bird is zero.
Mathematically, this is given as:FB + Fg = 0where FB is the force due to the magnetic field acting on the wire and the birdFg is the force of gravity acting on the wire and the birdFg = (mb + mw)gwhere g is the acceleration due to gravity Substituting the values of mb, mw, and g, we getFg = (0.05 + 0.15) × 9.8= 2 N.
For the force due to the magnetic field,FB = BILsinθwhereB is the magnetic field strengthI is the currentL is the length of the wire perpendicular to the magnetic fieldand θ is the angle between the magnetic field and the direction of the currentIn this case, θ = 90° because the magnetic field is perpendicular to the wire. Substituting the values of I, L, and θ, we getFB = BIL = BLI Substituting the value of FB and equating .
To know more about Length visit :
https://brainly.com/question/32123193
#SPJ11
mn² Calculate the rotational kinetic energy in the motorcycle wheel if its angular velocity is 125 rad/s. Assume m-10 kg, R₁-0.26 m, and R₂-0.29 m. Moment of inertia for the wheel I- unit KE unit
Rotational kinetic energy in a motorcycle wheel Rotational kinetic energy in the motorcycle wheel can be calculated using the formula: KE = (1/2) I ω²
Where,I = moment of inertiaω = angular velocity of the wheel The given mass of the wheel is m = 10 kg.
Also, R₁ = 0.26 m and R₂ = 0.29 m.
Moment of inertia for the wheel is given as I unit KE unit. Thus, the rotational kinetic energy in the motorcycle wheel can be calculated as:
KE = (1/2) I ω²KE = (1/2) (I unit KE unit) (125 rad/s)²
KE = (1/2) (I unit KE unit) (15625)
KE = (7812.5) (I unit KE unit),
the rotational kinetic energy in the motorcycle wheel is 7812.5
times the unit KE unit.
To know about inertia visit:
https://brainly.com/question/3268780
#SPJ11
: A total of 500 mm of rain fell on a 75 ha watershed in a 10-h period. The average intensity of the rainfall is: a)500 mm, b) 50mm/h, c)6.7 mm/ha d)7.5 ha/h
Question: A total of 500 mm of rain fell on a 75 ha watershed in a 10-h period. The average intensity of the rainfall is: a)500 mm, b) 50mm/h, c)6.7 mm/ha d)7.5 ha/h
he average intensity of the rainfall is 50mm/hExplanation:Given that the amount of rainfall that fell on the watershed in a 10-h period is 500mm and the area of the watershed is 75ha.Formula:
Average Rainfall Intensity = Total Rainfall / Time / Area of watershedThe area of the watershed is converted from hectares to square meters because the unit of intensity is in mm/h per sqm.Average Rainfall Intensity = 500 mm / 10 h / (75 ha x 10,000 sqm/ha) = 0.67 mm/h/sqm = 67 mm/h/10000sqm = 50 mm/h (rounded to the nearest whole number)Therefore, the average intensity of the rainfall is 50mm/h.
To know more about average visit:
https://brainly.com/question/15581555
#SPJ11
statistical modeling
4. Suppose outcome variables Y1.... Yn are unbounded count data. That is, Y; takes values in {0,1,2,...}. We also consider predictor variables x; = ({0,1,..., dip) € RP. (a) Give an example of a sce
Statistical modeling is a technique that is used to analyze statistical data. It involves the use of mathematical equations and models to describe and predict data. It is widely used in various fields, such as finance, engineering, healthcare, and social sciences.
(a) An example of a scenario where outcome variables Y1.... Yn are unbounded count data is the number of times a website is visited by users. This is a count data as it records the number of users who have visited the website. The outcome variables can take any value from 0 to infinity as there is no upper limit to the number of visitors.
The predictor variables in this scenario can be x; = ({0,1,..., dip) € RP. This means that there can be any number of predictor variables, ranging from 0 to dip.
In statistical modeling, it is important to choose the right type of model to analyze the data. There are various types of statistical models, such as linear regression, logistic regression, and time-series models. The choice of model depends on the nature of the data and the research question being addressed.
In conclusion, statistical modeling is an important tool for analyzing and predicting data. In scenarios where outcome variables are unbounded count data, it is important to choose the right type of model to analyze the data. This requires careful consideration of the predictor variables and the nature of the data.
To know more about data visit:
https://brainly.com/question/32097126
#SPJ11
Which elements are created by each star? Blue Giants (use \( >10 \mathrm{M}_{\mathrm{S}} \) )
Blue giants are very massive stars, with masses of 10 to 30 times that of the Sun. They burn through their hydrogen fuel very quickly, lasting only a few million years.
During this time, they create a variety of heavier elements, including carbon, oxygen, neon, magnesium, and silicon.
When a blue giant dies, it can explode in a supernova, which releases even heavier elements into space. These elements can then be incorporated into new stars and planets, helping to create the building blocks of life.
Here is a table of some of the elements that are created by blue giants:
Element Atomic Number Created in Blue Giants
Carbon 6 Yes
Oxygen 8 Yes
Neon 10 Yes
Magnesium 12 Yes
Silicon 14 Yes
It is important to note that the exact amount of each element that is created by a blue giant depends on its mass and its evolutionary stage. More massive blue giants will create heavier elements.
To learn more about Blue giants click here
https://brainly.com/question/32006272
#SPJ11
at noon, ship a is 150 km west of ship b. ship a is sailing east at 35 km/h and ship b is sailing north at 20 km/h. how fast is the distance between the ships changing at 4:00 pm?
To find the rate at which the distance between the ships is changing at 4:00 pm, we can use the concept of relative motion and the properties of right triangles.
From noon to 4:00 pm, a total of 4 hours have passed. Ship A has been sailing east for 4 hours at a speed of 35 km/h, so it has traveled a distance of 4 hours * 35 km/h = 140 km eastward from its initial position.
Similarly, Ship B has been sailing north for 4 hours at a speed of 20 km/h, so it has traveled a distance of 4 hours * 20 km/h = 80 km northward from its initial position.
At 4:00 pm, the distance between the ships can be represented as the hypotenuse of a right triangle, with the eastward distance traveled by Ship A as one leg (140 km) and the northward distance traveled by Ship B as the other leg (80 km).
Using the Pythagorean theorem, the distance between the ships at 4:00 pm can be calculated:
Distance^2 = (140 km)^2 + (80 km)^2
Distance^2 = 19600 km^2 + 6400 km^2
Distance^2 = 26000 km^2
Distance = √(26000) km
Distance ≈ 161.55 km
Now, to find how fast the distance between the ships is changing at 4:00 pm, we can consider the rates of change of the eastward and northward distances.
The rate of change of the eastward distance traveled by Ship A is 35 km/h, and the rate of change of the northward distance traveled by Ship B is 20 km/h.
Using the concept of relative motion, the rate at which the distance between the ships is changing can be found by taking the derivative of the Pythagorean theorem equation with respect to time:
2 * Distance * (d(Distance)/dt) = 2 * (140 km * 35 km/h) + 2 * (80 km * 20 km/h)
d(Distance)/dt = [(140 km * 35 km/h) + (80 km * 20 km/h)] / Distance
Plugging in the values, we have:
d(Distance)/dt = [(140 km * 35 km/h) + (80 km * 20 km/h)] / 161.55 km
Simplifying the equation, we get:
d(Distance)/dt ≈ 57.74 km/h
Therefore, at 4:00 pm, the distance between the ships is changing at a rate of approximately 57.74 km/h.
Learn more about Pythagorean theorem -
brainly.com/question/343682
#SPJ11
8. A torque of 50 N.m produces a counter-clockwise rotation is applied to a wheel about its axle. A frictional torque of 10 N.m acts at the axle. a. What is the net torque about the axle of the wheel?
The net torque about the axle of the wheel is 40 N.m.
Net torque is the difference between the torque that rotates an object in one direction and the torque that rotates it in the opposite direction. This results in an object rotating either clockwise or anticlockwise.
A torque of 50 N.m produces a counter-clockwise rotation is applied to a wheel about its axle.
A frictional torque of 10 N.m acts at the axle.
Calculation:
Net torque = T1 - T2
Where T1 is the applied torque and T2 is the frictional torque.
T1 = 50 N.m and T2 = 10 N.m
Net torque = T1 - T2
Net torque = 50 - 10
Net torque = 40 N.m
Therefore, the net torque about the axle of the wheel is 40 N.m.
learn more about torque here
https://brainly.com/question/17512177
#SPJ11
6. A quantum particle is described by the wave function y(x) = A cos (2πx/L) for -L/4 ≤ x ≤ L/4 and (x) everywhere else. Determine: (a) The normalization constant A, (b) The probability of findin
The normalization constant A can be determined by integrating the absolute value squared of the wave function over the entire domain and setting it equal to 1, which represents the normalization condition. In this case, the wave function is given by:
ψ(x) = A cos (2πx/L) for -L/4 ≤ x ≤ L/4, and ψ(x) = 0 everywhere else.
To find A, we integrate the absolute value squared of the wave function:
∫ |ψ(x)|^2 dx = ∫ |A cos (2πx/L)|^2 dx
Since the wave function is zero outside the range -L/4 ≤ x ≤ L/4, the integral can be written as:
∫ |ψ(x)|^2 dx = ∫ A^2 cos^2 (2πx/L) dx
The integral of cos^2 (2πx/L) over the range -L/4 ≤ x ≤ L/4 is L/8.
Thus, we have:
∫ |ψ(x)|^2 dx = A^2 * L/8 = 1
Solving for A, we find:
A = √(8/L)
The probability of finding the particle in a specific region can be calculated by integrating the absolute value squared of the wave function over that region. In this case, if we want to find the probability of finding the particle in the region -L/4 ≤ x ≤ L/4, we integrate |ψ(x)|^2 over that range:
P = ∫ |ψ(x)|^2 dx from -L/4 to L/4
Substituting the wave function ψ(x) = A cos (2πx/L), we have:
P = ∫ A^2 cos^2 (2πx/L) dx from -L/4 to L/4
Since cos^2 (2πx/L) has an average value of 1/2 over a full period, the integral simplifies to:
P = ∫ A^2/2 dx from -L/4 to L/4
= (A^2/2) * (L/2)
Substituting the value of A = √(8/L) obtained in part (a), we have:
P = (√(8/L)^2/2) * (L/2)
= 8/4
= 2
Therefore, the probability of finding the particle in the region -L/4 ≤ x ≤ L/4 is 2.
To learn more about wave function
brainly.com/question/32239960
#SPJ11
optics-pedrotti The electric field of a monochromatic plane light was given by the following equation: E = 2î cos[(kz - wt)] + 2ĵsin [(kz - wt)] A) What is the direction of light propagation? what i
The direction of light propagation is given by the direction of the wave vector, which is perpendicular to the direction of polarization.
Thus, the wave is propagating along the z-axis in the positive direction.
The given electric field of a monochromatic plane light is:
E = 2î cos[(kz - wt)] + 2ĵsin [(kz - wt)]
To determine the direction of light propagation, we need to identify the direction of the wave vector.
The wave vector is obtained from the expression given below:
k = (2π/λ) * n
where k is the wave vector,
λ is the wavelength of light,
n is the unit vector in the direction of light propagation.
As we know that the electric field is of the form
E = E_0sin(kz - wt + ϕ)
where E_0 is the amplitude of electric field
ϕ is the initial phase angle.
Let's compare it with the given electric field:
E = 2î cos[(kz - wt)] + 2ĵsin [(kz - wt)]
We can see that the direction of polarization is perpendicular to the direction of wave propagation.
Hence, the direction of light propagation is given by the direction of the wave vector, which is perpendicular to the direction of polarization.
Thus, the wave is propagating along the z-axis in the positive direction.
To know more about wavelength of light, visit:
https://brainly.com/question/31326088
#SPJ11
problem 1 only
PROBLEM 1: A car travels a 10-degree inclined road at a speed of 20 ft/s. The driver then applies the break and tires skid marks were made on the pavement at a distance "s". If the coefficient of kinetic friction between the wheels of the 3500-pound car and the road is 0.5, determine the skid mark distance. PROBLEM 2: On an outdoor skate board park, a 40-kg skateboarder slides down the smooth curve skating ramp. If he starts from rest at A, determine his speed when he reaches B and the normal reaction the ramp exerts the skateboarder at this position. Radius of Curvature of the
The skid mark distance is approximately 14.8 feet.
To determine the skid mark distance, we need to calculate the deceleration of the car. We can use the following equation:
a = μ * g
where:
a is the deceleration,
μ is the coefficient of kinetic friction, and
g is the acceleration due to gravity (32.2 ft/s²).
Given that μ = 0.5, we can calculate the deceleration:
a = 0.5 * 32.2 ft/s²
a = 16.1 ft/s²
Next, we need to determine the time it takes for the car to come to a stop. We can use the equation:
v = u + at
where:
v is the final velocity (0 ft/s since the car stops),
u is the initial velocity (20 ft/s),
a is the deceleration (-16.1 ft/s²), and
t is the time.
0 = 20 ft/s + (-16.1 ft/s²) * t
Solving for t:
16.1 ft/s² * t = 20 ft/s
t = 20 ft/s / 16.1 ft/s²
t ≈ 1.24 s
Now, we can calculate the skid mark distance using the equation:
s = ut + 0.5at²
s = 20 ft/s * 1.24 s + 0.5 * (-16.1 ft/s²) * (1.24 s)²
s ≈ 24.8 ft + (-10.0 ft)
Therefore, the skid mark distance is approximately 14.8 feet.
(PROBLEM 1: A car travels a 10-degree inclined road at a speed of 20 ft/s. The driver then applies the break and tires skid marks were made on the pavement at a distance "s". If the coefficient of kinetic friction between the wheels of the 3500-pound car and the road is 0.5, determine the skid mark distance. PROBLEM 2: On an outdoor skate board park, a 40-kg skateboarder slides down the smooth curve skating ramp. If he starts from rest at A, determine his speed when he reaches B and the normal reaction the ramp exerts the skateboarder at this position. Radius of Curvature of the)
learn more about distance
https://brainly.com/question/13034462
#SPJ11
In a binary star system, Star 1 has a mass 2 x 1030 kg, and Star 2 has a mass 1 x 1030 kg. At a certain instant (r = 0). Star 1 is at the origin with zero velocity, and Star 2 is at (-1.50 x 10,0,0) m with a velocity (0.-3.50 x 10¹,0) m/s. Later, at = 4.5 x 10° s. Star 1 has a velocity (-1.12453 x 104, -6.76443 x 10², 0) m/s. Define the system as Star 1 and Star 2. It is an isolated system. Part 1 Atr= 0, what is the total kinetic energy of the system? Ktotal = Save for Later Part 2 Atr=0, what is the translational kinetic energy of the system? Kirans = Save for Later Attempts: 0 of 3 used Attempts: 0 of 3 used Submit Answer Submit Answer Part 3 Att = 0, what is the relative kinetic energy of the system? Kret = Save for Later Part 4 Atr= 4.5 x 10° s, what is the total kinetic energy of the system? Kot = Save for Later Part 5 At 4.5 x 10 s, what is the translational kinetic energy of the system? Kirans = Save for Later Attempts: 0 of 3 used Attempts: 0 of 3 used Attempts: 0 of 3 used Submit Answer Submit Answer Submit Answer Part 6 Att = 4.5 x 10 s, what is the relative kinetic energy of the system? Krel = Save for Later Part 7 What is the change in gravitational potential energy of the system from/= 0 tor = 4.5 x 10 s? AU = eTextbook and Media Attempts: 0 of 3 used Save for Later Attempts: 0 of 3 used Submit Answer Submit Answer
The total kinetic energy of the system is 6.125 x 10^32 Joules. The translational kinetic energy of the system is 6.125 x 10^32 Joules.
Part 1: At t = 0, the total kinetic energy of the system (Ktotal) can be calculated by summing the kinetic energies of Star 1 and Star 2. The kinetic energy of an object is given by the formula: K = (1/2)mv^2, where m is the mass of the object and v is its velocity.
For Star 1:
Mass of Star 1 (m1) = 2 x 10^30 kg
Velocity of Star 1 (v1) = 0 m/s (zero velocity)
K1 = (1/2) * m1 * v1^2
K1 = (1/2) * (2 x 10^30 kg) * (0 m/s)^2
K1 = 0 J (zero kinetic energy)
For Star 2:
Mass of Star 2 (m2) = 1 x 10^30 kg
Velocity of Star 2 (v2) = 0.350 x 10^3 m/s (given velocity)
K2 = (1/2) * m2 * v2^2
K2 = (1/2) * (1 x 10^30 kg) * (0.350 x 10^3 m/s)^2
K2 = 6.125 x 10^32 J
Total kinetic energy of the system:
Ktotal = K1 + K2
Ktotal = 0 J + 6.125 x 10^32 J
Ktotal = 6.125 x 10^32 J
Therefore, at t = 0, the total kinetic energy of the system is 6.125 x 10^32 Joules.
Part 2: At t = 0, the translational kinetic energy of the system (Kirans) is the sum of the translational kinetic energies of Star 1 and Star 2.
The translational kinetic energy is given by the same formula: K = (1/2)mv^2.
For Star 1:
Kirans1 = (1/2) * m1 * v1^2
Kirans1 = (1/2) * (2 x 10^30 kg) * (0 m/s)^2
Kirans1 = 0 J (zero translational kinetic energy)
For Star 2:
Kirans2 = (1/2) * m2 * v2^2
Kirans2 = (1/2) * (1 x 10^30 kg) * (0.350 x 10^3 m/s)^2
Kirans2 = 6.125 x 10^32 J
Translational kinetic energy of the system:
Kirans = Kirans1 + Kirans2
Kirans = 0 J + 6.125 x 10^32 J
Kirans = 6.125 x 10^32 J
To know more about kinetic energy:
https://brainly.com/question/999862
#SPJ11