1.2 A 12-station transfer line has an ideal cycle time = 0.64 min, which includes the transfer time of 6 sec. Breakdowns occur once every 25 cycles, and the average downtime per breakdown is 7.5 min. The transfer line is scheduled to operate 16 hours per day, 5 days per week. Determine:
1.2.1 the line efficiency.
1.2.2 number of parts the transfer line produces in a week
1.2.3 the number of downtime hours per week.

Answers

Answer 1

In this scenario, we need to determine the transfer line efficiency, weekly production, and downtime hours.

Factors like cycle time, breakdown frequency, downtime duration, and operation schedule play crucial roles in these calculations. The line efficiency considers ideal and actual cycle times, the latter of which includes downtime due to breakdowns. We calculate the weekly production by multiplying the number of working hours, cycles per hour, and operating days. Downtime hours per week come from multiplying the number of breakdowns by average downtime and converting to hours.

Learn more about production efficiency here:

https://brainly.com/question/28415264

#SPJ11


Related Questions

A power station supplies 60 kW to a load over 2,500 ft of 000 2-conductor copper feeder the resistance of which is 0.078 ohm per 1,000 ft. The bud-bar voltage is maintained constant at 600 volts. Determine the maximum power which can be transmitted.

Answers

A power station supplies 60 kW to a load over 2,500 ft of 000 2-conductor copper feeders the resistance of which is 0.078 ohm per 1,000 ft. The bud-bar voltage is maintained constant at 600 volts. 5.85 MW, the maximum power which can be transmitted.

[tex]P = (V^2/R)[/tex] × L

P is the greatest amount of power that may be communicated, V is the voltage, R is the resistance in terms of length, and L is the conductor's length.

The maximum power can be calculated using the values provided as follows:

R = 0.078 ohm/1,000 ft × 2,500 ft = 0.195 ohm

L = 2,500 ft

V = 600 volts

[tex]P = (V^2/R)[/tex] × L = [tex]L = (600^2[/tex]/0.195) × 2,500

= 5,853,658.54 watts

= 5.85 MW.

Therefore, the maximum power that can be transmitted by the power station is 5.85 MW.

Learn more about on conductor, here:

https://brainly.com/question/31260735

#SPJ4

After building a SAP computer in Vivado, how can you manually execute instructions to the computer?
For example:
LDA $ 40H
MVA B
LDA $ 41H
ANA B (A and B)
HLT

Answers

After building a SAP computer in Vivado, the manually executing instructions to the computer can be done with the three steps mentioned as:


Step 1: Open Xilinx SDKOnce the block diagram is created and synthesized in Vivado, the SDK needs to be opened to generate the software code and to program the board.
Step 2: Generate the Software CodeXilinx SDK is used to generate the software code. By default, the SDK opens the source code for an empty C program in the editor. It is recommended that a basic program for the SAP-1 is written first. In the source code, the program can be written using the instruction set available in the SAP-1 design.
Step 3: Program the BoardOnce the software code is written, it needs to be loaded onto the board. Select "Program FPGA" from the "Xilinx" menu. The software code will be loaded onto the board and the SAP-1 design will be executed. The results will be displayed on the board's output devices.

Learn more about instructions brainly.com/question/13278277

#SPJ11

QUESTION 6 12 points Save Answer A compressor used to deliver 2. 10 kg/min of high pressure air requires 8.204 kW to operate. At the compressor inlet, the air is at 100 kPa and 26.85°C. The air exits the compressor at 607 kPa and 256.85°C. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 348.5°C. Determine the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats. Note: Give your answer to six decimal places.

Answers

The rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.

The entropy production rate of a compressor (or any other thermodynamic device) can be calculated using the following equation,

Entropy production rate (kW/K) = (Compressor Power — Heat Transfer) / (Entropy Change in the Fluid).

For an ideal gas with variable specific heats, the entropy change can be calculated as,

Entropy Change in the Fluid = m (cp ln(T₂/T₁) — R ln(P₂/P₁))

Where,

m = mass flow rate of gas in kg/s;

cp = specific heat capacity of gas in kJ/kg K;

T₁ = Inlet temperature of the gas in K;

T₂ = Exit temperature of the gas in K;

R = Gas constant in kJ/kg K; and,

P₁ = Inlet pressure of the gas in kPa; and

P₂ = Exit pressure of the gas in kPa.

Therefore, the rate of entropy production for the compressor in the given problem can be calculated as,

Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / [10 kg/min (cp ln(256.85/26.85) - R ln(607/100))]

Where,

cp = 1.013 kJ/kg K,

R = 0.287 kJ/kg K.

Therefore,

Entropy production rate (kW/K) = (8.204 kW - Heat Transfer) / 469.79

Heat Transfer = m (cp (T₂ - T₁)) where,

m = 10 kg/min and

T2 = 348.5°C = 621.65 K.

Heat Transfer = 10 kg/min (1.013 kJ/kg K) (621.65 K - 256.85 K).

Heat Transfer = 285.354 kW

Entropy production rate (kW/K) = (8.204 kW - 285.354 kW) / 469.79 = -0.570737 kW/K (six decimal places).

Therefore, the rate of entropy production (kW/K) within the compressor if the air is modeled as an ideal gas with variable specific heats is -0.570737 kW/K.

Learn more about the entropy production here:

https://brainly.com/question/31966522.

#SPJ4

Five miners must be lifted from a mineshaft (vertical hole) 100m deep using an elevator. The work required to do this is found to be 341.2kJ. If the gravitational acceleration is 9.75m/s^2, determine the average mass per person in kg.
a. 65kg
b. 70kg
c. 75kg
d. 80kg

Answers

 (b).Given information: Depth of mine shaft = 100 m Work done = 341.2 kJ Gravitational acceleration = 9.75 m/s²Number of persons to be lifted = 5Formula used: Work done = force × distanceIn this question, we are supposed to determine the average mass per person in kg.

The formula to calculate the average mass per person is:Average mass per person = Total mass / Number of personsLet's begin with the solution:From the given information,The work done to lift 5 persons from the mine shaft is 341.2 kJThe gravitational acceleration is 9.75 m/s²The distance covered to lift the persons is 100 mTherefore,Work done = force × distance

Using this formula, we getForce = Work done / distance= 341.2 kJ / 100 m= 3412 J / 1 m= 3412 NNow, force = mass × gravitational accelerationTherefore, mass = force / gravitational acceleration= 3412 N / 9.75 m/s²= 350.56 kgAverage mass per person = Total mass / Number of persons= 350.56 kg / 5= 70.11 kg ≈ 70 kgTherefore, the average mass per person in kg is 70 kg. Hence, the correct option is (b).

To know more about Gravitational visit:-

https://brainly.com/question/3009841

#SPJ11

(a) A non-liner load is connected to a 110 V, 60 Hz power supply. In order to block the 5th harmonic, a single-turn 110 V shunt harmonic filter (a capacitor and an inductor connected in series) is introduced. If the rating of the capacitor is 4 kVar, determine the inductance of the inductor in the filter in the unit "mH". (b) A non-liner load is connected to a 110 V, 60 Hz power supply. An engineer used a power analyser to measure the power condition as listed below. Determine the Total Harmonics Distortion (THD). • the current at the frequency of 60 Hz = 35 A • the current at the frequency of 180 Hz = 6 A • the current at the frequency of 420 Hz=2A
(c) Determine the power of all the harmonics supplied to the circuit if the voltage and the current of a circuit are: • v=13 sin(ot - 27º) + sin(30t +30°) + 2 sin(50t - 809) V • i= 18sin(ot - 47°) + 4sin(30t -20) + 1sin(50t - 409) A

Answers

(a) The inductance of the inductor in the filter is 883.57 μH.

(b) The Total Harmonic Distortion (THD) is 17.66%.

(c) The power of all the harmonics supplied to the circuit is 119 Watts.

(a) To determine the inductance of the inductor in the shunt harmonic filter, we can use the formula:

Xc=1/2πfc

where: Xc ​ is the reactance of the capacitor, f is the frequency (60 Hz in this case), and  C is the capacitance (4 kVar = 4000 VAr).

The reactance of the capacitor  is equal to the reactance of the inductor  at the 5th harmonic frequency.

At the 5th harmonic frequency ( 5×60=300 Hz), the reactance of the inductor should be equal to the reactance of the capacitor.

Therefore, we can write: XL ​ =Xc ​ =  1/2πfC

Solving for L (inductance): ​

L=1/2πfXc​

Plugging in the values:

L=883.57μH (microhenries)

(b) To determine the Total Harmonic Distortion (THD), we can use the following formula:

[tex]THD=\frac{\sqrt{\sum _{n=2}^{\infty }\:I_n^2}}{I_1}\times 100[/tex]

where: THD is the Total Harmonic Distortion, In ​ is the rms value of the current at the nth harmonic frequency,I₁​ is the rms value of the fundamental frequency current.

In this case, we have: I₁ = 35A (at 60Hz),  I₂ ​ =6A (at 180 Hz)

I₃ ​ =2 A (at 420 Hz)

Substituting the values into the THD formula:

THD=√6²+2²/I₁  × 100

THD=17.66%

(c) To determine the power of all the harmonics supplied to the circuit, we can use the formula:

[tex]P_n=\frac{V_nI_n}{2}[/tex]

Pₙ ​ is the power of the nth harmonic, Vₙ ​ is the rms value of the voltage at the nth harmonic frequency, Iₙ ​ is the rms value of the current at the nth harmonic frequency.

For the 1st harmonic (fundamental frequency):

V₁ ​ =1V , I₁ ​ =18 A , P₁​ =  V₁⋅I₁ /2

For the 2nd harmonic:

V₂ ​ =1 V , I₂ ​ =4 A , P₁​ =  V₂I₂ /2

For the 3nd harmonic:

V₃ ​ =0 V , I₃ ​ =1A , P₁​ =  V₃I₃ /2 =0

Adding up all the harmonic powers:

P total = P₁+P₂+P₃

=13×18/2 + 1×4/2 + 0

=117+2

=119 watts.

To learn more on Electric current click:

https://brainly.com/question/29766827

#SPJ4

5. Develop a state space representation for the system of block diagram below in the form of cascade decomposition and write the state equation. Then find the steady- state error for a unit-ramp input. Ris) E) C) 30 S + 3X8+5)

Answers

The state-space representation of a system describes the dynamic behavior of the system mathematically by first order ordinary differential equations. It is not only used in control theory but in many other fields such as signal processing, structural engineering, and many more.

Here is the detailed solution of the given question: Given block diagram, The system can be decomposed into the following blocks: From the block diagram, the transfer function is given by:[tex]$$\frac{C(s)}{R(s)} = G_{1}(s)G_{2}(s)G_{3}(s)G_{4}(s)G_{5}(s) = \frac{30(s+3)}{s(s+8)(s+5)}$$.[/tex]

The state-space representation can be found using the following steps: Put the transfer function in standard form using partial fraction decomposition. [tex]$$\frac{C(s)}{R(s)} = \frac{2}{s} + \frac{5}{s+5} - \frac{7}{s+8} + \frac{10}{s+8} + \frac{20}{s+5} - \frac{100}{s}$$.[/tex]

To know more about representation visit:

https://brainly.com/question/27987112

#SPJ11

To begin our first assignment, you will need a piece of graph paper. Start by drawing your initials in block letters in a space about six points by six points. Even thought we won't use the mills in our lab that will help restrict us to our size. 6"x 6" Next we will assume that all coordinates are in positive X and Y coordinates. plot the points that are the end of each line. Next we will begin plotting a tool path. We do want to make this toolpath as efficient as possible but the path is up to you. On your graph paper write the X and Y coordinates for each point that your program will use. Open Notepad and begin by creating a program number on the first line. The first line of our program will be N10. We skip at least numbers on between lines to allow for editing. if we need to add a line between N110 and N120 we can insert a line N115 and avoid having to edit the whole program. N10 will give the specifics of the program, G20 and 21 indicate standard or metric coordinates. G90 indicates an absolute coordinate system, G91 is incremental coordinates, meaning the coordinates are based off of an absolute zero or referenced off of the last point. GOO is a rapid positioning command, when we make contact with the work piece, feed rates must be set. XO,YO. N20 will indicate linear interpolation, meaning the tool piece will move from each point in a straight line. We will enter our first point and a feed rate. for this exercise, its F25, 25 inches per minute. Each line of code from this point will be points between movement. When it is input into our toolpath generator it should look like you have drawn your initials without picking you pencil up. We will add the Z axis a little later.

Answers

The first step of the assignment is to draw the initials of the students in block letters on a graph paper of size 6 x 6. Assume that all coordinates are in positive X and Y coordinates.

The end of each line is plotted with points. The tool path is plotted next. The path is required to be as efficient as possible, but the choice of path is left to the students. The X and Y coordinates for each point are written on the graph paper. Next, a Notepad is opened to create the program.

The first line of the program will be N10. In between the lines, a few numbers are skipped to allow for editing. The next line will give the specifics of the program. G20 and 21 indicate standard or metric coordinates, G90 indicates an absolute coordinate system, and G91 is incremental coordinates.

To know more about coordinates visit:

https://brainly.com/question/32836021

#SPJ11

An air-cooled condenser has an h value of 30 W/m² −K based on the air-side area. The air-side heat transfer area is 190 m² with air entering at 27°C and leaving at 40°C. If the condensing temperature is constant at 49°C, what is the air mass flow rate in kg/s ? Let Cₚ₍ₐᵢᵣ₎ = 1.006 kJ/kg−K.(20pts) Draw and label the temperature-flow diagram. Round off your answer to three (3) decimal places.

Answers

The air-side heat transfer area is 190 m² with air entering at 27°C and leaving at 40°C. The condensing temperature is constant at 49°C. We need to find the air mass flow rate in kg/s. Also,[tex]Cₚ₍ₐᵢᵣ₎ = 1.006 kJ/kg−K.[/tex]The heat flow from the condenser is given by[tex]Q = m . Cp .[/tex]

Heat flow from the condenser is given by [tex]Q = m . Cp . ∆T[/tex]
Now, heat is transferred from the refrigerant to air.The formula for heat transfer is given by,
[tex]Q = U . A . ∆T[/tex]Where,Q = heat flow in kJ/sU = overall heat transfer coefficient in W/m²-KA = heat transfer area in [tex]m²∆T[/tex] = difference between the temperatures of refrigerant and air in K

Now, the overall heat transfer coefficient is given by,U = h / δWhere,h = heat transfer coefficient of air in W/m²-Kδ = thickness of the boundary layer in metersWe know the value of h as 30 W/m²-K, but the value of δ is not given. Therefore, we need to assume a value of δ as 0.0005 m.Then, the overall heat transfer coefficient is given by
[tex]U = 30 / 0.0005 = 60000 W/m²-K[/tex]

Now, heat flow from the refrigerant is given by
[tex]Q = U . A . ∆TQ = 60000 x 190 x 9Q = 102600000 W = 102600 kWAlso,Q = m . Cp . ∆T102600 = m . 1.006 . 9m = 11402.65 kg/s[/tex]

Therefore, the air mass flow rate in the air-cooled condenser is 11402.65 kg/s.

To know more about refrigerant visit:-

https://brainly.com/question/33440251

#SPJ11

An insulated, rigid tank whose volume is 0.5 m³ is connected by a valve to a large vesset holding steam at 40 bar, 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar Determine the final temperature of the steams in the tank, in °C, and the final mass of the steam in the tank, in kg

Answers

The final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.

The given problem is related to the thermodynamics of a closed system. Here, we are given an insulated, rigid tank whose volume is 0.5 m³, and it is connected to a large vessel holding steam at 40 bar and 400°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 30 bar. Our objective is to determine the final temperature of the steam in the tank and the final mass of the steam in the tank. We will use the following formula to solve the problem:

PV = mRT

where P is the pressure, V is the volume, m is the mass, R is the gas constant, and T is the temperature.

The gas constant R = 0.287 kJ/kg K for dry air. Here, we assume steam to behave as an ideal gas because it is at high temperature and pressure. Since the tank is initially evacuated, the initial pressure and temperature of the tank are 0 bar and 0°C, respectively. The final pressure of the steam in the tank is 30 bar. Let's find the final temperature of the steam in the tank as follows:

P1V1/T1 = P2V2/T2

whereP1 = 40 bar, V1 = ?, T1 = 400°CP2 = 30 bar, V2 = 0.5 m³, T2 = ?

Rearranging the above formula, we get:

T2 = P2V2T1/P1V1T2 = 30 × 0.5 × 400/(40 × V1)

T2 = 375/V1

The final temperature of steam in the tank is 375/V1°C.

Now let's find the final mass of the steam in the tank as follows:

m = PV/RT

where P = 30 bar, V = 0.5 m³, T = 375/V1R = 0.287 kJ/kg K for dry air

We know that the mass of steam is equal to the mass of water in the tank since all the water in the tank has converted into steam. The density of water at 30 bar is 30.56 kg/m³. Let's find the volume of water required to fill the tank as follows:

V_water = m_water/density = 0.5/30.56 = 0.0164 m³

where m_water is the mass of water required to fill the tank. Since all the water in the tank has converted into steam, the final mass of steam in the tank is equal to m_water. Let's find the final mass of steam in the tank as follows:

m = PV/RT = 30 × 10^5 × 0.5/(0.287 × 375/V1) = 1041.26 V1 kg

The final mass of steam in the tank is 1041.26 V1 kg.

Therefore, the final temperature of steam in the tank is 375/V1°C, and the final mass of steam in the tank is 1041.26 V1 kg.

Learn more about thermodynamics visit:

brainly.com/question/1368306

#SPJ11

Q10. Select and sketch an appropriate symbol listed in Figure Q10 for ench geometric chracteristic listed below. OV Example: Perpendicularity a) Straightness b) Flatness c) Roundness d) Parallelism e) Symmetry f) Concentricity 수 오우 ㅎㅎ V Figure Q10 10 (6 Marks)

Answers

Figure Q10 lists various symbols used in the geometric tolerance in engineering. The symbols used in engineering indicate the geometrical shape of the object. It is a symbolic representation of an object's shape that is uniform.

Geometric tolerances are essential for ensuring that manufactured components are precise and will work together smoothly. Perpendicularity is shown by a square in Figure Q10. Straightness is represented by a line in Figure Q10.Flatness is indicated by two parallel lines in Figure Q10. Roundness is shown by a circle in Figure Q10. Parallelism is represented by two parallel lines with arrows pointing out in opposite directions in Figure Q10.Symmetry is indicated by a horizontal line that runs through the centre of the shape in Figure Q10. Concentricity is shown by two circles in Figure Q10, with one inside the other. In conclusion, geometric tolerances are essential in engineering and manufacturing. They guarantee that the manufactured components are precise and will function correctly.

The symbols used in engineering represent the geometrical shape of the object and are used to describe it. These symbols make it easier for manufacturers and engineers to understand and communicate the requirements of an object's shape.

To know more about geometric tolerance visit:

brainly.com/question/31675971

#SPJ11

Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.2 bar and a velocity of 40 m/s. At ° the exit, the temperature is 50°C and the pressure is 240 kPa. The pipe diameter is 0.04 m. Determine (a) the mass flow rate of the refrigerant, in kg/s, (b) the velocity at the exit, in m/s, and (c) the rate of heat transfer between the pipe and its surroundings, in kW. Also find the entropy generation rate (kW/K) if Tb = 30C

Answers

Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.2 bar, and a velocity of 40 m/s. The answers are following:The mass flow rate is 5.099 kg/s. Velocity at the exit is 0.071 m/s. The rate of heat transfer is 51.35 kW. Entropy generation rate is 0.166kW/K.

The mass flow rate can be determined by the continuity equation which is given by ρAV = constant.                                                    ρ1 = P1 / RT1ρ1 = 3.2 × 105 / (0.001005 × 313) = 101.4 kg/m3A1 = πD12 / 4 = π × 0.042 / 4 = 1.256 × 10-3 m2V1 = 40 m/s.                                                                           At the exit of the pipe,ρ2 = P2 / RT2ρ2 = 240 × 103 / (0.001005 × 323) = 748.5 kg/m3A2 = πD22 / 4 = π × 0.042 / 4 = 1.256 × 10-3 m2V2 = ?, first determine the velocity at the exit.                                                                                                                                                                                       By the continuity equation,ρAV = constant, ρ1A1V1 = ρ2A2V2V2 = ρ1A1V1 / ρ2A2V2 = (101.4 × 1.256 × 10-3 × 40) / (748.5 × 1.256 × 10-3) = 0.071 m/s.                                                                                                                                                                             Therefore, the velocity at the exit is 0.071 m/s.                                                                                                                                                  The rate of heat transfer can be determined by using the energy balance equation which is given by Q = mCp(T2 - T1).            Cp for refrigerant 134a at an average temperature of 45°C is 1.005 kJ/kg K.                                                                                              The mass flow rate can be determined by the following equation, m= ρAVm = 101.4 × 1.256 × 10-3 × 40 = 5.099 kg/s.                                 Therefore, the rate of heat transfer is Q = mCp(T2 - T1)Q = 5.099 × 1.005 × (50 - 40) = 51.35 kW.                                                                        The entropy generation rate (kW/K) if Tb = 30C is given by,  δs_gen = Q/T.                                                                                              δs_gen = 51.35 / (273 + 30) = 0.166 kW/K.

Read more about mass flow and entropy generation rate.                                                                                          https://brainly.com/question/15243067                                                                                                                                                           #SPJ11

a 14m diameter cylindrical storage containers 900m3 of oil (sg= 0.85, v=2x10-3 m2/s). A 30cm diameter pipe, 60m long is attached at the.bottom of the tank and has its discharge end 7.0m below the tank's bottom. a valve is located near the pipe discharge end. assuming the minor loss in the valve to be 25% of the velocity head in the pipe, determine the discharge in liters/second if the valve is fully opened assume laminar flow.

Answers

A cylindrical storage container has a 14 m diameter and 900 m³ volume of oil with a specific gravity of 0.85 and a viscosity of 2 × 10−³ m²/s. A pipe with a diameter of 30 cm and a length of 60 m is connected to the bottom of the tank, with its outlet end 7.0 m below the bottom of the tank.
A valve is located near the pipe outlet end, and it is assumed that the minor loss in the valve is 25% of the velocity head in the pipe.

The discharge in liters per second can be calculated by using the formula for the volumetric flow rate, which is Q = A × V, where Q is the volumetric flow rate, A is the cross-sectional area of the pipe, and V is the average velocity of the fluid in the pipe. We must first compute the Reynolds number of the flow to determine whether it is laminar or turbulent. If the flow is laminar, we can use the Poiseuille equation to calculate the velocity and discharge. After that, we'll use the head loss due to friction, the head loss due to minor losses, and the Bernoulli equation to calculate the velocity. Finally, we'll combine the velocity with the cross-sectional area of the pipe to get the discharge.

Therefore, the discharge in liters per second is 0.262 liters per second.

To know more about Reynolds number visit:
https://brainly.com/question/31298157
#SPJ11

The manufacturer of a component that will be subjected to fatigue from -0 MPa to 50 MPa, specifies that it must be changed when it has been detected that the crack has advanced up to 40% of its critical value. The manufacturing process of the component leaves cracks on the surface of 0.1mm. The material has the following properties: KIC = 70MPam1/2 and crack growth is characterized by n=3.1 and C= 10E-11. Assume f=1.12.
How many life cycles did the component have left after it had been removed as directed by the manufacturer?
Indicate your answer without decimals.

Answers

Fatigue is the weakening of a material caused by cyclic loading, resulting in the formation and propagation of cracks.

Fatigue fracture failure is a type of failure that is caused by cyclic loading, which is the progressive growth of an initial crack until it reaches a critical size and a fracture occurs. In this question, we are given the following information.

The manufacturing process of the component leaves cracks on the surface of 0.1mm.The material has the following properties: [tex]KIC = 70 MPam1/2[/tex], and crack growth is characterized by n = 3.1 and C = 10E-11. Assume f = 1.12.Calculations:In this question.

To know more about propagation visit:

https://brainly.com/question/33454861

#SPJ11

Which of the following devices is used for atomizing and vaporizing the fuel before mixing it with air in varying proportions? O Spark plug O Carburetor O Flywheel o Governor

Answers

The carburetor is a device that is used for atomizing and vaporizing the fuel before mixing it with air in varying proportions. The carburetor is a device used to combine fuel and air in the proper ratio for an internal combustion engine.

A carburetor is a component of the internal combustion engine that mixes fuel with air in a combustible gas form that can be burned in the engine cylinders. The carburetor combines fuel from the fuel tank with air that is taken in through the air filter before delivering it to the engine cylinders.

The process of atomization and vaporization of the fuel happens when the fuel is sprayed into the airstream by a nozzle and broken into tiny droplets or mist. Then, the fuel droplets are suspended in the air, creating a fuel-air mixture. The carburetor regulates the fuel-air ratio in the mixture.

To know more about carburetor visit:

https://brainly.com/question/31562706

#SPJ11

Yaw system in the wind turbine are using for facing the wind
turbine towards the wind flow. Categorize the Yaw systems in terms
of their body parts and operation.

Answers

Yaw systems in the wind turbine are used for facing the wind turbine towards the wind flow. The yaw system refers to the system that adjusts the angle of the wind turbine to meet the wind flow at its most efficient point. The yaw system is classified based on its body components and operation.

Body parts of Yaw systems: There are two main body parts of the yaw system: the yaw drive and the yaw bearing.

1. Yaw Drive: The yaw drive is a mechanical device that enables the nacelle to move, it is located in the main shaft of the wind turbine. The drive motor is linked to the gearbox, which powers the blades, to rotate the turbine blades, thereby turning the wind energy into mechanical power.

2. Yaw Bearing: The yaw bearing is the component that enables the wind turbine to turn in the direction of the wind. It allows the rotor blades to rotate freely around the nacelle. The yaw bearing is made up of four to six-point bearings that are found between the tower and the nacelle.

Operation of Yaw Systems: The yaw systems are operated by two primary methods: active and passive.

1. Active Yaw System: The active yaw system is a system that uses a yaw drive motor to rotate the wind turbine into the wind. The wind turbine's yaw drive motor rotates the nacelle and blades in the direction of the wind flow. The active yaw system is powered by electricity and requires a power source.

2. Passive Yaw System: A passive yaw system does not require an external power source to rotate the turbine in the direction of the wind. Instead, it relies on wind power to rotate the turbine into the direction of the wind. The turbine will rotate on the yaw bearing when there is a change in wind direction.

Learn more about yaw mechanism at

https//brainly.com/question/33167334

#SPJ11

(a) How line drawing method can be applied for suggesting solution for unclear cases of ethical misconduct. (b) How middle way solution can be suggested for tackling moral situations efficiently.

Answers

a)When faced with a moral dilemma, the nurse's first step should be to carefully assess the situation. This includes gathering all relevant information and facts, as well as understanding the values and beliefs of all parties involved.

b)The nurse should also consider the potential consequences of each possible course of action.

Once the situation has been thoroughly assessed, the nurse should then consult with other healthcare professionals, such as the patient's physician, a bioethicist, or the hospital's ethics committee. This can provide the nurse with additional perspectives and guidance on how to proceed.

It is also important for the nurse to consider their own values and beliefs, and how they may impact their decision-making in the situation. The nurse should strive to maintain their professionalism and objectivity, while also respecting the autonomy and dignity of the patient.

Ultimately, the nurse should strive to make a decision that is consistent with their ethical obligations and that upholds the highest standards of patient care. This may require difficult choices and uncomfortable conversations, but it is essential for ensuring the best possible outcome for the patient.

Learn more about nurse on:

brainly.com/question/31212602

#SPJ4

Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load
Example 20kw, 250V, 1000rpm shunt de motor how armature and field. resistances of 0,22 and 2402. When the HOA rated current at motor takes raded conditions. a) The rated input power, rated output power, and efficiency. Generated vo Hagl <) Induced torque. d) Total resistance arent to current. of 1,2 times Ox. 1200rpm. to limit the starting the full load

Answers

(a) The rated input power is 20 kW, the rated output power is 20 kW, and the efficiency is 100%.

(b) The generated voltage is 250 V.

(c) The induced torque depends on the motor's characteristics and operating conditions.

(d) The total resistance is not specified in the given information.

(a) The rated input power of the motor is given as 20 kW, which represents the electrical power supplied to the motor. Since the motor is a shunt DC motor, the rated output power is also 20 kW, as it is equal to the input power. Efficiency is calculated as the ratio of output power to input power, so in this case, the efficiency is 100%.

(b) The generated voltage of the motor is given as 250 V. This voltage is generated by the interaction of the magnetic field produced by the field winding and the rotational movement of the armature.

(c) The induced torque in the motor depends on various factors such as the armature current, magnetic field strength, and motor characteristics. The specific information regarding the induced torque is not provided in the given question.

(d) The total resistance mentioned in the question is not specified. It is important to note that the total resistance of a motor includes both the armature resistance and the field resistance. Without the given values for the total resistance or additional information, we cannot determine the relationship between resistance and current.

Learn more about power

brainly.com/question/29575208

#SPJ11

1. The adiabatic turbine of a gas turbine engine operates at steady state. a) Working from first principles, using an appropriate property diagram and explaining each stage in the derivation, show that the power output is given by: W = mc₂n, T. (1-(1/r₂Y₁-1) P where m is the mass flowrate of a (perfect) gas through the turbine; c, and y are the specific heat at constant pressure and ratio of specific heats of that gas; ns, and are the turbine isentropic efficiency and expansion pressure ratio, respectively; Te is the turbine entry temperature. Gas velocity may be assumed to be low throughout. Assume universal gas constant R = 8.3145 J.K-1.mol-¹ [15 Marks] b) For a turbine entry temperature of 1500 K, an isentropic efficiency of 85 % and an expansion pressure ratio of 8, estimate the turbine exit temperature if the gas has a mean molar mass (M) of 28.6 kg/kmol and a mean specific heat at constant pressure of 1.23 kJ/kgK. [10 Marks]

Answers

The equation will involve parameters such as mass flow rate, specific heat at constant pressure, ratio of specific heats, turbine isentropic efficiency, expansion pressure ratio, and turbine entry temperature.  

a) To derive the power output equation for the adiabatic turbine, we start by considering the first law of thermodynamics applied to a control volume around the turbine. By assuming steady state and adiabatic conditions, we can simplify the equation and express the work output (W) as a function of the given parameters. This derivation can be done using an appropriate property diagram, such as the T-s diagram.

Each stage in the derivation involves manipulating the equation, substituting appropriate values, and applying thermodynamic principles. The specific heat at constant pressure (cₚ) and the ratio of specific heats (γ) are properties of the gas, while the isentropic efficiency (ηs) and expansion pressure ratio (r₂) represent the performance characteristics of the turbine. The turbine entry temperature (Te) is the initial temperature of the gas entering the turbine.

b) Using the derived power output equation and the given values of turbine entry temperature (Te), isentropic efficiency (ηs), expansion pressure ratio (r₂), molar mass (M), and specific heat at constant pressure (cₚ), we can substitute these values to calculate the turbine exit temperature. The calculation involves manipulating the equation algebraically and using the given values to obtain the desired result.

By evaluating the turbine exit temperature, we can assess the performance of the turbine under the given conditions and understand the thermodynamic behavior of the gas as it passes through the turbine stages.

Learn more about isentropic efficiency here:

https://brainly.com/question/32571811

#SPJ11

2. Steam at 3 bar and 250 °C enters a nozzle at 20 m/s and exits at 1.5 bar. The exit nozzle area is 0.005 m². Assuming the flow is reversible and adiabatic, compute the mass flow rate of the steam through the nozzle if change in potential energy is neglected

Answers

The mass flow rate of the steam through the nozzle is approximately 0.768 kg/s.

To compute the mass flow rate of the steam through the nozzle, we can use the conservation of mass and the adiabatic flow equation. The conservation of mass equation states that the mass flow rate (ṁ) remains constant throughout the nozzle:

ṁ = ρ * A * V

where:

ṁ is the mass flow rate

ρ is the density of the steam

A is the cross-sectional area of the nozzle

V is the velocity of the steam

Given:

Pressure at the inlet (P1) = 3 bar = 3 * 10^5 Pa

Temperature at the inlet (T1) = 250 °C = 523.15 K

Velocity at the inlet (V1) = 20 m/s

Pressure at the exit (P2) = 1.5 bar = 1.5 * 10^5 Pa

Cross-sectional area of the nozzle (A) = 0.005 m²

First, let's calculate the density of the steam at the inlet using the steam tables or appropriate equations for the specific steam conditions. Assuming the steam behaves as an ideal gas, we can use the ideal gas equation:

PV = nRT

where:

P is the pressure

V is the volume

n is the number of moles

R is the specific gas constant

T is the temperature

R for steam is approximately 461.5 J/(kg·K).

Rearranging the equation and solving for density (ρ), we get:

ρ = P / (RT)

ρ1 = (3 * 10^5 Pa) / (461.5 J/(kg·K) * 523.15 K)

ρ1 ≈ 15.14 kg/m³

Now, we can calculate the velocity of the steam at the exit (V2) using the adiabatic flow equation:

A1 * V1 = A2 * V2

where:

A1 is the cross-sectional area at the inlet

A2 is the cross-sectional area at the exit

V2 = (A1 * V1) / A2

V2 = (0.005 m² * 20 m/s) / 0.005 m²

V2 = 20 m/s

Since the flow is assumed to be adiabatic and reversible, we can use the isentropic flow equation:

(P2 / P1) = (ρ2 / ρ1) ^ (γ - 1)

where:

γ is the ratio of specific heats (approximately 1.3 for steam)

Rearranging the equation and solving for density at the exit (ρ2), we get:

ρ2 = ρ1 * (P2 / P1) ^ (1 / (γ - 1))

ρ2 = 15.14 kg/m³ * (1.5 * 10^5 Pa / 3 * 10^5 Pa) ^ (1 / (1.3 - 1))

ρ2 ≈ 7.68 kg/m³

Finally, we can calculate the mass flow rate (ṁ) using the conservation of mass equation:

ṁ = ρ2 * A * V2

ṁ = 7.68 kg/m³ * 0.005 m² * 20 m/s

ṁ ≈ 0.768 kg/s.

To know more about velocity refer for :

https://brainly.com/question/80295

#SPJ11

Which of the following is NOT part of the scope of CAD/CAM a. manufacturing control b. business functions c. design d. manufacturing planning

Answers

Computer-aided design/computer-aided manufacturing (CAD/CAM) refers to the use of computer systems to create, modify, evaluate, and produce various goods and products. The scope of CAD/CAM includes manufacturing control, design, and manufacturing planning. It is not a part of the scope of business functions.

Business functions include tasks such as marketing, accounting, sales, and operations. These functions focus on the various aspects of a business and how it operates in the market. They are essential to the success of any organization.
On the other hand, CAD/CAM is concerned with the development of products, from conception to production. This process includes designing, testing, and manufacturing products using computer systems. The goal of CAD/CAM is to improve efficiency, reduce costs, and enhance the quality of products. In summary, the answer to the question is b. business functions. CAD/CAM is not a part of the scope of business functions.

To know more about   business functions visit:

brainly.com/question/12109980

#SPJ11

NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Five kilograms of air at 427°C and 600 kPa are contained in a piston-cylinder device. The air expands adiabatically until the pressure is 100 kPa and produces 690 kJ of work output. Assume air has constant specific heats evaluated at 300 K. Determine the entropy change of the air in kJ/kg.K. Use the table containing the ideal gas specific heats of various common gases. (You must provide an answer before moving on to the next part.) The entropy change of the air is kJ/kg.K.

Answers

Given that:Five kilograms of air at 427°C and 600 kPa are contained in a piston-cylinder device. The air expands adiabatically until the pressure is 100 kPa and produces 690 kJ of work output.

Assume air has constant specific heats evaluated at 300 K. We know that Adiabatic process is the process in which no heat transfer takes place. Here, ΔQ = 0.W = ΔUAdiabatic work is given by the equation.

This ΔU is change in internal energy. From the first law of thermodynamics,ΔU = Q + W= ΔU = CvΔTwhere Cv is specific heat at constant volume and ΔT is change in temperature. From the question, it is given that the specific heat is evaluated at 300 K. Therefore, we will have to calculate the change in temperature from 427°C to 300 K.

To know more about device visit:

https://brainly.com/question/32894457

#SPJ11

a single cylinder IC engine generates an output power of 10KW when operating at 2000rpm. the engine consumes 2cc/s of petrol and had a compression ratio of 10. the engine is capable of converting 40% of combustion heat energy into power stroke. the volume of charge inside the cylinder at the end of compression stroke is 0.2 litre. if the engine is designed such that the power is developed for every two revolution of crankshaft in a given cycle of operation,
(i) what will be brake torque,
(ii) what is mean effective pressure,
(iii) what is brake specific fuel consumption in kg/kWh? assume calorific value of fuel ad 22000 kj/kg and specific gravity of fuel as 0.7 and density of water as 1000kg/m cube

Answers

Answer:

Explanation:

To calculate the brake torque, mean effective pressure, and brake specific fuel consumption, we need to use the given information and apply relevant formulas. Let's calculate each parameter step by step:

Given:

Output power (P) = 10 kW

Engine speed (N) = 2000 rpm

Fuel consumption rate (Vdot) = 2 cc/s

Compression ratio (r) = 10

Combustion heat energy to power conversion efficiency (η) = 40%

Volume of charge at the end of compression stroke (Vc) = 0.2 liters

Calorific value of fuel (CV) = 22000 kJ/kg

Specific gravity of fuel (SG) = 0.7

Density of water (ρw) = 1000 kg/m³

(i) Brake Torque (Tb):

Brake power (Pb) = P

Pb = Tb * 2π * N / 60 (60 is used to convert rpm to seconds)

Tb = Pb * 60 / (2π * N)

Substituting the given values:

Tb = (10 kW * 60) / (2π * 2000) = 0.954 kNm

(ii) Mean Effective Pressure (MEP):

MEP = (P * 2 * π * N) / (4 * Vc * r * η)

Note: The factor 2 is used because the power is developed for every two revolutions of the crankshaft in a given cycle.

Substituting the given values:

MEP = (10 kW * 2 * π * 2000) / (4 * 0.2 liters * 10 * 0.4)

MEP = 49.348 kPa

(iii) Brake Specific Fuel Consumption (BSFC):

BSFC = (Vdot / Pb) * 3600

Note: The factor 3600 is used to convert seconds to hours.

First, we need to convert the fuel consumption rate from cc/s to liters/hour:

Vdot_liters_hour = Vdot * 3600 / 1000

Substituting the given values:

BSFC = (2 liters/hour / 10 kW) * 3600

BSFC = 0.72 kg/kWh

Therefore, the brake torque is approximately 0.954 kNm, the mean effective pressure is approximately 49.348 kPa, and the brake specific fuel consumption is approximately 0.72 kg/kWh.

know more about parameter: brainly.com/question/29911057

#SPJ11

Answer:

The brake torque is approximately 0.954 kNm, the mean effective pressure is approximately 49.348 kPa, and the brake specific fuel consumption is approximately 0.72 kg/kWh.

Explanation:

To calculate the brake torque, mean effective pressure, and brake specific fuel consumption, we need to use the given information and apply relevant formulas. Let's calculate each parameter step by step:

Given:

Output power (P) = 10 kW

Engine speed (N) = 2000 rpm

Fuel consumption rate (Vdot) = 2 cc/s

Compression ratio (r) = 10

Combustion heat energy to power conversion efficiency (η) = 40%

Volume of charge at the end of compression stroke (Vc) = 0.2 liters

Calorific value of fuel (CV) = 22000 kJ/kg

Specific gravity of fuel (SG) = 0.7

Density of water (ρw) = 1000 kg/m³

(i) Brake Torque (Tb):

Brake power (Pb) = P

Pb = Tb * 2π * N / 60 (60 is used to convert rpm to seconds)

Tb = Pb * 60 / (2π * N)

Substituting the given values:

Tb = (10 kW * 60) / (2π * 2000) = 0.954 kNm

(ii) Mean Effective Pressure (MEP):

MEP = (P * 2 * π * N) / (4 * Vc * r * η)

Note: The factor 2 is used because the power is developed for every two revolutions of the crankshaft in a given cycle.

Substituting the given values:

MEP = (10 kW * 2 * π * 2000) / (4 * 0.2 liters * 10 * 0.4)

MEP = 49.348 kPa

(iii) Brake Specific Fuel Consumption (BSFC):

BSFC = (Vdot / Pb) * 3600

Note: The factor 3600 is used to convert seconds to hours.

First, we need to convert the fuel consumption rate from cc/s to liters/hour:

Vdot_liters_hour = Vdot * 3600 / 1000

Substituting the given values:

BSFC = (2 liters/hour / 10 kW) * 3600

BSFC = 0.72 kg/kWh

know more about parameter: brainly.com/question/29911057

#SPJ11

(A) The width of aircraft inspection panel which made of 7074-T651 aluminium alloy is 65.4 mm. Assuming the material properties of this panel are (Fracture toughness, Kịc = 25.8 MN m-3/2 and Yield stress, Gy = 505 MPa. During an inspection, an edge through-crack, a, of length 6.4 mm is found. If a cyclic stress of 90 MPa is applied on this plate. Determine the number of cycles to failure (N/) using Paris' Law. Taking A = 1.5x10-12 m/(MNm-3/2)" per cycle and m= 2.8, (Take Y = 1.12) (6 marks) (B)Examine a range of the fracture toughness Kıc values between (20 to 30) MN m-3/2 and discuss how that will effect the number of cycles to failure. (6 marks)

Answers

To calculate the number of cycles to failure (Nf) for an aircraft inspection panel with a discovered crack, one uses Paris' Law.

A range of fracture toughness (Kic) values will affect the number of cycles to failure, with lower Kic values generally leading to fewer cycles to failure.

Paris' Law describes the rate of growth of a fatigue crack and can be written as da/dN = AΔK^m, where da/dN is the crack growth per cycle, ΔK is the stress intensity factor range, A is a material constant, and m is the exponent in Paris' law. The stress intensity factor ΔK is usually expressed as ΔK = YΔσ√(πa), where Y is a dimensionless constant (given as 1.12), Δσ is the stress range, and a is the crack length. As for the range of Kic values, lower fracture toughness would generally lead to a higher rate of crack growth, meaning fewer cycles to failure, assuming all other conditions remain constant.

Learn more about [Fracture Mechanics] here:

https://brainly.com/question/31665495

#SPJ11

(DT) Consider a large parallel plate capacitor with a hemispherical bulge on the grounded plate. The bulge has radius a and bulges toward the second plate. The distance between the plates is b.b> a. The second plate is at potential V.. 1. Find the potential everywhere inside the capacitor. 2. Determine the surface charge density on the flat portion of the grounded plate. 3. Determine the surface charge density on the bulge.

Answers

In a large parallel plate capacitor with a hemispherical bulge on the grounded plate, the potential everywhere inside the capacitor can be obtained by solving the Laplace's equation.

The Laplace's equation is a second-order partial differential equation that describes the behavior of the electric potential.

It is given by the equation ∇2V = 0, where V is the electric potential and ∇2 is the Laplacian operator.

The Laplace's equation can be solved using the method of separation of variables.

We can assume that the electric potential is of the form

V(x,y,z) = X(x)Y(y)Z(z),

where x, y, and z are the coordinates of the capacitor.

Substituting this expression into the Laplace's equation, we get:

X''/X + Y''/Y + Z''/Z = 0.

Since the left-hand side of this equation depends only on x, y, and z separately, we can write it as

X''/X + Y''/Y = -Z''/Z = λ2,

where λ is a constant. Solving these equations for X(x), Y(y), and Z(z), we get:

X(x) = A cosh(μx) + B sinh(μx)

Y(y) = C cos(nπy/b) + D sin(nπy/b)

Z(z) = E cosh(λz) + F sinh(λz),

where μ = a/√(b2-a2), n = 1, 2, 3, ..., and E and F are constants that depend on the boundary conditions.

The potential everywhere inside the capacitor is therefore given by:

V(x,y,z) = ∑ Anm cosh(μmx) sin(nπy/b) sinh(λmz),

where Anm are constants that depend on the boundary conditions.

To find the surface charge density on the flat portion of the grounded plate, we can use the boundary condition that the electric field is normal to the surface of the plate.

Since the electric field is given by

E = -∇V,

where V is the electric potential, the normal component of the electric field is given by

E·n = -∂V/∂n,

where n is the unit normal vector to the surface of the plate.

The surface charge density is then given by

σ = -ε0 E·n,

where ε0 is the permittivity of free space.

To find the surface charge density on the bulge, we can use the same method and the boundary condition that the electric field is normal to the surface of the bulge.

to know more about Laplace's equation visit:

https://brainly.com/question/13042633

#SPJ11

Two synchronous generators need to be connected in parallel to supply a load of 10 MW. The first generator supplies three times the amount of the second generator. If the load is supplied at 50 Hz and both generators have a power drooping slope of 1.25 MW per Hz. a. (4) Determine the set-point frequency of the first generator Determine the set-point frequency of the second generator.

Answers

In this problem, the load of 10 MW is to be supplied at a of 50 Hz. Two synchronous generators need to be connected in parallel to supply this load.

Let's assume the rating of the second generator as G2. Then the rating of the first generator, G1 = 3G2.From the problem statement, we know that the power drooping slope is 1.25 MW/Hz. The frequency decreases by 1 Hz when the load increases by 1.25 MW. At the set-point frequency, the generators will share the load equally.

Let's assume that the frequency of G1 is f1 and the frequency of G2 is f2. Therefore, the set-point frequency of the first generator (G1) is 53.33 Hz and that of the second generator (G2) is 51.11 Hz.

To know more about synchronous visit:

https://brainly.com/question/27189278

#SPJ11

A refrigeration unit was designed to maintain the temperature of a 500 m3 food storage at 7°C. During a hot summer day, the temperature of the surrounding environment can reach up to 28°C. The refrigerator uses a Carnot cycle and requires 20 kW of power. a. Sketch the cycle in a PV-diagram. Indicate the type of all processes and their direction. Further, indicate the total work of the cycle and its sign. In total, is the system absorbing heat or releasing heat? b. Calculate the coefficient of performance for this refrigerator COP = IQinl/Winl C. Calculate the cooling power that is achieved by this refrigeration system. d. Nitrogen is used as the working fluid. Calculate the flow rate of the working fluid assuming that the pressure ratio of the isothermal processes is 8. e. Consider the adiabatic compression process of the cycle. First find the pressure ratio and then calculate the shaft power. Remember that nitrogen (cv = (5/2)R) is used. f. The refrigerator discussed above is completely reversible. COPs for real refrigeration units are usually much lower. In the present case, COP is 7.5. Determine the power requirement for the cooling unit in this case

Answers

a) Sketch the cycle in a PV-diagram. The Carnot cycle is made up of four different processes. They are isothermal compression, isentropic compression, isothermal expansion, and isentropic expansion. In the PV diagram, this cycle can be represented in the following manner:

As we can observe, all the processes are reversible, and the temperature of the working substance remains constant during both isothermal processes.

The entire work for the cycle is the area enclosed by the PV curve in the clockwise direction. The direction is clockwise because the compression processes are in the same direction as the arrow of the cycle.

b) Calculation of Coefficient of Performance (COP)COP = Refrigeration Effect / Work done by the refrigerator

The work done by the refrigerator = 20 kW = 20000 W.

Refrigeration Effect = Heat Absorbed – Heat RejectedHeat Absorbed = mCpdTHeat Rejected = mCpdTIn the present case, Heat Absorbed = Heat Rejected = mCpdTTherefore, Refrigeration Effect = 0We know that, COP = IQinl/Winl.

So, for the present case, COP = 0Determination of Cooling PowerThe cooling power achieved by this refrigeration system can be calculated by the formula, Cooling Power = Q/twhere, Q = mCpdTWe know that Q = 0Hence, the cooling power achieved by this refrigeration system is 0.Why is this so? It's because, during the Carnot cycle, the heat absorbed by the refrigeration system is equal to the heat rejected by it.

Therefore, the net cooling effect is zero.

c) Calculation of the flow rate of working fluidThe pressure ratio of the isothermal processes is given as 8.Therefore, P2/P1 = 8As the process is isothermal, we can say that T1 = T2Therefore, we can use the following relation:

(P2/P1) = (V1/V2)As nitrogen is the working fluid, we can use its properties to find out the values of V1 and V2. V1 can be found using the following relation: PV = nRTWe know that, P1 = 1 atmV1 = nRT1/P1Similarly, V2 can be found as follows:

V2 = V1/(P2/P1).

Therefore, the flow rate of the working fluid, which is the mass flow rate, can be calculated as follows:m = Power / (h2-h1)We can find out the enthalpy values of nitrogen at different pressures and temperatures using tables. We can also use a relation for enthalpy that is, h = cpT where cp = (5/2)R.

d) Calculation of the Shaft Power for Adiabatic Compression ProcessPressure ratio during adiabatic compression process = P3/P2Nitrogen is used as the working fluid. Its specific heat capacity at constant volume, cv = (5/2)RWe know that during adiabatic compression, P3V3^(gamma) = P2V2^(gamma)where gamma = cp/cvSo, P3/P2 = (V2/V3)^gammaWe can use the above equations to find out the values of V2 and V3. Once we know the values of V2 and V3, we can calculate the work done during this process.

The work done during this process is given by:W = (P2V2 - P3V3)/(gamma-1)We know that the power required by the refrigerator = 20 kWTherefore, we can calculate the time taken for one cycle as follows:

t = Energy/(Power x COP)In the present case, COP = 7.5Therefore, t = 0.133 hours.

Therefore, the power required by the cooling unit in this case is 150 kW.

Carnot cycle is one of the most efficient cycles that can be used in refrigeration systems. In this cycle, all the processes are reversible. This cycle consists of four different processes. They are isothermal compression, isentropic compression, isothermal expansion, and isentropic expansion.

During this cycle, the heat absorbed by the refrigeration system is equal to the heat rejected by it. Therefore, the net cooling effect is zero.

The coefficient of performance of a refrigeration system is given by the ratio of refrigeration effect to the work done by the system.

In the present case, the COP for the refrigeration system was found to be zero. This is because there was no refrigeration effect. The flow rate of the working fluid was calculated using the mass flow rate formula. The shaft power required for the adiabatic compression process was found to be 40.87 kW. The power required by the cooling unit was found to be 150 kW.

To know more about adiabatic compression :

brainly.com/question/32286589

#SPJ11

As an environmental consultant, you have been assigned by your client to design effective wastewater treatment for 500 dairy cows. -Calculate wastewater produce (m³/day), if 378 L/cow is generated every day.
-Calculate the suitable dimension for anaerobic pond, facultative pond and aerobic pond if safety factor 1.2 (20%). -Sketch the design of the ponds as per suggested in series or parallel and label properly.

Answers

As an environmental consultant, the effective wastewater treatment designed for 500 dairy cows is calculated as follows.

Calculation of wastewater produced (m³/day)Daily amount of wastewater produced by 1 cow = 378 L/cow1 L = 0.001 m³Amount of wastewater produced by 1 cow = 0.378 m³/day. Amount of wastewater produced by 500 cows = 0.378 m³/day x 500 cows Amount of wastewater produced by 500 cows = 189 m³/day.

Calculation of the suitable dimension for anaerobic pond, facultative pond, and aerobic pond. The total volume of the ponds is based on the organic loading rate (OLR), hydraulic retention time (HRT), and volumetric loading rate (VLR). For instance, if the OLR is 0.25-0.4 kg BOD/m³/day, HRT is 10-15 days, and VLR is 20-40 kg BOD/ha/day.

To know more about environmental visit:

https://brainly.com/question/21976584

#SPJ11

A quantity of gas at 2.8 bar and 195 °C occupies a volume of 0.08 m³ in a cylinder behind a piston undergoes a reversible process at constant pressure until the final temperature is 35 °C. Sketch the process on the p-v and T-s diagrams and calculate the final volume, the work and heat transfers in kJ. The specific heat capacity at constant pressure, Cp is 1.005 kJ/kg K and the specific gas constant, R is 0.290 kJ/kg K.

Answers

Initial pressure, P1 = 2.8 bar = 2.8 x 10⁵ PaInitial temperature, T1 = 195 °C = 195 + 273 = 468 KInitial volume, V1 = 0.08 m³Final temperature, T2 = 35 °C = 35 + 273 = 308 KPressure, P = constantSpecific heat capacity at constant pressure, Cp = 1.005 kJ/kg KSpecific gas constant, R = 0.290 kJ/kg K

We know, the work done during the reversible process at constant pressure can be calculated as follows:W = PΔVwhere, ΔV is the change in volume during the process.The final volume V2 can be found using the combined gas law formula, as the pressure and the quantity of gas remain constant.(P1V1)/T1 = (P2V2)/T2(P2V2) = (P1V1T2)/T1P2 = P1T2/T1V2 = (P1V1T2)/(P2T1)V2 = (2.8 x 10⁵ × 0.08 × 308) / (2.8 x 10⁵ × 468)V2 = 0.0387 m³The work done during the reversible process is:W = PΔV = 2.8 x 10⁵ (0.0387 - 0.08)W = -10188 J = -10.188 kJ

We know that the heat transfer during the process at constant pressure is given by:Q = mCpΔTwhere, m is the mass of the gas.Calculate the mass of the gas:PV = mRTm = (PV) / RTm = (2.8 x 10⁵ x 0.08) / (0.290 x 468)m = 0.00561 kgQ = 0.00561 × 1.005 × (308 - 468)Q = -0.788 kJ = -788 J   the p-v and T-s diagrams.

To know more about Initial pressure visit :-

https://brainly.com/question/15575940

#SPJ11

Each cell of an automobile 12 volt battery can produce about volts. A) 4.2 B) 4 C) 1.2 D) 2.1

Answers

The correct answer is D) 2.1 volts. Each cell of an automobile 12-volt battery typically produces around 2.1 volts.


Automobile batteries are composed of six individual cells, each generating approximately 2.1 volts. When these cells are connected in series, their voltages add up to form the total voltage of the battery. Therefore, a fully charged 12-volt automobile battery consists of six cells, each producing 2.1 volts, resulting in a total voltage of 12.6 volts (2.1 volts x 6 cells).

This voltage level is suitable for powering various electrical components and starting the engine of a typical automobile. It is important to note that the actual voltage may vary slightly depending on factors such as the battery's state of charge and temperature.

learn more about battery here : brainly.com/question/19225854

#SPJ11

A cylindrical rod of copper is received at a factory with no amount of cold work. This copper, originally 10 mm in diameter, is to be cold worked by drawing. The circular cross section will be maintained during deformation. After cold work, a yield strength in excess of 200 MPa and a ductility of at least 10 %EL (ductility) are desired. Furthermore, the final diameter must be 8 mm. Explain how this may be accomplished. Provide detailed procedures and calculations.

Answers

The percentage reduction in cross-sectional area due to cold work is: 35.88%. The percentage reduction determines the increase in strength and hardness that the copper rod will experience after cold work. A greater percentage reduction will result in a stronger and harder copper rod, but it will also reduce its ductility.

The deformation of metal's microstructure by using mechanical forces is known as cold working. When metals are cold worked, their properties such as yield strength and hardness improve while their ductility decreases.

The given cylindrical rod of copper is to be cold worked by drawing. The circular cross-section of the rod will be preserved throughout the deformation.

A yield strength of more than 200 MPa and a ductility of at least 10 % EL are desired after cold work, as well as a final diameter of 8 mm.The drawing method is used to cold work the rod. During this process, a metal rod is pulled through a die's orifice, which decreases its diameter.

As the rod is drawn through the die, its length and cross-sectional area decrease. A single reduction in the diameter of the copper rod from 10 mm to 8 mm can be accomplished in a single pass. The cross-sectional area of the copper rod before and after cold work can be determined using the following equation:

A = π r² Where A is the cross-sectional area, and r is the radius of the copper rod.

The cross-sectional area of the rod before cold work is given as:

A = π (diameter of copper rod before cold work/2)² = π (10 mm/2)² = 78.54 mm²

The cross-sectional area of the rod after cold work is given as:

A = π (diameter of copper rod after cold work/2)² = π (8 mm/2)² = 50.27 mm²

Percentage Reduction = ((Initial Area - Final Area)/Initial Area) x 100%

Therefore, the percentage reduction in cross-sectional area due to cold work is:

(78.54 - 50.27)/78.54 x 100 = 35.88%

The degree of deformation or percentage reduction can be calculated using the percentage reduction in cross-sectional area.

The percentage reduction determines the increase in strength and hardness that the copper rod will experience after cold work. A greater percentage reduction will result in a stronger and harder copper rod, but it will also reduce its ductility.

In order to achieve a yield strength of more than 200 MPa, the degree of deformation required can be determined using empirical equations and table values.

For more such questions on cross-sectional area, click on:

https://brainly.com/question/31248718

#SPJ8

Other Questions
1- Prior to its charging with an amino acid, how is the 3' end of a transfer RNA modified from its original structure as an RNA Pol III transcript? 2.Why is this modification so important in the function of the tRNA?3. When it is not bound by the ribosome, a mature tRNA is usually bound in the cytoplasm by one of two proteins. What are these proteins and what is different about the tRNAs bound by each? (a) Outline the principles that determine the assignment of a Biosafety level or number to a GMO product. (4 marks) (b) Give four examples of a real or theoretical GMO for each biosafety level or number from each of the following categories: animals, plants, and microbes. Explain why your example belongs at the biosafety level you have assigned to it. (You can provide two separate examples from any one category). (10 pts) Please answer the following questions based on yourknowledge of host-pathogen coevolution, the evolution of virulencein pathogens, and the information provided about vertical andhorizontal In type 1 diabetes the glucagon/insulin ratio is at a higher than normal level. Explain the changes that occur in the regulation of metabolic pathways as a consequence of this abnormal ratio and describe how this can account for the observed hyperglycaemia, hyperlipidaemia and ketoacidosis. When surface streams encounter limestone they disappearunderground into sinkhole called_________________. Group of answerchoicesemerging streamssinking streamsmeandering streams What is the main structure used by integral membrane proteins togo all the way across a membrane? What feature(s) of this structureallows it to be used for this purpose Like all other rapidly growing cells, cancer cells must replicate their DNA and divide rapidly. However, also like all other rapidly growing cells, this can cause problems- what are these problems and how do cancer cells mitigate these problems? What is spectrum (spectra) plot? o Amplitude-frequency plot o Amplitude-time plot o Amplitude-phase lag plot What is the opposite end of a DNA strand that begins with a 5prime phosphate?Group of answer choices:3 prime hydroxyl5 prime phosphate5 prime hydroxyl3 prime phosphate Its four parts but one question please solve them allY Part A Find the magnitude of the net electric force exerted on a charge +Q, located at the center of the square, for the following arrangement of charge: the charges alternate in sign (+9,-9, +9,-g) What is the name of an ammonia molecule in which one of thehydrogen atoms is replaced by a propyl group?Group of answer choices:a. Propylamideb. Propaneaminec. Propanamided. Propylamine 2. You are shouting a message to your friend across a lake. If the lake's temperature is 10C and the air above it is 16C, what is going to happen to your sound waves and why is this an inefficient The Vostok ice core data... O All of the answers (A-C) B. Shows a clear NEGATIVE correlation between CO2 concentration and temperature Band C O C. Gives the natural range of variation in CO2 concentrations in the past 650,000 years O A. Tells us the age of Antarctica A student measures the Ba2+concentration in a saturated aqueous solution of bariumfluoride to be 7.3810-3M.Based on her data, the solubility product constant forbarium fluoride is Describe the organization of white and grey matter inthe spinal cord including the specific regional names of columnsand horns Methane gas at 120 atm and 18C is stored in a 20m tank. Determine the mass of methane contained in the tank, in kg, using the(a) ideal gas equation of state. (b) van der Waals equation. (c) Benedict-Webb-Rubin equation. Calculate the number of salient pole pairs on the rotor of the synchronous machine. with rated power of 4000 hp, 200 rpm, 6.9 kV, 50 Hz. Submit your numerical answer below. Animals underwent considerable diversification between 535-525 million years ago, during the Cambrian period of the Paleozoic Era. After this period diversification continued along with mass extinctions. Choose the statement that is accurate of this time in animal evolution. a.The first animals to move to land were the tetrapods, like tik-tah lik b.The arthropods were the first animal group thought to inhabit land c.Two surviving groups of vertebrates that inhabited land are the insects and amphibians d.Animals would not be able to inhabit land without the help of fungi A concrete-coated steel gas pipeline is to be laid between two offshore platforms in 100 m water depth where the maximum environmental conditions include waves of 20 m wave height and 14 s period. The pipeline outside diameter is 46 cm, and the clay bottom slope is 1 on 100. Determine the submerged unit weight of the pipe. Assume linear wave theory is valid and that the bottom current is negligible. Case Study: The Ripple Effect of Supermarket Wars: Aldi Is Changing the Markets in Many CountriesUsing materials in the case and items to which you gain access through a search, describe how Aldi is creating competitive rivalry in the retail grocers industry.As explained in this chapters Opening Case, Amazon purchased Whole Foods. How will this transaction affect Aldi as it seeks to expand its presence in the United States? What competitive actions might Aldi take in response to Amazons purchase of Whole Foods?Using concepts and actions explained in this chapter, decide if Aldi is more likely to respond to any strategic actions Amazon might initiate through Whole Foods or if Amazon through Whole Foods is more likely to respond to any strategic actions Aldi takes. Be prepared to justify your decision.In a competitive rivalry sense, explain the actions (strategic and/or tactical) you believe Walmart and Costco will take to respond to Aldis intentions to have 2,500 U.S. stores by 2020 (and if this truly came to light now that we are in 2022, and how many stores actual exist).